

COMUNE DI LENOLA

(PROVINCIA DI LATINA)

AREA TECNICA - URBANISTICA - SERVIZIO LL. PP.

PROGETTO ESECUTIVO

PROGETTO PER L'INNALZAMENTO DEL LIVELLO DI SICUREZZA E LA RIQUALIFICAZIONE DELL'EDIFICIO SCOLASTICO SCUOLA ELEMENTARE "R. TATARELLI"

UBICAZIONE: 04025 - LENOLA (LT) - Piazza Lago, 12

TITOLO	TITOLO ELABORATO CAPITOLATO SPECIALE DI APPALTO PARTE 2							
E	LABORATO	SCALA		IL RESPONSABIL	E UNICO DEL PROCEDIMENTO			
0402	DIO DI INGEGNERI. 25 Lenola (LT) . ill: roccorosato@liber	A CIVILE: Ing. Rocco Rosato o.it		IL PROGETTISTA: ing. Rocco Rosato				
REV.	DATA	DESCRIZIONE OGGETTO REVISIONE EMISSIONE		REDATTO	APPROVATO			

Questo documento è di proprietà dell'ing. Rocco Rosato, che salvaguarderà legalmente i propri diritti ai sensi delle leggi e disposizioni vigenti in materia. La copia, la riproduzione o la trasmissione dell'intero documento, o anche solo parziale, è proibita senza autorizzazione scritta.

CAPITOLATO SPECIALE D'APPALTO PARTE 2

Progetto: INNALZAMENTO DEL LIVELLO DI SICUREZZA E LA RIQUALIFICAZIONE DELL'EDIFICIO SCOLASTICO SCUOLA ELEMENTARE "R. TATARELLI"
Comune di: Lenola (LT);
Ente appaltante (Committente): Comune di Lenola (LT);
Responsabile Unico di Procedimento: Geom. Francesco Mastrobattista
Progettista: Ingegnere Rocco Rosato;
Direttore dei Lavori: Ingegnere Rocco Rosato;
Coordinatore della sicurezza in fase di progettazione: Geom. Luigi Marrocco;
Coordinatore della sicurezza in fase di esecuzione: Geom. Luigi Marrocco;
Impresa esecutrice:;
Direttore tecnico di cantiere:;

I lavori che formano l'oggetto dell'appalto possono riassumersi come appresso, salvo più precise indicazioni che potranno essere ricavate dalle Relazioni allegate al Progetto esecutivo oppure impartite successivamente dalla Direzione dei Lavori. Ogni intervento è stato proporzionato agli obiettivi di sicurezza e durabilità, contenendo gli interventi in modo tale da produrre il minimo impatto sul manufatto.

I principali interventi in progetto sono:

- a) Innalzamento del livello di sicurezza dell'edificio, mediante intervento di miglioramento sismico e ristrutturazioni,
- b) Miglioramento del sistema di prevenzione incendi e sistema di emergenza esistenti

Ulteriori interventi necessari per assicurare la corretta funzionalità e sicurezza dell'edificio, sono:

- c) Riqualificazione ed adeguamento dell'esistente spazio interno destinato alle attività ludico-educative, mediante ampliamento del locale e inserimento di adeguati servizi igienici annessi,
- d) Realizzazione corridoio esterno in c.a.
- e) Realizzazione vano ascensore in c.a.
- f) Ripristino ed ampliamento (ove necessario) degli impianti elettrici, idrico-sanitario e di riscaldamento esistenti, nelle aree oggetto dell'intervento.

INDICE

PARTE PRIMA – OPERE EDILI

TITOLO I - PRESCRIZIONI TECNICHE PER L'ESECUZIONE, IL CONSOLIDAMENTO ED IL COLLAUDO DEGLI EDIFICI

Art. I	Edifici in tutto o in parte a muratura portante
Art. II	Edifici in conglomerato cementizio semplice o armato o precompresso
Art. III	Edifici realizzati in acciaio
Art. IV	Edifici prefabbricati

Art. VI Collaudo degli edifici

Edifici realizzati in zona sismica

Art. V

TITOLO II - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI INDAGINI, SCAVI E DEMOLIZIONI

Art. VII Indagini preliminari Art. VIII scavi e rinterri Art. IX Demolizioni e rimozioni

TITOLO III - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI NOLI E TRASPORTI

Art. X Opere provvisionali

Art. XI Noleggi Art. XII Trasporti

TITOLO IV - PRESCRIZIONI SU QUALITÀ E PROVENIENZA DEI MATERIALI

Art. XIII Materie prime Art. XIV Semilavorati

TITOLO V - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI OPERE EDILI

Art. XV Strutture portanti

Art. XVI Chiusure

Art. XVII Partizioni interne Art. XVIII Partizioni esterne

TITOLO VI - PRESCRIZIONI TECNICHE PER IL RIPRISTINO DI STRUTTURE ESISTENTI

Art. XIX Demolizioni

Art. XX Trattamento di pulitura dei materiali

Art. XXI Trattamento di consolidamento dei materiali Art. XXII Trattamento di protezione dei materiali

Art. XXIII Conservazione del legno

Art. XXIV Consolidamento delle strutture

TITOLO VII - PRESCRIZIONI TECNICHE PER ESECUZIONE DI OPERE COMPLEMENTARI

Art. XXV	Opere	in marmo	е	pietre	natur	ali
	_	_				

Art. XXVI Opere da cementista e stuccatore

Art. XXVII Opere in legno

Art. XXVIII Opere da fabbro e serramentista

Art. XXIX Opere da vetraio

Art. XXX Opere da lattoniere

Art. XXXI Opere da pittore

Art. XXXII Opere da tappezziere

Art. XXXIII Opere in vetrocemento

Art. XXXIV Opere di impermeabilizzazione

Art. XXXV Opere di pavimentazione e rivestimento

Art. XXXVI Sistemazioni a verde

Art. XXXVIIOpere varie

TITOLO VIII - ORDINE DA TENERSI NELL'ANDAMENTO DEI LAVORI

PARTE SECONDA – IMPIANTI IDRICI ED IGIENICO-SANITARI / IMPIANTI ANTINCENDIO – **IMPIANTI A GAS**

TITOLO I - PRESCRIZIONI TECNICHE IMPIANTI IDRICI ED IGIENICO - SANITARI

Art. I Definizioni generali degli impianti Art. II Verifiche e prove preliminari Art. III Prescrizioni e prove sui materiali

Impianti di produzione di acqua calda per usi igienici e sanitari Art. IV

Art. V Trattamento dell'acqua

Art. VI Elettropompe

Art. VII Riduttori di pressione Art. VIII Vasi d'espansione Art. IX Autoclavi e pressostati

Art. X Ammortizzatori e manometri

Art. XI Gruppi di sollevamento

Art. XII Collettori solari Art. XIII Giunti antivibranti

Art. XIV Modalità di posa delle tubazioni

Art. XV Installazione degli impianti

TITOLO II - PRESCRIZIONI TECNICHE PER IMPIANTI IDRICI ANTINCENDIO

Art. XVI Impianti idrici antincendio

Art. XVII Norme di sicurezza antincendi per gli edifici di civile abitazione

Art. XVIII Regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio dei locali di intrattenimento e di pubblico spettacolo

Art. XIX Regola tecnica di prevenzione incendi per l'edilizia scolastica

Regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio Art. XX delle strutture sanitarie, pubbliche e private

Art. XXI Regola tecnica di prevenzione incendi per la progettazione, la costruzione e l'esercizio di edifici e/o locali destinati ad uffici

Art. XXII Norme di sicurezza antincendi per la costruzione e l'esercizio delle autorimesse e simili

TITOLO III - PRESCRIZIONI TECNICHE PER IMPIANTI A GAS

Art. XXIII Impianti a gas di rete

Art. XXIV Regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio di impianti termici alimentati da combustibili gassosi

TITOLO IV - PROGETTAZIONE, CERTIFICAZIONI E COLLAUDI

Art. XXV Progettazione degli impianti Art. XXVI Dichiarazione di conformità

Art. XXVII Attestato di certificazione energetica

Art. XXVIII Verifiche certificazioni e collaudi delle opere

Art. XXIX Sanzioni

PARTE TERZA - IMPIANTI DI RISCALDAMENTO E CONDIZIONAMENTO

TITOLO I - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI IMPIANTI DI RISCALDAMENTO E CONDIZIONAMENTO

Art. I Definizioni generali degli impianti
Art. II Verifiche e prove preliminari
Art. III Prescrizioni sui materiali

Tribagiani

Art. IV Tubazioni

Art. V Generatori di calore o centrale termica

Art. VI Corpi scaldanti

Art. VII Gruppi e centrali termiche

Art. VIII Bruciatori

Art. IX Generatori d'aria calda Art. X Gruppi termici a gas Art. XI Centrali frigorifere

Art. XII Serbatoi e accessori

Art. XIII Elettropompe

Art. XIV Circuiti di riscaldamento
Art. XV Corpi scaldanti a radiazione

Art. XVI Corpi scaldanti a termoconvezione

Art. XVII Produttori di acqua calda

Art. XVIII Impianti di condizionamento e trattamento dell'aria

Art. XIX Unità di condizionamento Art. XX Trattamento dell'aria Art. XXI Distribuzione dell'aria Art. XXII Ventilatori e silenziatori Art. XXIII Bocchette e griglie

Art. XXIV Rivestimenti isolanti per impianti

Art. XXV Giunti antivibranti

Art. XXVI Modalità di posa delle tubazioni

Art. XXVII Impianti per la produzione di acqua calda per usi igienici e sanitari

Art. XXVIII Regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio di impianti termici alimentati da combustibili gassosi

Art. XXIX Regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio degli impianti termici alimentati da combustibili liquidi

PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO-

TITOLO II - PROGETTAZIONE, CERTIFICAZIONI E COLLAUDI

Art. XXX Norme per il contenimento del consumo energetico

Art. XXXI Utilizzo di fonti energetiche alternative

Art. XXXII Progettazione degli impianti

Art. XXXIII Elementi di progetto

Art. XXXIV Dichiarazione di conformità

Art. XXXV Attestato di certificazione energetica

Art. XXXVI Installazione degli impianti

Art. XXXVII Manutenzione degli impianti

Art. XXXVIIIVerifiche, certificazioni e collaudi delle opere

Art. IXL Sanzioni

PARTE QUARTA - CONSOLIDAMENTO

TITOLO I - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI INDAGINI, SAGGI AD ANALISI

Art. I Indagini non distruttive

Art. II Indagini minimamente distruttive

Art. III Indagini geognostiche

Art. IV Diagnosi e mappatura dei materiali

TITOLO II - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI NOLI E TRASPORTI

Art. V Opere provvisionali

Art. VI Noleggi Art. VII Trasporti

TITOLO III - PRESCRIZIONI PER IL RIPRISTINO, IL RESTAURO ED IL CONSOLIDAMENTO DEI MATERIALI E DEGLI ELEMENTI EDILIZI

Art. VIII Trattamento di pulitura dei materiali

Art. IX Trattamento di consolidamento dei materiali

Art. X Trattamento di protezione dei materiali

Art. XI Conservazione del legno

Art. XII Consolidamento degli intonaci

Art. XIII Consolidamento delle murature

Art. XIV Ripristino dei rivestimenti in pietra

Art. XV Deumidificazione delle murature

TITOLO IV - PRESCRIZIONI TECNICHE PER IL CONSOLIDAMENTO DELLE STRUTTURE

Art. XVI Strutture di fondazione

Art. XVII Strutture in muratura

Art. XVIII Strutture in calcestruzzo

Art. XIX Strutture in acciaio

Art. XX Strutture in legno

Art. XXI Strutture orizzontali

Art. XXII strutture inclinate

Art. XXIII Volte in muratura

Art. XXIV Coperture in legno

Art. XXV Infissi esterni

Art. XXVI Balconi in ferro e laterizio

TITOLO V - PRESCRIZIONI TECNICHE PER L'ESECUZIONE, IL CONSOLIDAMENTO ED IL COLLAUDO DEGLI EDIFICI

Art. XXVII Edifici in tutto o in parte a muratura portante

Art. XXVIII Edifici conglomerato cementizio armato o in acciaio

Art. XXIX Edifici realizzati in zona sismica

Art. XXX Collaudo statico degli edifici

TITOLO VI - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI OPERE STRUTTURALI

Art. XXXI Materiali per opere strutturali

Art. XXXII Opere speciali di fondazione Art. XXXIII Opere in calcestruzzo

Art. XXXIV Ferro di armatura

Art. XXXV Strutture in acciaio
Art. XXXVI Casseri per getti in opera

Art. XXXVII Solai

Art. XXXVIII Strutture in muratura

Art. XXXIX Strutture in legno

PARTE PRIMA – OPERE EDILI PRESCRIZIONI TECNICHE

TITOLO I - PRESCRIZIONI TECNICHE PER L'ESECUZIONE, IL CONSOLIDAMENTO ED IL COLLAUDO DEGLI EDIFICI

Art. I - Edifici in tutto o in parte a muratura portante

Per l'esecuzione, il consolidamento e il collaudo degli edifici di uno o più piani, in tutto o in parte a muratura portante, costituiti da un insieme di sistemi resistenti collegati tra di loro e le fondazioni, disposti in modo da resistere ad azioni verticali ed orizzontali, si osserveranno le prescrizioni delle Nuove Norme tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e la relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008". Per altre tipologie edilizie, le norme di cui sopra potranno assumersi quale utile riferimento metodologico.

Art. II - Edifici in conglomerato cementizio semplice o armato o precompresso

Per le prescrizioni generali, l'esecuzione ed il consolidamento di edifici in conglomerato cementizio semplice o armato, si seguiranno le norme del D.P.R. n. 380/01 e successive modifiche ed integrazioni

Per il calcolo, l'esecuzione ed il collaudo delle strutture in c.a. normale e precompresso e per le strutture metalliche occorre riferirsi alle Nuove Norme tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e la relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008" ed alle norme tecniche richiamate.

Tutte le opere in cemento armato facenti parte dell'opera appaltata saranno eseguite in base ai calcoli di stabilità accompagnati da disegni esecutivi e da una relazione, che dovranno essere redatti e firmati da un tecnico abilitato iscritto all'Albo professionale, e che l'impresa dovrà presentare presso gli uffici competenti (denuncia delle opere ex lege 1086/71 recepita dal D.P.R. n°380 del 6 giugno 2001) e consegnare alla Direzione dei Lavori entro il termine che le verrà prescritto.

L'impresa dovrà, attenendosi agli schemi e disegni facenti parte del progetto ed allegati al contratto o alle norme che le verranno impartite, a sua richiesta, all'atto della consegna dei lavori. L'esame e verifica da parte della Direzione dei Lavori dei progetti delle varie strutture in cemento armato non esonera in alcun modo l'Impresa dalle responsabilità ad essa derivanti per legge e per le precise pattuizioni del contratto, restando contrattualmente stabilito che, malgrado i controlli di ogni genere eseguiti dalla Direzione dei Lavori nell'esclusivo interesse dell'Amministrazione, l'Impresa stessa rimane unica e completa responsabile delle opere, sia per quanto ha rapporto con la loro progettazione e calcolo, che per la qualità dei materiali e la loro esecuzione; di conseguenza essa dovrà rispondere degli inconvenienti che avessero a verificarsi, di qualunque natura, importanza e conseguenze essi potessero risultare.

Art. III - Edifici realizzati in acciaio

Le norme riguardanti le costruzioni di acciaio relative ad opere di ingegneria civile, eccettuate quelle per le quali vige una regolamentazione apposita a carattere particolare, sono contenute nelle Nuove Norme tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e nella relativa

Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008".

Art. IV - Edifici prefabbricati

Conformemente a quanto indicato nel D.M. 3 dicembre 1987 ¹ - Norme tecniche per la progettazione², esecuzione e collaudo delle costruzioni prefabbricate, ogni fornitura deve essere corredata, oltre che dai disegni del manufatto e dall'indicazione delle sue caratteristiche d'impiego, anche da apposito certificato di origine firmato dal produttore e dal tecnico responsabile della produzione. In presenza delle condizioni sopra elencate, i manufatti potranno essere accettati senza ulteriori esami e controlli.

Ove trattasi di manufatti prodotti in serie controllata, il certificato di origine di cui sopra deve altresì attestare che gli elementi strutturali sono stati prodotti in serie controllata riportando gli estremi dell'autorizzazione del Servizio tecnico centrale, e recare, in allegato, copia del relativo estratto del registro di produzione e gli estremi dei certificati di verifica preventiva del laboratorio ufficiale.

In tal caso, sempre in base alla sopra citata disposizione, le forniture possono essere accettate senza ulteriori controlli dei materiali né prove di carico dei componenti isolati.

Per i manufatti di produzione occasionale, o comunque, non assoggettati a deposito presso il Servizio tecnico centrale, si applicano le ordinarie disposizioni normative. Inoltre il Direttore dei Lavori deve opportunamente provvedere agli accertamenti da eseguirsi durante la fase esecutiva presso il cantiere di prefabbricazione.

In proposito, si segnala la necessità che sui certificati di prova dei materiali sia indicato chiaramente il prodotto (tipo e destinazione) cui si riferisce il prelievo.

Art. V - Edifici realizzati in zona sismica

Per gli edifici realizzati in zona sismica si applicheranno le prescrizioni di cui al D.M. 14 Gennaio 2008 (NTC2008) e alla relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008"

Art. VI - Collaudo degli edifici

In riferimento al D.P.R. n. 380 del 6 giugno 2001 ed alle Nuove Norme tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e alla relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008", le operazioni di collaudo consistono nel controllare la perfetta esecuzione del lavoro e la sua corrispondenza con i dati del progetto, nell'eseguire prove di carico e nel compiere ogni altra indagine che il Collaudatore ritenga necessaria.

Le prove di carico hanno luogo di regola non prima di 50 giorni dall'ultimazione del getto per i conglomerati di cemento idraulico normale (Portland), d'alto forno e pozzolanico, non prima di 30 giorni per i conglomerati di cemento alluminoso, e si effettuano a stagionatura più o meno avanzata secondo la portata delle diverse parti e la importanza dei carichi.

Nelle prove la costruzione deve essere possibilmente caricata nei modi previsti nella progettazione ed in accordo con le indicazioni contenute nelle Nuove Norme tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e nella relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008".

² Si veda riferimento nota 78.

¹ Si veda anche la c.m. n. 31104 (Pres. Cons. Sup. - Servizio Tecnico Centrale, 16 marzo 1989)

La lettura degli apparecchi di misura (flessimetri od estensimetri) sotto carico deve essere ripetuta fino a che non si verifichino ulteriori aumenti nelle indicazioni.

La lettura delle deformazioni permanenti, dopo la rimozione del carico deve essere ugualmente ripetuta fino a che non si verifichino ulteriori ritorni.

Qualora si riscontrino deformazioni permanenti notevoli, la prova di carico deve essere ripetuta per constatare il comportamento elastico della struttura.

Il confronto tra le deformazioni elastiche (consistenti nelle differenze tra le deformazioni massime e le permanenti) e le corrispondenti deformazioni calcolate, fornisce al Collaudatore un criterio di giudizio sulla stabilità dell'opera.

TITOLO II - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI INDAGINI, SCAVI E DEMOLIZIONI

Art. VII Indagini preliminari

Le indagini preliminari che potranno essere utilizzate sono di due tipi:

- a) indagini non distruttive (termografia, indagini soniche, georadar, tomografia sonica e radar);
- b) indagini minimamente distruttive (martinetti piatti, sclerometro, prove di penetrazione, pull test).

Nel primo caso si utilizzeranno tecnologie di analisi dei materiali o degli elementi da sottoporre ad opere di demolizione che escludano interventi artificiali o a carattere invasivo tali da alterare in qualsiasi modo le caratteristiche fisico-chimiche delle parti oggetto di indagine.

A questa prima categoria appartengono le seguenti tecnologie:

- fotogrammetria per la ripresa e restituzione di immagini fotografiche completamente prive di distorsioni provocate dall'impiego delle ottiche normalmente utilizzate;
- termografia per il rilevamento delle radiazioni elettromagnetiche (comprese tra 0,4 e 0,75 micron) e di immagini non comprese nella banda del visibile ma estese nel campo dell'infrarosso e più precisamente nella regione spettrale compresa tra 2 e 5,6 micron visualizzando su un monitor la mappa termica o termogramma della distribuzione della temperatura superficiale dei vari materiali, visualizzabile attraverso scale di colori o toni di grigio. Ad ogni colore o tono della scala di grigi, corrisponde un intervallo di temperature. Le apparecchiature all'infrarosso misurano il flusso di energia a distanza senza alcun contatto fisico con la superficie esaminata. Lo schema di funzionamento si basa su una videocamera ad infrarossi che trasforma le radiazioni termiche in segnali elettrici, successivamente convertiti in immagini, a loro volta visualizzate su un monitor e registrate. In particolare nella videocamera, la radiazione infrarossa che raggiunge l'obiettivo, viene trasmessa dal sistema ottico ad un elemento semiconduttore, il quale converte le radiazioni infrarosse in un segnale video, mentre l'unità di rilevazione elabora il segnale proveniente dalla telecamera e fornisce l'immagine termografica. L'apparecchiatura termovisiva deve comprendere una telecamera, capace di effettuare riprese secondo angoli da + 0° a - 90° su uno stesso piano e dotata di obiettivi intercambiabili con lenti al germanio o al silicio ed una centralina di condizionamento del segnale con monitor. Il campo di misura dell'apparecchiatura deve essere compreso tra -20° C e + 900° C con una sensibilità migliore di 0, 5° C. La banda di radiazione dell'apparecchiatura dovrà essere compresa tra 2 e 5,6 mm. L'apparecchiatura dovrà rendere possibile la registrazione delle immagini, su pellicola fotografica in bianco e nero e/o colori, su nastro magnetico. Deve inoltre essere prevista la possibilità di montare l'apparecchiatura su carrello semovente autoportante per poter costituire unità autonoma. Queste apparecchiature sono comunemente portatili e autoalimentate;
- misurazione della temperatura e dell'umidità effettuata con termometri ed igrometri in grado di fornire i valori relativi alle superfici prese in esame; tali misurazioni possono essere eseguite anche con strumentazioni elettroniche di precisione e con l'umidometro a carburo di calcio:
- misurazione dei valori di inquinamento atmosferico attraverso la rilevazione dei dati sulle radiazioni solari, direzione del vento, le precipitazioni e la pressione esterna;
- la rilevazione fotografica con pellicole normali o all'infrarosso per un'analisi più approfondita delle caratteristiche dei materiali e delle loro specificità fisico-chimiche;

- endoscopia necessaria per l'esame ottico di condotti o cavità di piccole dimensioni per mezzo di piccole telecamere o strumenti fotografici integrati con apparecchi illuminanti e, a volte, con l'impiego di fibre ottiche. Per questa indagine si devono prediligere cavità già esistenti onde evitare la manomissione del materiale che ne deriverebbe da un foro appositamente praticato per svolgere l'indagine. Tale indagine è effettuata per mezzo dell'endoscopio che può essere di tipo rigido o di tipo flessibile. L'endoscopio rigido è un sistema ottico a lenti contenuto in un rivestimento rigido. Deve essere prolungabile fino a 2 metri mediante aggiunta di ulteriori elementi ottici e deve essere dotato di sistema di illuminazione per agevolare l'osservazione. Dovrà essere consentita la visione diretta a 45° e 90°. Lo strumento deve essere accoppiabile ad apparecchiature fotografiche e/o televisive. L'endoscopio flessibile permette la trasmissione dell'immagine e della luce tramite fibre ottiche. È comunemente dotato di testa mobile e prisma di conversione a 90°. Lo strumento deve essere accoppiabile ad apparecchiature fotografiche e/o televisive;
- misurazione degli inquinanti atmosferici effettuata con strumenti specifici per la rilevazione dei parametri di anidride carbonica, anidride solforosa, anidride solforica, ossidi di azoto, acido cloridrico, polveri totali, solfati, cloruri, nitrati ed altre sostanze presenti in sospensione nell'aria o depositate sul terreno;
- magnetometria impiegata per la rilevazione dei materiali ferrosi anche inglobati in altre sostanze. Dopo la lavorazione gli orientamenti dei magnetini contenuti nei manufatti rimangono inalterati, costituendo un campo magnetico facilmente rilevabile da apparecchiature magnetometriche; la ricerca è basata sul principio dell'induzione elettromagnetica e lo strumento utilizzato è il metal-detector che localizza la presenza di metalli con emissioni magnetiche effettuate da bobine o altri generatori di campi. Gli elementi che costituiscono questa apparecchiatura sono più sonde rilevatrici, con diversa precisione di rilevamento e con uscite per registratore, e una centralina analogica a due o più scale per la lettura della misura a seconda della differente sensibilità della sonda utilizzata. Queste apparecchiature sono comunemente portatili ed autoalimentate;
- colorimetria che analizza il manufatto sulla base dell'indagine fotografica effettuata con una serie di colorimetri standardizzati secondo la scala Munse che consentono l'individuazione delle varie sostanze presenti nelle parti analizzate.

Esistono, inoltre, degli altri tipi di indagine che rientrano sempre tra quelli classificati non distruttivi ma che hanno un piccolo grado di invasività quali:

- indagini soniche effettuate con fonometri in grado di emettere impulsi sonici e captare delle onde sonore, attraverso la percussione con appositi strumenti o con trasduttori elettrodinamici, registrando la deformazione delle onde elastiche che forniscono elementi per la valutazione del degrado delle murature o eventuale presenza di lesioni. L'elaborazione dei dati, invece, consiste nel calcolo del tempo e della velocità di attraversamento dell'impulso dato dalla muratura.
 - Il principio generale dell'indagine sonica si basa su alcune relazioni che legano la velocità di propagazione delle onde elastiche, attraverso un mezzo materiale, alle proprietà elastiche del mezzo stesso.
 - L'apparecchiatura dovrà essere predisposta per l'uso di una vasta banda di frequenza compresa tra 100 e 1000 Hz e consentire l'utilizzo di uscita su monitor oscilloscopico che permette l'analisi delle frequenze indagate. Gli eventi sonici studiati dovranno poter essere registrati in continuo;
- indagini con ultrasuoni eseguite per mezzo di fonometri particolari in grado di emettere dei segnali che vengono registrati da un captatore (interno all'apparecchio stesso) che misura:

- la velocità del suono in superficie per individuare le alterazioni superficiali dei materiali,
- le misure radiate, non sempre possibili (in quanto registrate sulla superficie esterna e su quella interna), per verificare l'omogeneità dei materiali.

Gli elementi che compongono questa apparecchiatura sono una centralina di condizionamento del segnale munita di oscilloscopio e sonde piezoelettriche riceventi, trasmittenti e ricetrasmittenti.

L'apparecchiatura avrà diverse caratteristiche a seconda del materiale da indagare (calcestruzzo, mattoni, elementi lapidei, metalli). Le frequenze di indagine comprese tra i 40 e i 200 Khz dovranno essere utilizzate per prove su materiali non metallici, mentre per i materiali metallici il range adottabile è compreso tra i 500 ed i 5000 Khz. L'apparecchiatura è comunemente autoalimentata e portatile;

- il rilievo della luminosità che viene misurato con un luxmetro che verifica l'illuminazione dei vari oggetti, con un ultraviometro che misura la radiazione ultravioletta, con termometri e termografi per la misurazione della temperatura di colore - i dati rilevati vanno comparati a parametri standard che prevedono un'illuminazione max di 250-300 lux per pietre e metalli, 180 lux per legno e dipinti (il lux equivale all'illuminazione prodotta da una sorgente di 1 candela su una superficie ortogonale ai raggi ad una distanza di 1 metro), temperatura di colore 4.000 K, umidità relativa 55-60%.

Oltre a quelle già descritte esistono delle tecniche di analisi che hanno caratteristiche distruttive di lieve entità e che si rendono necessarie per la valutazione di alcuni parametri:

- analisi con i raggi X per l'identificazione della struttura di una sostanza cristallina individuandone i vari componenti. Il materiale viene irradiato con un isotopo radioattivo e l'energia assorbita viene rimessa sotto forma di raggi X caratteristici degli elementi chimici presenti nel materiale;
- prove chimiche necessarie per stabilire la composizione della malta che viene analizzata con:
 - dissoluzione del campione in acido cloridrico con concentrazioni e temperature variabili;
 - quantità di gas carbonico nei componenti carbonati;
 - dosaggio per perdita al fuoco dell'acqua di assorbimento;
 - dosaggio sostanze organiche;
- analisi spettrofotometriche per l'identificazione ed il dosaggio degli ioni presenti in una soluzione acquosa - campo del visibile (0,4-0,8 micron), ultravioletto (0,000136-0,4 micron) e infrarosso (0,8-400 nm);
- microscopia ottica per l'analisi del colore, dei caratteri morfologici e delle caratteristiche specifiche di ciascuna sostanza;
- microscopia elettronica per lo studio della distribuzione delle singole parti e dei prodotti di alterazione;
- studio petrografico in sezione sottile per analizzare sezioni di materiale di spessore molto ridotto ed osservate al microscopio elettronico a scansione;
- analisi conduttometriche per la valutazione della presenza di sali solubili in acqua nel campione esaminato senza stabilire il tipo di sale eventualmente presente.

Nei processi di analisi dei campioni sono richieste anche le seguenti prove fisiche e meccaniche:

- valutazione della porosità con porosimetri a mercurio e picnometri Beckman in grado di definire, conseguentemente, il livello di permeabilità all'acqua e quindi lo stato di degrado di un materiale;
- analisi granulometrica con setacci a maglie da 60 a 400 micrometri per la definizione della distribuzione del materiale e lo studio dei parametri conseguenti;
- capacità di imbibizione definita con il controllo del peso prima e dopo l'immersione dei vari campioni di materiali. La superficie viene cosparsa con tintura liquida che viene condotta verso le
- fessurazioni e verso le porosità superficiali. Viene applicato un rilevatore per individuare la presenza e l'ubicazione dei difetti;
- assorbimento per capillarità misurata su campioni posti a contatto con una superficie liquida;
- prove di compressione, taglio e trazione eseguite sui campioni di vari materiali per la definizione delle caratteristiche di ciascun elemento.

Nel secondo caso si utilizzeranno tecnologie di analisi dei materiali o degli elementi da sottoporre ad opere di demolizione ispezionando direttamente la morfologia muraria, servendosi di prove leggermente distruttive.

A questa seconda categoria appartengono le seguenti tecnologie:

- martinetti piatti che misura lo stato di sollecitazione basandosi sullo stato tensionale in un punto della struttura. Tale misura si ottiene introducendo un martinetto piatto in un taglio effettuato lungo un giunto di malta. A fine prova lo strumento può essere facilmente rimosso e il giunto eventualmente risarcito. Lo stato di sforzo può essere determinato grazie al rilassamento causato dal taglio perpendicolare alla superficie muraria; il rilascio, infatti, determina una parziale chiusura del taglio. La prova prosegue ponendo il martinetto piatto nell'apertura e aumentando la pressione in modo da riportare i lembi della fessura alla distanza originaria, misurata prima del taglio. La parte interessata dall'operazione può essere strumentata con estensimetri rimovibili. In tal modo è possibile misurare con precisione gli spostamenti prodotti dal taglio e dal martinetto durante la prova;
- sclerometro a pendolo consiste nel colpire la superficie del calcestruzzo con una massa guidata da una molla e la distanza di fine corsa viene espressa in valori di resistenza. In questo modo viene misurata la durezza superficiale;
- pull-off test consiste nell'applicare una sonda circolare d'acciaio alla superficie del calcestruzzo con della resina epossidica. Si applica poi una forza di trazione alla sonda aderente, fino alla rottura del calcestruzzo per trazione. La resistenza alla compressione può essere misurata tramite i grafici della calibratura;
- prove penetrometriche statiche si basano sulla misura dello sforzo necessario per far penetrare, a velocità uniforme, nel terreno, un'asta con cono terminale di area superficiale di 10 cm² e una conicità di 60°,
- prove penetrometriche dinamiche si basano sulla misura dei colpi necessari per infliggere per 10 cm nel terreno una punta conica collegata alla superficie da una batteria di aste. Le misure devono essere eseguite senza soluzione di continuità a partire dal piano di campagna; ogni 10 cm di profondità si rileva il valore del numero di colpi necessari all'infissione. Norme standard europee definiscono le caratteristiche geometriche della punta, il peso e la corsa della massa battente: punta conica da 10 cm², maglio (peso della massa battente) da 30 kg e altezza di caduta (corsa) di cm 20;

- vane test utilizzabile per la determinazione in sito della resistenza a taglio di terreni coerenti.
 La prova consiste nel misurare la coppia di torsione che si ottiene infiggendo ad una data profondità del terreno un'asta terminante con aletta e facendola ruotare; sulla superficie di rotazione si sviluppa una reazione che consente la determinazione della resistenza al taglio;
- incisione statica si serve di una sonda di penetrazione (a punta piccola) che viene spinta meccanicamente attraverso la superficie di un materiale, solitamente metallo, sotto un carico specifico. Si misura la profondità dell'incisione e si può valutare la resistenza del materiale.

Art. VIII Scavi e rinterri

Per tutte le opere dell'appalto le varie quantità di lavoro saranno determinate con misure geometriche, escluso ogni altro metodo.

In materia si veda il d.lgs. 81/08 e successivo D.Lgs. correttivo ed integrativo pubblicato il 3 agosto 2009, n. 106.

Scavi in genere

Gli scavi in genere per qualsiasi lavoro a mano o con mezzi meccanici dovranno essere eseguiti secondo i disegni di progetto e le particolari prescrizioni che saranno date all'atto esecutivo dalla Direzione dei Lavori.

Nell'esecuzione degli scavi in genere l'Impresa dovrà procedere in modo da impedire scoscendimenti e franamenti, restando essa, oltreché, totalmente responsabile di eventuali danni alle persone ed alle opere, altresì obbligata a provvedere a suo carico e spese alla rimozione delle materie franate.

L'Impresa dovrà inoltre provvedere a sue spese affinché le acque scorrenti alla superficie del terreno siano deviate in modo che non abbiano a riversarsi nei cavi.

Le materie provenienti dagli scavi in genere, ove non siano utilizzabili, o non ritenute adatte, a giudizio insindacabile della Direzione dei Lavori, ad altro impiego nei lavori, dovranno essere portate a rifiuto fuori della sede del cantiere, ai pubblici scarichi, ovvero su aree che l'Impresa dovrà provvedere a sua cura e spese.

È vietato costituire depositi di materiali presso il ciglio degli scavi.

Qualora le materie provenienti dagli scavi dovessero essere utilizzate per tombamenti o rinterri esse dovranno essere depositate in luogo adatto accettato dalla Direzione dei Lavori e provviste delle necessarie puntellature, per essere poi riprese a tempo opportuno.

In ogni caso le materie depositate non dovranno riuscire di danno ai lavori, alle proprietà pubbliche o private ed al libero deflusso delle acque scorrenti alla superficie.

La Direzione dei Lavori potrà fare asportare, a spese dell'Impresa, le materie depositate in contravvenzione alle precedenti disposizioni.

L'appaltatore deve ritenersi compensato per tutti gli oneri che esso dovrà incontrare per:

- il taglio di piante, estirpazione di ceppaie, radici, ecc.;
- il taglio e lo scavo con qualsiasi mezzo delle macerie sia asciutte, che bagnate, in presenza d'acqua e di qualsiasi consistenza;
- paleggi, innalzamento, carico, trasporto e scarico in rilevato o rinterro od a rifiuto a qualsiasi distanza, sistemazione delle materie di rifiuto, deposito provvisorio e successiva ripresa, per ogni indennità di deposito temporaneo o definitivo;

- la regolarizzazione delle scarpate o pareti, per lo spianamento del fondo, per la formazione di gradoni, per il successivo rinterro attorno alle murature, attorno e sopra le condotte di acqua od altre condotte in genere, e sopra le fognature o drenaggi secondo le sagome definitive di progetto;
- puntellature, sbadacchiature ed armature di qualsiasi importanza e genere, secondo tutte le prescrizioni contenute nelle presenti condizioni tecniche esecutive;
- per ogni altra spesa infine necessaria per l'esecuzione completa degli scavi.

Scavi di sbancamento

Per scavi di sbancamento o sterri andanti s'intendono quelli occorrenti per lo spianamento o sistemazione del terreno su cui dovranno sorgere le costruzioni, per tagli di terrapieni, per la formazione di cortili, giardini, scantinati, piani d'appoggio per platee di fondazione, vespai, rampe incassate o trincee stradali ecc., e in genere tutti quelli eseguiti a sezione aperta su vasta superiore ove sia possibile l'allontanamento delle materie di scavo evitandone il sollevamento, sia pure con la formazione di rampe provvisorie, ecc.

Saranno pertanto considerati scavi di sbancamento anche quelli che si trovano al di sotto del piano di campagna o del piano stradale (se inferiore al primo), quando gli scavi rivestano i caratteri sopra accennati.

Secondo quanto prescritto dall'art. 118 del d.lgs. 81/08 e successivo d.lgs n.106 del 03/08/2009, nei lavori di splateamento o sbancamento eseguiti senza l'impiego di escavatori meccanici, le pareti delle fronti di attacco devono avere una inclinazione o un tracciato tali, in relazione alla natura del terreno, da impedire franamenti. Quando la parete del fronte di attacco supera l'altezza di m. 1,50, è vietato il sistema di scavo manuale per scalzamento alla base e conseguente franamento della parete.

Quando per la particolare natura del terreno o per causa di piogge, di infiltrazione, di gelo o disgelo, o per altri motivi, siano da temere frane o scoscendimenti, deve essere provveduto all'armatura o al consolidamento del terreno.

Nei lavori di escavazione con mezzi meccanici deve essere vietata la presenza degli operai nel campo di azione dell'escavatore e sul ciglio del fronte di attacco.

Ai lavoratori deve essere fatto esplicito divieto di avvicinarsi alla base della parete di attacco e, in quanto necessario in relazione all'altezza dello scavo o alle condizioni di accessibilità del ciglio della platea superiore, la zona superiore di pericolo deve essere almeno delimitata mediante opportune segnalazioni spostabili col proseguire dello scavo, secondo la prescrizione dei piani operativi di sicurezza.

Il volume degli scavi di sbancamento verrà determinato col metodo delle sezioni ragguagliate che verranno rilevate in contraddittorio dell'appaltatore all'atto della consegna. Ove le materie siano utilizzate per formazione di rilevati, il volume sarà misurato in riporto.

Scavi di fondazione

Per scavi di fondazione in generale si intendono quelli incassati ed a sezione ristretta necessari per dar luogo agli elementi strutturali di fondazione.

In ogni caso saranno considerati come scavi di fondazione quelli per dar luogo alle fogne, condutture, fossi e cunette.

Qualunque sia la natura e la qualità del terreno, gli scavi per fondazione dovranno essere spinti fino alla profondità che dalla Direzione dei Lavori verrà ordinata all'atto delle loro esecuzioni tenendo in

debito conto le istruzioni impartite dal Ministero dei lavori pubblici con il D.M. 21 gennaio 1981 e successive modifiche ed integrazioni.

Le profondità, che si trovino indicate nei disegni di consegna, sono perciò di semplice avviso e l'Amministrazione appaltante si riserva piena facoltà di variarle nella misura che reputerà più conveniente, senza che ciò possa dare all'Impresa motivo alcuno di fare eccezioni o domande di speciali compensi, avendo essa soltanto diritto al pagamento del lavoro eseguito, coi prezzi contrattuali stabiliti per le varie profondità da raggiungere.

È vietato all'Impresa, sotto pena di demolire il già fatto, di por mano alle murature prima che la Direzione dei Lavori abbia verificato ed accettato le fondazioni.

I piani di fondazione dovranno essere generalmente orizzontali, ma per quelle opere che cadono sopra falde inclinate, dovranno, a richiesta della Direzione dei Lavori, essere disposti a gradini ed anche con determinata contropendenza.

Nello scavo di pozzi e di trincee profondi più di 1,50 metri, quando la consistenza del terreno non dia sufficiente garanzia di stabilità, anche in relazione alla pendenza delle pareti, si deve provvedere, man mano che procede lo scavo, alla applicazione delle necessarie armature di sostegno, in modo da assicurare abbondantemente contro ogni pericolo gli operai, ed impedire ogni smottamento di materia durante l'esecuzione tanto degli scavi che delle murature.

Le tavole di rivestimento delle pareti devono sporgere dai bordi degli scavi di almeno 30 centimetri.

L'Impresa è responsabile dei danni ai lavori, alle persone, alle proprietà pubbliche e private che potessero accadere per la mancanza o insufficienza di tali puntellazioni e sbadacchiature, alle quali essa deve provvedere di propria iniziativa, adottando anche tutte le altre precauzioni riconosciute necessarie, senza rifiutarsi per nessun pretesto di ottemperare alle prescrizioni che al riguardo le venissero impartite dalla Direzione dei Lavori.

Nello scavo dei cunicoli, a meno che si tratti di roccia che non presenti pericolo di distacchi, devono predisporsi idonee armature per evitare franamenti della volta e delle pareti. Dette armature devono essere applicate man mano che procede il lavoro di avanzamento; la loro rimozione può essere effettuata in relazione al progredire del rivestimento in muratura.

Idonee armature e precauzioni devono essere adottate nelle sottomurazioni e quando in vicinanza dei relativi scavi vi siano fabbriche o manufatti, le cui fondazioni possano essere scoperte o indebolite degli scavi.

Nella infissione di pali di fondazione devono essere adottate misure e precauzioni per evitare che gli scuotimenti del terreno producano lesioni o danni alle opere vicine.

Compiuta la muratura di fondazione, lo scavo che si fosse dovuto fare in più attorno alla medesima, dovrà essere diligentemente riempito e costipato, a cura e spese dell'Impresa, con le stesse materie scavate, sino al piano del terreno naturale primitivo.

Col procedere delle murature l'Impresa potrà recuperare i legami costituenti le armature, sempre che non si tratti di armature formanti parte integrante dell'opera, da restare quindi in posto in proprietà dell'Amministrazione; i legnami però, che a giudizio della Direzione dei Lavori, non potessero essere tolti senza pericolo o danno del lavoro, dovranno essere abbandonati negli scavi.

Gli scavi di fondazione saranno computati per un volume uguale a quello risultante dal prodotto della base di fondazione per la sua profondità sotto il piano degli scavi di sbancamento o del terreno naturale, quando detto scavo di sbancamento non viene effettuato.

Scavi subacquei e prosciugamenti

Se dagli scavi in genere e dai cavi di fondazione, l'Impresa, in caso di sorgive o filtrazioni, non potesse far defluire l'acqua naturalmente, è in facoltà della Direzione dei Lavori ordinare, secondo i casi, e quando lo riterrà opportuno, l'esecuzione degli scavi subacquei, oppure il prosciugamento.

Sono considerati come scavi subacquei soltanto quelli eseguiti in acqua a profondità maggiore di 20 cm sotto il livello costante, a cui si stabiliscono le acque sorgive dei cavi, sia naturalmente, sia dopo un parziale prosciugamento ottenuto con macchine o con l'apertura di canali fugatori.

Il volume di scavo eseguito in acqua, sino ad una profondità non maggiore di 20 cm dal suo livello costante, verrà perciò considerato come scavo in presenza d'acqua ma non come scavo subacqueo.

Quando la Direzione dei Lavori ordinasse il mantenimento degli scavi in asciutto, sia durante l'escavazione, sia durante l'escavazione delle murature o di altre opere di fondazione, gli esaurimenti relativi verranno eseguiti in economia, e l'Impresa, se richiesta, avrà l'obbligo di fornire le macchine e gli operai necessari.

Per i prosciugamenti praticati durante l'esecuzione delle murature, l'Impresa dovrà adottare tutti quegli accorgimenti atti ad evitare il dilavamento delle malte.

Presenza di gas negli scavi

Quando si eseguono lavori entro pozzi, fogne, cunicoli, camini e fosse in genere, devono essere adottate idonee misure contro i pericoli derivanti dalla presenza di gas o vapori tossici, asfissianti, infiammabili o esplosivi, specie in rapporto alla natura geologica del terreno o alla vicinanza di fabbriche, depositi, raffinerie, stazioni di compressione e di decompressione, metanodotti e condutture di gas, che possono dar luogo ad infiltrazione di sostanze pericolose.

Quando sia accertata o sia da temere la presenza di gas tossici, asfissianti o la irrespirabilità dell'aria ambiente e non sia possibile assicurare una efficiente aerazione ed una completa bonifica, i lavoratori devono essere provvisti di apparecchi respiratori, ed essere muniti di cintura di sicurezza con bretelle passanti sotto le ascelle collegate a funi di salvataggio, le quali devono essere tenute all'esterno dal personale addetto alla sorveglianza; questo deve mantenersi in continuo collegamento con gli operai all'interno ed essere in grado di sollevare prontamente all'esterno il lavoratore colpito dai gas.

Possono essere adoperate le maschere respiratorie, in luogo di autorespiratori, solo quando, accertate la natura e la concentrazione dei gas o vapori nocivi o asfissianti, esse offrano garanzia di sicurezza e sempre che sia assicurata una efficace e continua aerazione.

Quando si sia accertata la presenza di gas infiammabili o esplosivi, deve provvedersi alla bonifica dell'ambiente mediante idonea ventilazione; deve inoltre vietarsi, anche dopo la bonifica, se siano da temere emanazioni di gas pericolosi, l'uso di apparecchi a fiamma, di corpi incandescenti e di apparecchi comunque suscettibili di provocare fiamme o surriscaldamenti atti ad incendiare il gas.

Nei casi previsti dal secondo, terzo e quarto comma del presente articolo i lavoratori devono essere abbinati nell'esecuzione dei lavori.

Rilevati e rinterri

Per la formazione dei rilevati o per qualunque opera di rinterro, ovvero per riempire i vuoti tra le pareti dei cavi e le murature, o da addossare alle murature, e fino alle quote prescritte dalla Direzione dei Lavori, si impiegheranno in generale, e, salvo quanto segue, fino al loro totale esaurimento, tutte le materie provenienti dagli scavi di qualsiasi genere eseguiti sul lavoro, in quanto disponibili ed adatte, a giudizio della Direzione dei Lavori, per la formazione dei rilevati.

Quando venissero a mancare in tutto o in parte i materiali di cui sopra, si provvederanno le materie occorrenti prelevandole ovunque l'Impresa crederà di sua convenienza, purché i materiali siano riconosciuti idonei dalla Direzione dei Lavori.

Per i rilevati e i rinterri da addossarsi alle murature, si dovranno sempre impiegare materie sciolte, o ghiaiose, restando vietato in modo assoluto l'impiego di quelle argillose e, in genere, di tutte quelle che con l'assorbimento di acqua si rammolliscono e si gonfiano generando spinte.

Nella formazione dei suddetti rilevati, rinterri e riempimenti dovrà essere usata ogni diligenza perché la loro esecuzione proceda per strati orizzontali di eguale altezza, disponendo contemporaneamente le materie ben sminuzzate con la maggiore regolarità e precauzione, in modo da caricare uniformemente le murature su tutti i lati e da evitare le sfiancature che potrebbero derivare da un carico male distribuito.

Le materie trasportate in rilievo o rinterro con vagoni, automezzi o carretti non potranno essere scaricate direttamente contro le murature, ma dovranno depositarsi in vicinanza dell'opera per essere riprese poi e trasportate con carriole, barelle ed altro mezzo, purché a mano, al momento della formazione dei suddetti rinterri.

Per tali movimenti di materie dovrà sempre provvedersi alla pilonatura delle materie stesse, da farsi secondo le prescrizioni che verranno indicate dalla Direzione dei Lavori.

È vietato addossare terrapieni a murature di fresca costruzione.

Tutte le riparazioni o ricostruzioni che si rendessero necessarie per la mancata o imperfetta osservanza delle prescrizioni del presente articolo, saranno a completo carico dell'Impresa.

È obbligo dell'Impresa, escluso qualsiasi compenso, di dare ai rilevati durante la loro costruzione, quelle maggiori dimensioni richieste dall'assestamento delle terre, affinché all'epoca del collaudo i rilevati eseguiti abbiano dimensioni non inferiori a quelle ordinate.

L'Impresa dovrà consegnare i rilevati con scarpate regolari e spianate, con i cigli bene allineati e profilati e compiendo a sue spese, durante l'esecuzione dei lavori e fino al collaudo, gli occorrenti ricarichi o tagli, la ripresa e la sistemazione delle scarpate e l'espurgo dei fossi.

La superficie del terreno sul quale dovranno elevarsi i terrapieni, sarà scorticata ove occorre, e se inclinata sarà tagliata a gradoni con leggere pendenze verso monte.

Tutti gli oneri, obblighi e spese per la formazione dei rilevati e rinterri si intendono compresi nei prezzi stabiliti in elenco per gli scavi e quindi all'Appaltatore non spetterà alcun compenso oltre l'applicazione di detti prezzi. Le misure saranno eseguite in riporto in base alle sezioni di consegna da rilevarsi in contraddittorio con l'Appaltatore.

I riempimenti in pietrame a secco (per drenaggi, fognature, banchettoni di consolidamento e simili) dovranno essere formati con pietrame da collocarsi in opera a mano su terreno ben costipato, al fine di evitare cedimenti per effetto dei carichi superiori.

Per drenaggi o fognature si dovranno scegliere le pietre più grosse e regolari e possibilmente a forma di lastroni quelle da impiegare nella copertura dei sottostanti pozzetti o cunicoli; oppure infine negli strati inferiori il pietrame di maggiore dimensione, impiegando nell'ultimo strato superiore

pietrame minuto, ghiaia o anche pietrisco per impedire alle terre sovrastanti di penetrare e scendere otturando così gli interstizi tra le pietre. Sull'ultimo strato di pietrisco si dovranno pigiare convenientemente le terre con le quali dovrà completarsi il riempimento dei cavi aperti per la costruzione di fognature e drenaggi.

Il riempimento di pietrame a secco a ridosso delle murature per drenaggi, vespai, ecc. sarà valutato a metro cubo per il suo volume effettivo misurato in opera.

Art. IX Demolizioni e rimozioni

Prima dell'inizio di lavori di demolizione è fatto obbligo di procedere alla verifica delle condizioni di conservazione e di stabilità delle varie strutture da demolire.

In relazione al risultato di tale verifica devono essere eseguite le opere di rafforzamento e di puntellamento necessarie ad evitare che, durante la demolizione, si verifichino crolli intempestivi.

I lavori di demolizione devono procedere con cautela e con ordine dall'alto verso il basso e devono essere condotti in maniera da prevenire qualsiasi infortunio agli addetti al lavoro e da non pregiudicare la stabilità delle strutture portanti o di collegamento di quelle eventuali adiacenti, e in modo da non deteriorare i materiali risultanti, i quali tutti devono ancora potersi impiegare utilmente, sotto pena di rivalsa di danni a favore dell'Amministrazione appaltante, ricorrendo, ove occorra, al loro preventivo puntellamento.

La successione dei lavori deve risultare da apposito programma contenuto nel POS, tenendo conto di quanto indicato nel PSC, ove previsto, che deve essere tenuto a disposizione degli organi di vigilanza.

È vietato gettare dall'alto i materiali in genere, che invece devono essere trasportati o guidati in basso convogliandoli in appositi canali il cui estremo inferiore non deve risultare ad altezza maggiore di due metri dal livello del piano di raccolta. I canali suddetti devono essere costruiti in modo che ogni tronco imbocchi nel tronco successivo; gli eventuali raccordi devono essere adeguatamente rinforzati.

L'imboccatura superiore del canale deve essere sistemata in modo che non possano cadervi accidentalmente persone. Ove sia costituito da elementi pesanti od ingombranti, il materiale di demolizione deve essere calato a terra con mezzi idonei.

Durante i lavori di demolizione si deve provvedere a ridurre il sollevamento della polvere, irrorando con acqua le murature ed i materiali di risulta.

La demolizione dei muri deve essere fatta servendosi di ponti di servizio indipendenti dall'opera in demolizione. E' vietato lavorare e fare lavorare gli operai sui muri in demolizione. Tali obblighi non sussistono quando si tratta di muri di altezza inferiore ai due metri.

Inoltre, salvo l'osservanza delle leggi e dei regolamenti speciali e locali, la demolizione di parti di strutture aventi altezza sul terreno non superiore a 5 metri può essere effettuata mediante rovesciamento per trazione o per spinta.

La trazione o la spinta deve essere esercitata in modo graduale e senza strappi e deve essere eseguita soltanto su elementi di struttura opportunamente isolati dal resto del fabbricato in demolizione in modo da non determinare crolli intempestivi o non previsti da altre parti.

Devono inoltre essere adottate le precauzioni necessarie per la sicurezza del lavoro quali: trazione da distanza non minore di una volta e mezzo l'altezza del muro o della struttura da abbattere e allontanamento degli operai dalla zona interessata.

Si può procedere allo scalzamento dell'opera da abbattere per facilitarne la caduta soltanto quando essa sia stata adeguatamente puntellata; la successiva rimozione dei puntelli deve essere eseguita a distanza a mezzo di funi.

Il rovesciamento per spinta può essere effettuato con martinetti solo per opere di altezza non superiore a 3 metri, con l'ausilio di puntelli sussidiari contro il ritorno degli elementi smossi.

Deve essere evitato in ogni caso che per lo scuotimento del terreno in seguito alla caduta delle strutture o di grossi blocchi possano derivare danni o lesioni agli edifici vicini o ad opere adiacenti o pericoli ai lavoratori addetti.

Nella zona sottostante la demolizione deve essere vietata la sosta ed il transito, delimitando la zona stessa con appositi sbarramenti.

L'accesso allo sbocco dei canali di scarico per il caricamento ed il trasporto del materiale accumulato deve essere consentito soltanto dopo che sia stato sospeso lo scarico dall'alto.

Le demolizioni dovranno limitarsi alle parti ed alle dimensioni prescritte. Quando, anche per mancanza di puntellamenti o di altre precauzioni, venissero demolite altre parti od oltrepassati i limiti fissati, saranno pure a cura e spese dell'Impresa, senza alcun compenso, ricostruite e rimesse in ripristino le parti indebitamente demolite.

Tutti i materiali riutilizzabili, a giudizio insindacabile della Direzione dei Lavori, devono essere opportunamente scalcinati, puliti, custoditi, trasportati ed ordinati nei luoghi di deposito che verranno indicati dalla Direzione stessa usando cautele per non danneggiarli sia nello scalcinamento, sia nel trasporto, sia nel loro arresto e per evitare la dispersione.

Detti materiali restano tutti di proprietà dell'Amministrazione appaltante, la quale potrà ordinare all'Impresa di impiegarli in tutto o in parte nei lavori appaltati.

I materiali di scarto provenienti dalle demolizioni e rimozioni devono sempre essere trasportati dall'Impresa fuori del cantiere nei punti indicati od alle pubbliche discariche.

Nel preventivare l'opera di demolizione e nel descrivere le disposizioni di smontaggio e demolizione delle parti d'opera, l'appaltatore dovrà sottoscrivere di aver preso visione dello stato di fatto delle opere da eseguire e della natura dei manufatti.

Manufatti decorativi e opere di pregio

Per manufatti decorativi e opere di pregio si intendono tutti i manufatti di qualsiasi materiale che costituiscono parte integrante dell'edificio e dei suoi caratteri stilistici interni ed esterni. Sono altresì considerati allo stesso modo i decori o manufatti realizzati in passati allestimenti dell'edificio e volutamente occultati da successive operazioni di ristrutturazione e manutenzione. Tali manufatti potrebbero essere oggetto di tutela in quanto patrimonio storico, archeologico, architettonico e sottoposti a vincolo da parte dell'autorità competente.

La Stazione appaltante segnalerà per iscritto all'Appaltatore, prima dell'avvio delle opere (inizio lavori), la presenza di manufatti di decoro o di pregio estetico connessi o fissati ai paramenti murari, soffitti, pavimenti, ecc. di cui si intende salvaguardare l'integrità.

Per ogni altro manufatto decorativo applicato o integrato nella costruzione l'Appaltatore potrà procedere con i mezzi di demolizione, ove previsto dalle indicazioni di progetto, nei tempi e nelle modalità ritenute utili.

Durante i lavori di demolizione il ritrovamento di decori o manufatti di evidente pregio storico, tipologico, sacro, artistico, o comunque di pregevole manifattura saranno immediatamente segnalati alla Direzione dei Lavori che, di concerto con la Stazione appaltante, indicherà all'Appaltatore le

condizioni e le operazioni necessarie alla salvaguardia e rimozione del manufatto, al loro temporaneo stoccaggio in luogo protetto e opportunamente assicurabile.

Ogni occultamento o rovina dolosa di tali manufatti o decori, prima o dopo la loro asportazione e fino alla loro permanenza in cantiere, sarà motivo di annullamento del contratto e rivalsa della Stazione appaltante nei confronti dell'Appaltatore attraverso azione sulle garanzie fideiussorie prestate alla sottoscrizione del Contratto.

Serramenti

Per serramenti si intendono tutti i sistemi di protezione delle aperture disposte sull'involucro esterno dell'edificio e sui paramenti orizzontali e verticali interni sia intermedi che di copertura, a falde orizzontali o inclinate che siano. Tali serramenti potranno essere in legno, acciaio, PVC, alluminio, materiali polimerici non precisati, ecc., e sono solitamente costituiti da un sistema di telai falsi, fissi e mobili.

Prima dell'avvio della rimozione dei serramenti l'Appaltatore procederà a rimuovere tutti i vetri e abbassarli alla quota di campagna per l'accatastamento temporaneo o per il carico su mezzo di trasporto alle pubbliche discariche.

I serramenti, in caso di demolizione parziale, dovranno essere rimossi senza arrecare danno ai paramenti murari ovvero tagliando con mola abrasiva le zanche di ancoraggio del telaio o del falso telaio alla muratura medesima, senza lasciare elementi metallici o altre asperità in sporgenza dal filo di luce del vano

Qualora il Committente intenda riutilizzare tutti o parte dei serramenti rimossi dovrà segnalare per iscritto, prima dell'inizio lavori, all'Appaltatore il numero, il tipo e la posizione degli stessi che, previa maggiorazione dei costi da quantificarsi per iscritto in formula preventiva, saranno rimossi integralmente e stoccati in luogo protetto dalle intemperie e dall'umidità di risalita o dagli urti, separatamente dagli altri in attesa di definizione della destinazione.

Controsoffitti

Per controsoffitti si intendono i sistemi o componenti o prodotti di varia natura, forma e tipologia di ancoraggio che possono essere applicati all'intradosso delle partizioni intermedie con scopo fonoassorbente, isolante, estetico di finitura, ecc.

Tali apparati devono essere rimossi preventivamente alla rimozione dei serramenti applicati alle chiusure esterne verticali e orizzontali allo scopo di contenere la dispersione di polveri, fibre, ecc.

Prima della rimozione degli apparati di controsoffittatura l'Appaltatore dovrà accertarsi che siano state prese alcune importanti precauzioni:

- disconnessione della rete impiantistica elettrica di alimentazione degli utilizzatori presenti nel controsoffitto;
- disconnessione di ogni rete passante tra intradosso del solaio e controsoffitto;
- accertamento per prelievo ed esame di laboratorio della presenza di amianto, fibre tossiche,
 o altro agente di rischio per gli operatori e per gli abitanti.

Qualora il controsoffitto contenga fibre tossiche per l'organismo umano se respirate, l'ambiente oggetto della demolizione dovrà essere restituito al Committente previa pulitura di ogni superficie per aspirazione e certificazione scritta di avvenuta bonifica dei locali e di restituzione in condizioni di inquinamento di fondo al di sotto delle soglie di rischio.

I materiali componenti il controsoffitto, qualora sia ravvisata la presenza di fibre e sostanze tossiche per inalazione, saranno smaltite con le stesse precauzioni osservate per la sostanza tossica.

I materiali metallici componenti l'apparato di controsoffittatura sono di proprietà dell'Appaltatore che potrà valutarne l'utilizzo o lo smaltimento nei limiti consentiti dalla legislazione vigente.

Tamponamenti e intercapedini

Per tamponamenti e intercapedini si intendono le partizioni interne opache e le chiusure verticali esterne prive di funzione strutturale atte a chiudere e garantire adeguato isolamento termoacustico e impermeabilizzazione con l'esterno.

Prima della demolizione delle intercapedini e dei tamponamenti l'appaltatore valuterà se è il caso di lasciare i serramenti di chiusura verticale allo scopo di circoscrivere la rumorosità e la polverulenza dell'operazione, oppure di apporre apposite temporanee chiusure sulle aperture da cui i serramenti sono già stati rimossi.

Ravvisata la presenza di materiali non omogenei l'Appaltatore provvederà a effettuare una demolizione parziale delle parti realizzate in materiale inerte o aggregato di inerti procedendo dall'interno verso l'esterno e dal basso verso l'alto, rimuovendo le macerie del piano prima di iniziare le operazioni del piano superiore.

Prima della rimozione degli apparati di intercapedini e tamponamenti l'Appaltatore dovrà accertarsi che siano state prese alcune importanti precauzioni:

- disconnessione della rete impiantistica elettrica di alimentazione degli utilizzatori presenti nelle pareti;
- accertamento per prelievo ed esame di laboratorio della presenza di amianto, fibre tossiche,
 o altro agente di rischio per gli operatori e per gli abitanti.

Qualora le pareti contengano materiali a base di fibre tossiche per l'organismo umano, se respirate, l'ambiente oggetto della demolizione dovrà essere restituito al Committente previa pulitura di ogni superficie per aspirazione e certificazione scritta di avvenuta bonifica dei locali e di restituzione in condizioni di inquinamento di fondo al di sotto delle soglie di rischio.

La presenza di eventuali membrane polimero-bituminose o strati in PVC destinati a barriera vapore dovranno essere rimossi a parte e non aggregati alle macerie inerti.

La conservazione in cantiere di tali materiali dovrà tenere conto della loro facile infiammabilità.

L'Appaltatore dovrà provvedere a puntellamenti, sbadacchiature ed altri accorgimenti come ponteggi, castelli, ecc. per la demolizione dei tamponamenti e delle strutture verticali.

Durante le lavorazioni l'Appaltatore dovrà attenersi scrupolosamente alle disposizioni e istruzioni per la demolizione delle strutture verticali, le demolizioni per rovesciamento, per trazione o spinta saranno effettuate solo per strutture fino ad altezza pari a 5 m, l'utilizzo delle attrezzature per il rovesciamento dovranno essere conformi alle norme di sicurezza, dovrà essere garantito l'utilizzo di schermi e di quant'altro, per evitare la caduta di materiale durante l'operazione ed in ogni modo dovrà essere delimitata l'area soggetta a caduta di materiale durante l'operazione specifica.

Sottofondi

Per sottofondi si intendono gli strati di materiale che desolidarizzano le partizioni intermedie o di chiusura orizzontale dell'edificio dal rivestimento posto in atto.

Tali sottofondi possono essere rimossi dopo che è stata verificata la disconnessione delle reti idrauliche di approvvigionamento, di riscaldamento e di fornitura della corrente elettrica che in essi possono essere state annegate.

Qualora la polverosità dell'operazione risulti particolarmente evidente e le protezioni o il confinamento ambientale siano inefficaci l'appaltatore avrà cura di bagnare continuamente il materiale oggetto dell'operazione allo scopo di attenuarne la polverosità.

Tale verifica sarà effettuata a cura dell'Appaltatore che procederà alla demolizione dei sottofondi secondo procedimento parziale o insieme alla demolizione della struttura portante. Prima della demolizione parziale del sottofondo di pavimentazione all'interno di un'unità immobiliare parte di una comunione di unità l'Appaltatore dovrà accertarsi che all'interno di questo sottofondo non siano state poste reti di elettrificazione del vano sottostante, che nella fattispecie possono non essere state disconnesse.

La demolizione parziale del sottofondo di aggregati inerti produce particolare polverulenza che dovrà essere controllata dall'Appaltatore allo scopo di limitarne e circoscriverne la dispersione.

La scelta delle attrezzature destinate alla demolizione parziale del sottofondo dovrà tenere in considerazione la natura della struttura portante, la sua elasticità, l'innesco di vibrazioni e la presenza di apparecchiature di particolare carico concentrato gravanti sul solaio portante della partizione orizzontale.

Manti impermeabilizzanti e coperture discontinue.

Per manti impermeabilizzanti si intendono le membrane di materiale prodotto per sintesi polimerica o polimero-bituminosa, che possono essere individuate nella rimozione della stratigrafia di chiusura orizzontale opaca allo scopo di garantirne l'impermeabilità.

Tali componenti devono essere rimossi prima della demolizione del sottofondo e della demolizione dello stesso solaio e a cura dell'Appaltatore devono essere accatastati in separata parte del cantiere allo scopo di prevenire l'incendiabilità di tali materiali stoccati.

La sfiammatura delle membrane allo scopo di desolidarizzarne l'unitarietà nei punti di sovrapposizione sarà effettuata da personale addestrato all'utilizzo della lancia termica e al camminamento delle coperture, dotato di idonei dispositivi individuali di protezione, previsti i necessari dispositivi collettivi di protezione dalle cadute dall'alto.

Sporti, aggetti, cornicioni e manufatti a sbalzo

Per sporti si intendono tutte le partizioni o chiusure orizzontali o inclinate che fuoriescono a sbalzo dalla sagoma dell'edificio. Tali manufatti possono essere generalmente costruiti in cemento armato, legno, acciaio; in talune occasioni hanno parti di riempimento in laterocemento, o laterizio.

L'Appaltatore dovrà provvedere a puntellamenti, sbadacchiature ed altri accorgimenti come ponteggi, castelli, ecc. per la demolizione delle parti d'opera in aggetto.

L'operazione di demolizione di tali manufatti sarà eseguita dall'Appaltatore dopo aver curato la desolidarizzazione di ringhiere metalliche o lignee dalla muratura di chiusura verticale dell'edificio, con idonee cesoie idrauliche montate su macchina operatrice da cantiere o mediante martello demolitore con operatore posto su struttura provvisionale non ancorata alla chiusura portante solidale con il manufatto a sbalzo.

L'operatore deve preferibilmente essere posto ad una quota superiore al piano di calpestio dell'aggetto e non deve in ogni modo farsi sostenere dalla struttura a sbalzo.

La demolizione parziale o totale dello sporto avverrà solamente dopo che a cura dell'Appaltatore saranno state chiuse tutte le aperture sottostanti all'aggetto ed impedito il transito temporaneo di chiunque nella zona di possibile interferenza del crollo del manufatto.

Lattonerie

Per lattonerie si intendono i manufatti metallici o in materiali polimerici che perimetrano le coperture, gli aggetti e gli sporti.

Tali manufatti saranno rimossi dall'Appaltatore prima di dar luogo alla demolizione strutturale del manufatto a cui sono aderenti.

L'Appaltatore dovrà provvedere a puntellamenti, sbadacchiature ed altri accorgimenti come ponteggi, castelli, ecc. per la demolizione delle lattonerie.

Il loro accatastamento in cantiere deve avvenire, a cura dell'Appaltatore, in zona distante dalle vie di transito. Se si prevede un lungo stoccaggio in cantiere di tali manufatti metallici rimossi si rende necessario che l'Appaltatore provveda ad un collegamento degli stessi con un sistema temporaneo di messa a terra a protezione delle scariche atmosferiche.

Prima della loro rimozione l'Appaltatore verificherà che il manto di copertura a cui sono solidarizzati i canali di gronda non sia in amianto cemento. In tale situazione l'Appaltatore procederà a notifica all'organo di controllo procedendo in seguito a benestare dello stesso con procedura di sicurezza per gli operatori di cantiere.

Canne fumarie e fumaioli

I fumaioli sono la parte terminale delle canne di scarico delle esalazioni o dei fumi prodotti internamente all'edificio.

Prima della demolizione di tali manufatti sarà cura dell'appaltatore verificare il cessato funzionamento dell'utilizzatore di cui sono scarico, ed alla chiusura della bocca interna di collegamento alla canna fumaria medesima.

L'Appaltatore dovrà provvedere a puntellamenti, sbadacchiature ed altri accorgimenti come ponteggi, castelli, ecc. per la demolizione dei fumaioli e delle canne fumarie.

La demolizione dei fumaioli sarà effettuata dall'Appaltatore, prima della demolizione delle falde di copertura, curando che lo scivolamento delle macerie sulla falda della copertura non sia ostacolato o trattenuto da compluvi di falde o da altri manufatti, e con preoccupazione di stabilire il raggio di azione della caduta delle macerie medesime a quota del piano di campagna o su aggetti e sporti sottostanti.

Sono a carico dell'Appaltatore tutte le opere provvisionali che la stessa dovrà predisporre per fermare o deviare la caduta o lo scivolamento delle macerie.

Per canne fumarie si intendono i canali verticali o inclinati interni o esterni allo spessore della muratura atti a convogliare fumi o esalazioni oltre la quota di copertura.

L'Appaltatore prima di dare luogo alla demolizione di canne fumarie o di parti di muratura ove è probabile o nota la presenza di canne fumarie deve accertarsi che tali manufatti non siano realizzati in amianto cemento. Qualora sussista tale probabilità in modo incerto saranno, a cura dell'Appaltatore, prelevati ed esaminati a spese dell'Appaltatore stesso, campioni del materiale costituente. L'evidenza di un materiale contenente amianto compatto o friabile nella realizzazione o nella fasciatura delle canne fumarie deve prevedere notifica all'ente di controllo e avvio della procedura di sicurezza per la protezione dei lavoratori coinvolti.

La demolizione di murature contenenti canne fumarie può dare luogo allo scivolamento di macerie lungo il canale stesso oltre la quota più bassa di demolizione. Allo scopo di prevenire l'accadimento l'Appaltatore provvederà a chiudere le canne oggetto di demolizione alla quota più bassa prima dell'avvio della demolizione.

Manufatti in amianto cemento³

Per manufatti in amianto cemento si intendono parti integranti dell'edificio oggetto di demolizione parziale o completa realizzate con unione di altri materiali a fibre di amianto.

Solitamente sono rinvenibili due tipologie differenti di manufatti: quelli a matrice friabile e quelli a matrice compatta. Data l'usura e l'invecchiamento o le condizioni di posa del materiale taluni materiali inizialmente integrati in matrice compatta possono, con il tempo, essere diventati friabili.

La misurazione di tale fenomeno e la relativa classificazione possono essere effettuate tramite schiacciamento e pressione con le dita della mano dell'operatore che in tal modo può rendersi conto della capacità del manufatto di offrire resistenza a compressione. Se le dita della mano dell'operatore riescono a comprimere o distaccare parti del manufatto stesso questo è classificabile a matrice friabile.

L'Appaltatore al momento del sopralluogo ai manufatti oggetto di demolizione è tenuto a verificarne la presenza e classificarne il livello di rischio.

Qualora il manufatto presenti qualche sembianza affine ai manufatti contenenti amianto, sarà cura dell'Appaltatore provvedere a campionare parti dello stesso e provvedere a far analizzare i campioni presso un laboratorio attrezzato e autorizzato.

Valutata la presenza di manufatti contenenti amianto, l'Appaltatore provvederà a notificare l'azione di bonifica presso l'organo di vigilanza competente per territorio disponendo un piano di lavoro conforme a quanto indicato dal d.lgs. 257/06, in funzione della valutazione dei rischi effettuata ai sensi della normativa vigente. Tale documentazione deve essere messa a disposizione dei lavoratori e deve essere aggiornata in relazione all'aumento dell'esposizione degli stessi.

In tutte le attività concernenti l'amianto, l'esposizione dei lavoratori alla polvere proveniente dall'amianto o dai materiali contenenti amianto nel luogo di lavoro deve essere ridotta al minimo e, in ogni caso, al di sotto del valore limite fissato dalla normativa vigente, ed in particolare:

- a) il numero dei lavoratori esposti o che possono essere esposti alla polvere proveniente dall'amianto o da materiali contenenti amianto deve essere limitato al numero più basso possibile;
- b) i processi lavorativi devono essere concepiti in modo da evitare di produrre polvere di amianto o, se ciò non è possibile, da evitare emissione di polvere di amianto nell'aria;
- c) tutti i locali e le attrezzature per il trattamento dell'amianto devono poter essere sottoposti a regolare pulizia e manutenzione;
- d) l'amianto o i materiali che rilasciano polvere di amianto o che contengono amianto devono essere stoccati e trasportati in appositi imballaggi chiusi;
- e) i rifiuti devono essere raccolti e rimossi dal luogo di lavoro il più presto possibile in appropriati imballaggi chiusi su cui sarà apposta un'etichettatura indicante che contengono amianto.

Detti rifiuti devono essere successivamente trattati ai sensi della vigente normativa in materia di rifiuti pericolosi.

Sarà cura dell'Appaltatore segnalare nel piano di lavoro l'intero procedimento fino allo smaltimento definitivo delle macerie di demolizione contenenti amianto.

L'Appaltatore è produttore del rifiuto mediante azione demolitrice e deve quindi provvedere all'onere dello smaltimento corretto del rifiuto medesimo.

È impedito all'Appaltatore effettuare un deposito delle macerie contenenti amianto nella zona delimitata del cantiere ed in altra zona di proprietà del Committente. L'eventuale stoccaggio

In materia si faccia riferimento al d.lgs. 25 luglio 2006 n. 257 - "Attuazione della direttiva 2003/18/CE relativa alla PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO-

temporaneo del materiale contenente amianto dovrà essere segnalato nel piano di lavoro ed il luogo di accoglimento del materiale stesso sarà allo scopo predisposto.

È cura dell'Appaltatore verificare prima della demolizione del manufatto che non siano presenti all'interno del medesimo quantità qualsiasi di amianto floccato o manufatti di qualsivoglia natura contenenti amianto. Tali manufatti, qualora presenti, saranno considerati come rifiuto a cui l'Appaltatore deve provvedere secondo le modalità previste dalla legislazione vigente in materia, alla stessa stregua dei materiali facenti parte dell'immobile. La demolizione parziale o totale non potrà essere iniziata prima dell'avvenuto smaltimento di questi rifiuti.

L'Appaltatore deve organizzarsi affinché la procedura di sicurezza sia circoscritta alle sole fasi in cui viene trattato materiale contenente amianto.

L'Appaltatore è inoltre tenuto ad adottare le misure appropriate affinché i luoghi in cui si svolgono tali attività siano confinati e segnalati e siano rispettate tutte le prescrizioni di cui alla vigente normativa e al piano di lavoro redatto e consegnato agli organi competenti.

Al fine di garantire il rispetto del valore limite di esposizione fissato dalla normativa vigente (0,1 fibre per centimetro cubo di aria) e in funzione dei risultati della valutazione iniziale dei rischi, l'Appaltatore è tenuto ad effettuare misurazioni periodiche della concentrazione di fibre di amianto nell'aria e riportarne i risultati nel Documento di Valutazione dei Rischi e nel Piano Operativo di Sicurezza.

Qualora tale valore limite fosse superato, l'Appaltatore è tenuto ad adottare tutte le misure organizzative necessarie all'eliminazione del rischio e a dotare i propri lavoratori di idonei dispositivi di protezione individuale.

Sarà cura dell'Appaltatore provvedere al termine della bonifica a consegnare certificato di collaudo e riconsegna dei locali bonificati. Qualora l'intervento di bonifica da amianto non abbia esito positivo la Stazione appaltante avrà diritto a far subentrare l'Appaltatore specializzato di propria fiducia con l'obiettivo di ripristinare il livello di inquinamento di fondo previsto dalla legislazione vigente. L'importo di tale intervento sarà a carico dell'Appaltatore.

Parti strutturali in elevazione, orizzontali e verticali

Per parti strutturali in elevazione si intendono le strutture portanti fuori terra dell'edificio o del manufatto oggetto di demolizione, siano esse orizzontali o verticali.

La demolizione di queste parti dovrà avvenire a cura dell'Appaltatore una volta verificata la massima demolizione effettuabile di parti interne o esterne prive di funzione strutturale.

Tale operazione ha lo scopo di alleggerire quanto più possibile la parte strutturale del carico che su di essa grava.

L'Appaltatore dovrà provvedere a puntellamenti, sbadacchiature ed altri accorgimenti come ponteggi, castelli, ecc. per la demolizione dei solai.

È cura dell'Appaltatore valutare il più idoneo strumento di demolizione delle parti strutturali tenendo in considerazione la relazione con l'intorno e gli agenti di rischio da quest'azione conseguenti.

In caso di contatto strutturale della parte portante orizzontale o verticale dell'edificio o del manufatto oggetto dell'intervento di demolizione con altri attigui che devono essere salvaguardati sarà cura dell'Appaltatore chiedere ed ottenere lo sgombero integrale degli occupanti tali edifici o manufatti limitrofi.

L'Appaltatore curerà sotto la propria responsabilità ogni intervento utile a desolidarizzare le parti strutturali in aderenza con altri fabbricati intervenendo, qualora utile a suo giudizio, anche con il preventivo taglio dei punti di contatto.

Prima della demolizione di parti strutturali in edifici che sono inseriti a contatto con altri sarà cura dell'Appaltatore testimoniare e accertarsi dello stato di integrità dei fabbricati aderenti, anche attraverso documentazione fotografica ed ogni altra attestazione che sia rivolta ad accertare lo stato degli stessi prima dell'intervento di demolizione.

Parti strutturali interrate, palificazioni e tiranti

Per parti strutturali interrate si intendono le palificazioni o le fondazioni in profondità, i diaframmi, le sottofondazioni, le fondazioni e le strutture portanti in elevazione che non fuoriescono dalla quota media del piano di campagna.

La demolizione di tali parti d'opera, ove prevista, deve essere svolta a cura dell'appaltatore previa demolizione delle strutture portanti in elevazioni su di queste gravanti.

L'Appaltatore dovrà provvedere a puntellamenti, sbadacchiature ed altri accorgimenti come ponteggi, castelli, ecc. per la demolizione delle parti interrate in generale.

La demolizione parziale o integrale delle parti strutturali interrate deve essere effettuata previa verifica da parte dell'Appaltatore della desolidarizzazione delle stesse da parti di fondazione o di strutture collegate con gli edifici o con i manufatti confinanti.

In presenza di un regime di falda sotterranea presente a livello superficiale, o comunque interferente con le escavazioni destinate alla demolizione parziale o totale delle fondazioni è a cura dell'Appaltatore che deve essere posto in essere un adeguato sistema di captazione temporanea di dette falde allo scopo di evitare ogni azione di disturbo e/o inquinamento della falda sotterranea e permettere l'azione di scavo senza l'intervento dell'agente di rischio determinato dalla presenza di sortumi o accrescimenti del livello superficiale delle acque.

La demolizione parziale o totale delle parti strutturali interrate prevede il corrispondente riempimento con materiale dichiarato dall'Appaltatore e la formazione di uno o più pozzi di ispezione della consistenza del materiale impiegato, secondo le indicazioni ricevute dal progettista.

La demolizione di palificazioni o tiranti interrati sarà posta in essere a cura dell'Appaltatore dopo che il progettista abilitato avrà valutato e redatto una apposita valutazione dei rischi e delle conseguenze derivanti da questa azione.

Qualora tale azione lo richieda, dovrà essere coinvolto a cura dell'Appaltatore un geologo abilitato allo scopo di estendere la valutazione dei rischi alle problematiche di dinamiche delle terre ed alle specifiche della tettonica compromessa da quest'azione.

Fognature

Per fognature si intendono le condotte coperte o a vista atte alla raccolta ed al convogliamento delle acque bianche e nere di scarico civili e industriali presenti sulla rete privata interna al confine di proprietà dell'unità immobiliare o dell'insieme di unità immobiliari oggetto della demolizione parziale o totale.

L'Appaltatore dovrà provvedere a puntellamenti, sbadacchiature ed altri accorgimenti come ponteggi, castelli, ecc. per la demolizione delle fognature.

Tale demolizione deve essere svolta dall'Appaltatore dopo aver verificato la chiusura del punto di contatto della fognatura con la rete urbana pubblica, allo scopo di evitare che macerie o altri frammenti della demolizione possano occludere tali condotte.

Le operazioni di demolizione delle condotte di scarico devono altresì avvenire con l'osservanza da parte dell'Appaltatore delle norme di protezione ambientali e degli operatori di cantieri per quanto riguarda la possibilità di inalazione di biogas o miasmi dannosi o tossici per la salute umana.

Le macerie della demolizione delle fognature saranno allontanate dal cantiere senza che i materiali da queste derivanti possano sostare nei pressi dei cantieri neanche per uno stoccaggio temporaneo non previsto e comunicato per tempo al Committente.

La demolizione parziale delle fognature deve essere effettuata a cura dell'Appaltatore con la precauzione di apporre sezionatori sulla stessa conduttura sia a monte che a valle della medesima allo scopo di confinare l'ambito operativo ed impedire inopportune interferenze.

La verifica della presenza di materiali reflui presenti nella condotta o nelle fosse intermedie di raccolta classificabili come rifiuti speciali o tossico nocivi deve essere effettuata a cura dell'Appaltatore che provvederà di conseguenza allo smaltimento dei medesimi attraverso la procedura prevista in merito dalla legislazione vigente.

Muri di sostegno e massicciate varie

Per muri di sostegno e massicciate varie si intendono manufatti artificiali atti a sostenere lo scivolamento naturale delle terre, siano essi manufatti agenti a gravità o a sbalzo o per reggimentazione trattenuta tramite tiranti interrati.

L'Appaltatore dovrà provvedere a puntellamenti, sbadacchiature ed altri accorgimenti come ponteggi, castelli, ecc. per la demolizione dei muri di sostegno e delle massicciate in genere.

La demolizione di tali manufatti richiede che l'Appaltatore definisca in merito una valutazione dei rischi determinata dalle reazioni della tettonica interferente con l'azione di trattenimento posta in essere dalla presenza del manufatto. Tale relazione deve essere posta in essere da tecnico geologo abilitato o da geotecnico.

Qualora l'operazione coinvolga, anche solo in ipotesi di relazione dei rischi, porzioni di terreno poste al di fuori dei confini della proprietà della Stazione appaltante, sarà cura dell'Appaltatore verificare la disponibilità dei confinanti pubblici e privati a sgomberare dal transito e da ogni possibile conseguenza alle persone ed alle cose l'ambito di possibile pertinenza del movimento di terra.

In materia si fa riferimento in generale alle disposizioni del d.lgs. 81/08 e successivo aggiornamento tramite il d.lg n.106 del 03/08/2009.

TITOLO III - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI NOLI E TRASPORTI

Art. X Opere provvisionali

Le opere provvisionali, gli apprestamenti e le attrezzature atti a garantire, per tutta la durata dei lavori, la prevenzione degli infortuni e la tutela della salute dei lavoratori sono oggetto di specifico capitolato (vedi: Bassi Andrea, *I costi della sicurezza in edilizia*, settembre 2008, III edizione, Maggioli Editore).

Le principali norme riguardanti i ponteggi e le impalcature, i ponteggi metallici fissi, i ponteggi mobili, ecc., sono contenute nel d.lgs. 81/08 e successivo d.lg n.106 del 03/08/2009.

Art. XI Noleggi

I noli devono essere espressamente richiesti, con ordine di servizio, dalla Direzione dei Lavori e sono retribuibili solo se non sono compresi nei prezzi delle opere e/o delle prestazioni.

Le macchine ed attrezzi dati a noleggio devono essere in perfetto stato di esercizio ed essere provvisti di tutti gli accessori necessari per il loro funzionamento. Sono a carico esclusivo dell'Impresa la manutenzione degli attrezzi e delle macchine affinché siano in costante efficienza.

Il nolo si considera per il solo tempo effettivo, ad ora o a giornata di otto ore, dal momento in cui l'oggetto noleggiato viene messo a disposizione del committente, fino al momento in cui il nolo giunge al termine del periodo per cui è stato richiesto.

Nel prezzo sono compresi: i trasporti dal luogo di provenienza al cantiere e viceversa, il montaggio e lo smontaggio, la manodopera, i combustibili, i lubrificanti, i materiali di consumo, l'energia elettrica, lo sfrido e tutto quanto occorre per il funzionamento dei mezzi.

I prezzi dei noli comprendono le spese generali e l'utile dell'imprenditore.

Per il noleggio dei carri e degli autocarri verrà corrisposto soltanto il prezzo per le ore di effettivo lavoro, rimanendo escluso ogni compenso per qualsiasi altra causa o perditempo.

Art. XII Trasporti

Il trasporto è compensato a metro cubo di materiale trasportato, oppure come nolo orario di automezzo funzionante.

Se la dimensione del materiale da trasportare è inferiore alla portata utile dell'automezzo richiesto a nolo, non si prevedono riduzioni di prezzo.

Nei prezzi di trasporto è compresa la fornitura dei materiali di consumo e la manodopera del conducente.

TITOLO IV - PRESCRIZIONI SU QUALITÀ E PROVENIENZA DEI MATERIALI

Art. XIII Materie prime

Materiali in genere

I materiali in genere occorrenti per la costruzione delle opere proverranno da quelle località che l'Impresa riterrà di sua convenienza, purché ad insindacabile giudizio della Direzione dei Lavori, siano riconosciuti della migliore qualità e rispondano ai requisiti appresso indicati.

Acqua, calci aeree, calci idrauliche, leganti cementizi, pozzolane, gesso

L'acqua dovrà essere dolce, limpida, priva di materie terrose, priva di sali (particolarmente solfati e cloruri) in percentuali dannose e non essere aggressiva. Per la definizione dei requisiti cui l'acqua deve conformarsi può essere fatto utile riferimento a quanto contenuto nella norma UNI EN 1008:2003, come prescitto al § 11.2.9.5 delle NTC 2008. Riferirsi anche alle UNI EN 459-1/2/3:2002 per le specifiche delle calci per costruzioni.

Le calci aeree dovranno rispondere ai requisiti di accettazione vigenti al momento dell'esecuzione dei lavori. Le calci aeree si dividono in:

- calce grassa in zolle, di colore pressoché bianco, è il prodotto della cottura di calcari di adatta composizione morfologica e chimica;
- calce magra in zolle è il prodotto della cottura di calcari a morfologia e composizione chimica tali da non dare calci che raggiungano i requisiti richiesti per le calci di cui alla lettera a).
- calce idrata in polvere è il prodotto dello spegnimento completo delle calci predette, fatto dallo stabilimento produttore in modo da ottenerla in polvere fina e secca.

Si dicono calci aeree magnesiache quelle contenenti più del 20% di MgO. Per le calci aeree devono essere soddisfatte le seguenti limitazioni, nelle quali le quantità sono espresse percentualmente in peso:

CALCI AEREE		Contenuto in CaO + MgO	Contenuto in umidità	Contenuto in carboni e impurità
Calce grassa in zolle		94%		
Calce magra in zolle		94%		
Calce idrata in polvere	Fiore di calce	91%	3%	6%
	C. idrata da costruzione	82%	3%	6%

e devono rispondere ai seguenti requisiti fisico-meccanici:

CALCI AEREE	Rendimento in grassello	Residuo al vaglio da 900 maglie /cmq	Residuo al vaglio da 4900 maglie/cmq	Prova di stabilità di volume
Calce grassa in zolle	2,5 mc./tonn.			
Calce magra in zolle	1,5 mc./tonn.			
Calce idrata in polvere	fiore di calce	1%	5%	sì
	calce da costruzione	2%	15%	sì

La calce grassa in zolle dovrà provenire da calcari puri, essere recente, perfetta e di cottura uniforme, non bruciata né vitrea né lenta ad idratarsi. Infine sarà di qualità tale che, mescolata con la sola quantità di acqua dolce necessaria alla estinzione, si trasformi completamente in una pasta

soda a grassello tenuissimo, senza lasciare residui maggiori del 5% dovuti a parti non bene decarburate, silicose od altrimenti inerti.

La calce viva in zolle al momento dell'estinzione dovrà essere perfettamente anidra; non sarà usata quella ridotta in polvere o sfiorita: si dovrà quindi preparare la calce viva nella quantità necessaria e conservarla in luoghi asciutti ed al riparo dall'umidità.

Dopo l'estinzione la calce dovrà conservarsi in apposite vasche impermeabili rivestite di tavole o di muratura, mantenendola coperta con uno strato di sabbia. La calce grassa destinata agli intonaci dovrà essere spenta almeno sei mesi prima dell'impiego; quella destinata alle murature da almeno 15 giorni. L'estinzione delle calci aeree in zolle sarà eseguita a bagnolo o con altro sistema idoneo, ma mai a getto.

Le calci idrauliche si dividono in:

- calce idraulica in zolle: prodotto della cottura di calcari argillosi di natura tale che il prodotto cotto risulti di facile spegnimento;
- calce idraulica e calce eminentemente idraulica naturale o artificiale in polvere: prodotti ottenuti con la cottura di marne naturali oppure di mescolanze intime ed omogenee di calcare e di materie argillose, e successivi spegnimento, macinazione e stagionatura;
- calce idraulica artificiale pozzolanica: miscela omogenea ottenuta dalla macinazione di pozzolana e calce aerea idratata;
- calce idraulica siderurgica: miscela omogenea ottenuta dalla macinazione di loppa basica di alto forno granulata e di calce aerea idratata.

L'uso della calce idrata dovrà essere preventivamente autorizzato dalla Direzione dei Lavori.

Per le calci idrauliche devono essere soddisfatte le seguenti limitazioni:

Calci idrauliche	Perdita al fuoco	Contenuto in MgO	Contenuto in carbonati	Rapporto di costituzione	Contenuto in Mno	Residuo insolubile
Calce idraulica naturale in zolle	10%	5%	10%			
Calce idraulica naturale o artificiale in polvere		5%	10%			
Calce eminentemente idraulica naturale o artificiale in polvere		5%	10%			
Calce idraulica artificiale pozzolanica in polvere		5%	10%	1,5%		
Calce idraulica artificiale siderurgica in polvere	5%	5%			5%	2,5%

Devono inoltre essere soddisfatti i seguenti requisiti fisico-meccanici:

Calci idrauliche in polvere		ı malta normale battuta 1:3 a del 10%	Prova di stabilità volume
	Resistenza a trazione dopo 28 giorni di stagionatura	Resistenza a compressione dopo 28 giorni di stagionatura	
Calce idraulica naturale o artificiale in polvere	5 Kg/cmq	10 Kg/cmq	sì
Calce eminentemente idraulica naturale o artificiale	10 Kg/cmq	100 Kg/cmq	sì
Calce idraulica artificiale pozzolanica	10 Kg/cmq	100 Kg/cmq	sì
Calce idraulica artificiale siderurgica	10 Kg/cmq	100 Kg/cmq	sì

È ammesso un contenuto di MgO superiore ai limiti purché rispondano alla prova di espansione in autoclave. Tutte le calci idrauliche in polvere devono:

- lasciare sul setaccio da 900 maglie/cmq un residuo percentuale in peso inferiore al 2% e sul setaccio da 4900 maglie/cmq un residuo inferiore al 20%;
- iniziare la presa fra le 2 e le 6 ore dal principio dell'impasto e averla già compiuta dalle 8 alle
 48 ore del medesimo;
- essere di composizione omogenea, costante, e di buona stagionatura.

Dall'inizio dell'impasto i tempi di presa devono essere i seguenti:

- inizio presa: non prima di un'ora
- termine presa: non dopo 48 ore

I cementi, da impiegare in qualsiasi lavoro dovranno rispondere, per composizione, finezza di macinazione, qualità, presa, resistenza ed altro, alle norme di accettazione di cui alla normativa vigente. Come prescritto al § 11.2.9.1 delle NTC 2008, per le opere strutturali devono impiegarsi esclusivamente i leganti idraulici dotati di certificato di conformità - rilasciato da un organismo europeo notificato - ad una norma armonizzata della serie UNI EN 197 ovvero ad uno specifico Benestare Tecnico Europeo (ETA), purchè idonei all'impiego previsto nonchè, per quanto non in contrasto, conformi alle prescrizioni di cui alla Legge 26/05/1965 n.595.

L'impiego dei cementi richiamati all'art.1, lettera C della legge 26/5/1965 n. 595, è limitato ai calcestruzzi per sbarramenti di ritenuta.

Per la realizzazione di dighe ed altre simili opere massive dove è richiesto un basso calore di idratazione devono essere utilizzati i cementi speciali con calore di idratazione molto basso conformi alla norma europea armonizzata UNI EN 14216, in possesso di un certificato di conformità rilasciato da un Organismo di Certificazione europeo Notificato.

Qualora il calcestruzzo risulti esposto a condizioni ambientali chimicamente aggressive si devono utilizzare cementi per i quali siano prescritte, da norme armonizzate europee e fino alla disponibilità di esse, da norme nazionali, adeguate proprietà di resistenza ai solfati e/o al dilavamento o ad eventuali altre specifiche azioni aggressive.

La norma UNI EN 197-1 definisce e specifica 27 distinti prodotti di cemento comune e i loro costituenti. La definizione di ogni cemento comprende le proporzioni di combinazione dei costituenti per ottenere questi distinti prodotti, in una gamma di sei classi di resistenza. La definizione comprende anche i requisiti che i costituenti devono rispettare e i requisiti meccanici, fisici e chimici, inclusi, quando necessario, i requisiti relativi al calore d'idratazione dei 27 prodotti, e le classi di resistenza. La EN 197-1 definisce, inoltre, i criteri di conformità e le rispettive regole. Sono indicati, infine, i requisiti di durabilità necessari.

Il cemento conforme alla EN 197-1, definito cemento CEM, opportunamente dosato e miscelato con aggregato e acqua, deve essere in grado di produrre una malta o un calcestruzzo capace di conservare la lavorabilità per un periodo di tempo sufficiente e di raggiungere, dopo determinati periodi, livelli di resistenza meccanica prestabiliti nonché di possedere una stabilità di volume a lungo termine. L'indurimento idraulico del cemento CEM è dovuto principalmente all'idratazione dei silicati di calcio, ma anche di altri composti chimici, per esempio gli alluminati, possono partecipare al processo di indurimento. La somma dei contenuti di ossido di calcio (CaO) reattivo e ossido di silicio (SiO₂) reattivo nel cemento CEM deve essere almeno il 50% in massa quando i contenuti percentuali sono determinati in accordo alla EN 196-2. I cementi CEM sono costituiti da materiali differenti e di composizione statisticamente omogenea derivanti dalla qualità assicurata durante processi di produzione e manipolazione dei materiali. I requisiti per i costituenti sono riportati nella norma UNI EN 197-1.

I 27 prodotti della famiglia dei cementi comuni conformi alla EN 197-1, e la loro denominazione, sono indicati nel prospetto 1 della norma. Essi sono raggruppati in cinque tipi principali di cemento come segue:

- CEM I cemento Portland
- CEM II cemento Portland composito
- CEM III cemento d'altoforno
- CEM IV cemento pozzolanico
- CEM V cemento composito

La composizione di ciascuno dei 27 prodotti della famiglia dei cementi comuni deve essere conforme a quanto riportato nel prospetto.

La resistenza normalizzata di un cemento è la resistenza a compressione a 28 giorni, determinata in accordo alla EN 196-1, che deve essere conforme ai requisiti riportati nella tabella seguente. Sono contemplate tre classi di resistenza normalizzata: classe 32,5, classe 42,5 e classe 52,5.

La resistenza iniziale di un cemento è la resistenza meccanica a compressione determinata a 2 o a 7 giorni in accordo alla EN 196-1; tale resistenza deve essere conforme ai requisiti riportati in tabella.

Per ogni classe di resistenza normalizzata si definiscono due classi di resistenza iniziale, una con resistenza iniziale ordinaria, contrassegnata dalla lettera N, e l'altra con resistenza iniziale elevata, contrassegnata dalla lettera R.

Il tempo di inizio presa e l'espansione, determinati in accordo alla EN 196-3, devono soddisfare i requisiti riportati in tabella.

Il calore d'idratazione dei cementi comuni a basso calore non deve superare il valore caratteristico di 270 J/g, determinato in accordo alla EN 196-8 a 7 giorni oppure in accordo alla EN 196-9 a 41 h.

I cementi comuni a basso calore sono indicati con LH.

Classe di	Resistenza a [MPa]	lla compressio	Tempo di inizio	Stabilità		
resistenza	Resistenz	za iniziale	Resistenza normalizzata		presa [min]	(espansione) [mm]
	2 giorni	7 giorni	28 giorni			
32,5 N	-	≥ 16,0	≥ 32,5	≤ 52,5	≥ 75	
32,5 R	≥ 10,0	-	2 32,5	3 32,3	275	
42,5 N	≥ 10,0	ı	- ≥ 42,5 ≤ 62,5		≥ 60	≤ 10
42,5 R	≥ 20,0	ı			2 00	2 10
52,5 N	≥ 20,0	-	> 50 5		≥ 45	
52,5 R	≥ 30,0	-	≥ 52,5	-	≥ 45	

Le proprietà dei cementi del tipo e della classe di resistenza riportati rispettivamente nelle colonne 3 e 4 della tabella seguente devono essere conformi ai requisiti riportati nella colonna 5 di detta tabella quando sottoposti a prova secondo le norme cui si fa riferimento nella colonna 2.

1	2	3	4	5	
Proprietà	roprietà Metodo di riferimento Tipo di cemento		Classe di resistenza	Requisiti	
Perdita al fuoco	EN 196-2	CEM III	Tutte le classi	≤ 5,0 %	
Residuo insolubile	EN 196-2	CEM II	Tutte le classi	≤ 5,0 %	
Tanana in calleta	nore in solfato (come SO ₃) EN 196-2		32,5 N 32,5 R 42,5 N	≤ 3,5 %	
(come SO ₃)			42,5 R 52,5 N 52,5 R	≤ 4,0 %	
		CEM III	Tutte le classi		
Tenore in cloruro	EN 196-21	Tutti i tipi	Tutte le classi	≤ 0,10 %	
Pozzolanicità	EN 196-5	CEM IV	Tutte le classi	Esito positivo della prova	

In molte applicazioni, in particolare in condizioni ambientali severe, la scelta del cemento ha una influenza sulla durabilità del calcestruzzo, della malta, e della malta per iniezione per esempio in termini di resistenza al gelo, resistenza chimica e protezione dell'armatura. La scelta del cemento, nell'ambito della EN 197-1, con particolare riguardo al tipo e alla classe di resistenza per diverse applicazioni e classi di esposizione, deve rispettare le norme e/o i regolamenti adeguati relativi al calcestruzzo e alla malta, validi nel luogo di utilizzo.

La conformità dei 27 prodotti alla EN 197-1 deve essere verificata in maniera continua in base al controllo di campioni puntuali.

Il costruttore ha l'obbligo della buona conservazione del cemento che non debba impiegarsi immediatamente nei lavori, curando tra l'altro che i locali, nei quali esso viene depositato, siano asciutti e ben ventilati. L'impiego di cemento giacente da lungo tempo in cantiere deve essere autorizzato dal Direttore dei Lavori sotto la sua responsabilità.

I cementi, gli agglomeranti cementizi e le calci idrauliche in polvere debbono essere forniti o:

- in sacchi sigillati;
- in imballaggi speciali a chiusura automatica a valvola che non possono essere aperti senza lacerazione;
- alla rinfusa.

Se i leganti idraulici sono forniti in sacchi sigillati essi dovranno essere del peso di 50 chilogrammi chiusi con legame munito di sigillo. Il sigillo deve portare impresso in modo indelebile il nome della ditta fabbricante e del relativo stabilimento nonché la specie del legante.

Deve essere inoltre fissato al sacco, a mezzo del sigillo, un cartellino resistente sul quale saranno indicati con caratteri a stampa chiari e indelebili:

- la qualità del legante;
- lo stabilimento produttore;
- la quantità d'acqua per la malta normale;
- le resistenze minime a trazione e a compressione dopo 28 giorni di stagionatura dei provini.

Se i leganti sono forniti in imballaggi speciali a chiusura automatica a valvola che non possono essere aperti senza lacerazione, le indicazioni di cui sopra debbono essere stampate a grandi caratteri sugli imballaggi stessi.

I sacchi debbono essere in perfetto stato di conservazione; se l'imballaggio fosse comunque manomesso o il prodotto avariato, la merce può essere rifiutata.

Se i leganti sono forniti alla rinfusa, la provenienza e la qualità degli stessi dovranno essere dichiarate con documenti di accompagnamento della merce.

Le calci idrauliche naturali, in zolle, quando non possono essere caricate per la spedizione subito dopo l'estrazione dai forni, debbono essere conservate in locali chiusi o in sili al riparo degli agenti atmosferici. Il trasporto in cantiere deve eseguirsi al riparo dalla pioggia o dall'umidità.

Le pozzolane saranno ricavate da strati depurati da cappellaccio ed esenti da sostanze eterogenee o di parti inerti: qualunque sia la provenienza dovranno rispondere a tutti i requisiti prescritti dalla normativa vigente.

Agli effetti delle suddette prescrizioni si intendono per pozzolane tutti quei materiali di origine vulcanica che impastati intimamente con calce danno malte capaci di far presa e di indurire anche sott'acqua e che presentano un residuo non superiore al 40% ad un attacco acido basico. Si considerano materiali a comportamento pozzolanico tutti quelli che, pur non essendo di origine vulcanica, rispondono alle condizioni della precedente definizione.

Agli effetti delle presenti norme si dividono in pozzolane energiche e pozzolane di debole energia.

Le pozzolane ed i materiali a comportamento pozzolanico devono dar luogo alle seguenti resistenze con la tolleranza del 10%.

	Resistenza a trazione (su malta normale) dopo 28	Resistenza a pressione (su malta normale)	Composizione della malta normale	
--	--	---	----------------------------------	--

	gg.:	dopo 28 gg.:	
			- tre parti in peso del materiale da provare
POZZOLANE ENERGICHE	5 Kg/cm2	25 Kg/cm2	- una parte in peso di calce normale
	o ng,om2		Dopo 7 giorni di stagionatura in ambiente umido non deve lasciare penetrare più di mm 7 l'ago di Vicat del peso di kg 1 lasciato cadere una sola volta dall'altezza di mm 30.
			- tre parti in peso di pozzolana
POZZOLANE DI DEBOLE	3 Kg/cm2	12 Kg/cm2	- una parte in peso di calce normale
ENERGIA	o Ng/oniz	12.13/0112	Dopo 7 giorni di stagionatura in ambiente umido non deve lasciare penetrare più di mm 10 l'ago di Vicat del peso di kg 1 lasciato cadere una sola volta dall'altezza di mm 30.

La pozzolana ed i materiali a comportamento pozzolanico devono essere scevri da sostanze eterogenee. La dimensione dei grani della pozzolana e dei materiali a comportamento pozzolanico non deve superare 5 mm.

Il gesso dovrà essere di recente cottura, perfettamente asciutto, di fine macinazione in modo da non lasciare residui sullo staccio di 56 maglie a centimetro quadrato, scevro da materie eterogenee e senza parti alterate per estinzione spontanea. Il gesso dovrà essere conservato in locali coperti e ben riparati dall'umidità.

L'uso di esso dovrà essere preventivamente autorizzato dalla Direzione dei Lavori.

I gessi si dividono in:

Tipo	Durezza massima	Resistenza alla trazione (dopo tre giorni)	Resistenza alla compressione (dopo tre giorni)
Gesso comune	60% di acqua in volume	15 kg/cm ²	-
Gesso da stucco	60% di acqua in volume	20 kg/ cm ²	40 kg/ cm ²
Gesso da forma (scagliola)	70% di acqua in volume	20 kg/ cm ²	40 kg/ cm ²

Gli inerti, naturali o di frantumazione, devono essere costituiti da elementi non gelivi e non friabili, privi di sostanze organiche, limose ed argillose, di gesso, ecc., in proporzioni nocive all'indurimento del conglomerato od alla conservazione delle armature.

Gli inerti, quando non espressamente stabilito, possono provenire da cava in acqua o da fiume, a seconda della località dove si eseguono i lavori ed in rapporto alle preferenze di approvvigionamento: in ogni caso dovranno essere privi di sostanze organiche, impurità ed elementi eterogenei.

Gli aggregati devono essere disposti lungo una corretta curva granulometrica, per assicurare il massimo riempimento dei vuoti interstiziali.

Tra le caratteristiche chimico-fisiche degli aggregati occorre considerare anche il contenuto percentuale di acqua, per una corretta definizione del rapporto a/c, ed i valori di peso specifico assoluto per il calcolo della miscela d'impasto. La granulometria inoltre dovrà essere studiata scegliendo il diametro massimo in funzione della sezione minima del getto, della distanza minima tra i ferri d'armatura e dello spessore del copriferro.

La ghiaia o il pietrisco devono avere dimensioni massime commisurate alle caratteristiche geometriche della carpenteria del getto ed all'ingombro delle armature.

Gli inerti normali sono, solitamente, forniti sciolti; quelli speciali possono essere forniti sciolti, in sacchi o in autocisterne. Entrambi vengono misurati a metro cubo di materiale assestato su automezzi per forniture di un certo rilievo, oppure a secchie, di capacità convenzionale pari ad 1/100 di metro cubo nel caso di minimi quantitativi.

La sabbia naturale o artificiale dovrà risultare bene assortita in grossezza, sarà pulitissima, non avrà tracce di sali, di sostanze terrose, limacciose, fibre organiche, sostanze friabili in genere e sarà costituita di grani resistenti, non provenienti da roccia decomposta o gessosa.

Essa deve essere scricchiolante alla mano, non lasciare traccia di sporco, non contenere materie organiche, melmose o comunque dannose; deve essere lavata ad una o più riprese con acqua dolce, qualora ciò sia necessario, per eliminare materie nocive e sostanze eterogenee.

La ghiaia deve essere ad elementi puliti di materiale calcareo o siliceo, bene assortita, formata da elementi resistenti e non gelivi, scevra da sostanze estranee, da parti friabili, terrose, organiche o comunque dannose.

La ghiaia deve essere lavata con acqua dolce, qualora ciò sia necessario per eliminare le materie nocive.

Qualora invece della ghiaia si adoperi pietrisco questo deve provenire dalla frantumazione di roccia compatta, durissima, silicea o calcarea pura e di alta resistenza alle sollecitazioni meccaniche, esente da materie terrose, sabbiose e, comunque, eterogenee, non gessosa né geliva, non deve contenere impurità né materie pulverulenti, deve essere costituito da elementi, le cui dimensioni soddisfino alle condizioni indicate per la ghiaia.

Il pietrisco dev'essere lavato con acqua dolce qualora ciò sia necessario per eliminare materie nocive.

Sono idonei alla produzione di calcestruzzo per uso strutturale gli aggregati ottenuti dalla lavorazione di materiali naturali, artificiali, ovvero provenienti da processi di riciclo conformi alla norma europea armonizzata UNI EN 12620 e, per gli aggregati leggeri, alla norma europea armonizzata UNI EN 13055-1.

Il sistema di attestazione della conformità di tali aggregati, ai sensi del DPR n.246/93 è indicato nella seguente tabella.

Specifica Tecnica Europea armonizzata di riferimento	Uso Previsto	Sistema di Attestazione della Conformità
Aggregati per calcestruzzo UNI EN 12620 e UNI EN 13055-1	Calcestruzzo strutturale	2+

È consentito l'uso di aggregati grossi provenienti da riciclo, secondo i limiti di cui alla tabella seguente, a condizione che la miscela di calcestruzzo confezionata con aggregati riciclati, venga preliminarmente qualificata e documentata attraverso idonee prove di laboratorio. Per tali aggregati, le prove di controllo di produzione in fabbrica di cui ai prospetti H1, H2 ed H3 dell'annesso ZA della norma europea armonizzata UNI EN 12620, per le parti rilevanti, devono essere effettuate ogni 100 tonnellate di aggregato prodotto e, comunque, negli impianti di riciclo, per ogni giorno di produzione.

Origine del materiale da riciclo	Classe del calcestruzzo	percentuale di impiego
demolizioni di edifici (macerie)	=C 8/10	fino al 100 %
demolizioni di solo calcestruzzo e c.a.	≤C30/37	≤ 30 %
	≤C20/25	Fino al 60 %
Riutilizzo di calcestruzzo interno negli stabilimenti di prefabbricazione qualificati - da qualsiasi classe		
da calcestruzzi >C45/55	≤C45/55 Stessa classe del calcestruzzo di origine	fino al 15% fino al 5%

Per quanto concerne i requisiti chimico-fisici, aggiuntivi rispetto a quelli fissati per gli aggregati naturali, che gli aggregati riciclati devono rispettare, in funzione della destinazione finale del calcestruzzo e delle sue proprietà prestazionali (meccaniche, di durabilità e pericolosità ambientale, ecc.), nonché quantità percentuali massime di impiego per gli aggregati di riciclo, o classi di resistenza del calcestruzzo, ridotte rispetto a quanto previsto nella tabella sopra esposta si faccia riferimento a quanto prescritto nelle norme UNI 8520-1:2005 e UNI 8520-2:2005.

Per quanto riguarda gli eventuali controlli di accettazione da effettuarsi a cura del Direttore dei Lavori, questi sono finalizzati almeno alla determinazione delle caratteristiche tecniche riportate nella tabella seguente. I metodi di prova da utilizzarsi sono quelli indicati nelle Norme Europee Armonizzate citate, in relazione a ciascuna caratteristica.

Caratteristiche tecniche	
Descrizione petrografica semplificata	
Dimensione dell'aggregato (analisi granulometrica e contenuto dei fini)	
Indice di appiattimento	
Dimensione per il filler	
Forma dell'aggregato grosso (per aggregato proveniente da riciclo)	
Resistenza alla frammentazione/frantumazione (per calcestruzzo Rck ≥ C50/60)	

Pietre naturali, artificiali e marmi

Secondo quanto prescritto al capitolo 11 delle NTC 2008 gli elementi da impiegarsi nelle murature devono essere conformi alle norme europee armonizzate della serie UNI EN 771 e recare la Marcatura CE. Tutti i materiali, indipendentemente dalla Marcatura CE ovvero da altre qualificazioni nazionali, devono essere accettati dal Direttore dei lavori, anche mediante le prove sperimentali di accettazione; in ogni caso il Direttore dei lavori potrà far eseguire tutte le ulteriori prove che ritenga necessarie ai fini dell'impiego specifico, facendo riferimento alle metodologie indicate nelle norme armonizzate applicabili.

Pietre naturali. – Le pietre naturali da impiegarsi nelle murature e in qualsiasi altro lavoro, dovranno essere a grana compatta e ripulite da cappellaccio, esenti da piani di sfaldamento, da screpolature, peli, venature e scevre di sostanze estranee; dovranno avere dimensioni adatte al particolare loro impiego, offrire una resistenza proporzionata all'entità della sollecitazione cui saranno soggette, e devono essere efficacemente aderenti alle malte. Saranno, pertanto, assolutamente escluse le pietre marnose e quelle alterabili all'azione degli agenti atmosferici e dell'acqua corrente.

Le pietre da taglio oltre a possedere i requisiti ed i caratteri generali sopra indicati, dovranno avere struttura uniforme, essere prive di fenditure, cavità e litoclasi, essere sonore alla percussione e di perfetta lavorabilità.

Il tufo dovrà essere di struttura litoide, compatto ed uniforme, escludendo quello pomicioso e facilmente friabile.

L'ardesia in lastre per la copertura dovrà essere di prima scelta e di spessore uniforme; le lastre dovranno essere sonore, di superficie piuttosto rugosa, ed esenti da inclusioni e venature.

Pietra da taglio - La pietra da taglio da impiegare nelle costruzioni dovrà presentare la forma e le dimensioni di progetto, ed essere lavorata, secondo le prescrizioni che verranno impartite dalla Direzione dei Lavori all'atto dell'esecuzione, nei seguenti modi:

- a grana grossa, se lavorata semplicemente con la punta grossa senza fare uso della martellina per lavorare le facce viste, né dello scalpello per ricavarne spigoli netti;
- a grana ordinaria, se le facce viste saranno lavorate con la martellina a denti larghi;
- a grana mezza fina, se le facce predette saranno lavorate con la martellina a denti mezzani;
- a grana fina, se le facce predette saranno lavorate con la martellina a denti finissimi.

In tutte le lavorazioni, esclusa quella a grana grossa, le facce esterne di ciascun concio della pietra da taglio dovranno avere gli spigoli vivi e ben cesellati per modo che il giunto fra concio e concio non superi la larghezza di 5 mm per la pietra a grana ordinaria e di 3 mm per le altre.

Qualunque sia il genere di lavorazione delle facce viste, i letti di posa e le facce di congiunzione dovranno essere ridotti a perfetto piano e lavorati a grana fina. Non saranno tollerate né smussature agli spigoli, né cavità nelle facce, né stuccature in mastice o rattoppi. La pietra da taglio che presentasse tali difetti verrà rifiutata e l'Impresa dovrà sostituirla immediatamente, anche se le scheggiature o gli ammacchi si verificassero dopo il momento della posa in opera fino al momento del collaudo.

Marmi - I marmi dovranno essere della migliore qualità, perfettamente sani, senza scaglie, brecce, vene, spaccature, nodi, peli o altri difetti che ne infirmino l'omogeneità e la solidità. Non saranno tollerate stuccature, tasselli, rotture, scheggiature. I marmi colorati devono presentare in tutti i pezzi le precise tinte e venature caratteristiche della specie prescelta.

Le opere in marmo dovranno avere quella perfetta lavorazione che è richiesta dall'opera stessa, con congiunzioni senza risalti e piani perfetti.

Salvo contraria disposizione, i marmi dovranno essere, di norma, lavorati in tutte le facce viste a pelle liscia, arrotate e pomiciate. Potranno essere richiesti, quando la loro venatura si presti, con la superficie vista a spartito geometrico, a macchina aperta, a libro o comunque ciocata.

Pietre artificiali. - La pietra artificiale, ad imitazione della pietra naturale, sarà costituita da conglomerato cementizio, formato con cementi adatti, sabbia silicea, ghiaino scelto sottile lavato, e graniglia della stessa pietra naturale che s'intende imitare. Il conglomerato così formato sarà gettato entro apposite casseforme, costipandolo poi mediante battitura a mano o pressione meccanica.

Le superfici in vista, che dovranno essere gettate contemporaneamente al nucleo interno, saranno costituite, per uno spessore di almeno 2 cm, da impasto più ricco formato da cemento bianco, graniglia di marmo, terre colorate e polvere della pietra naturale che si deve imitare.

Le stesse superfici saranno lavorate, dopo completo indurimento, in modo da presentare struttura identica per apparenza della grana, tinta e lavorazione, alla pietra naturale imitata. Inoltre la parte superficiale sarà gettata con dimensioni sovrabbondanti rispetto a quelle definitive; queste ultime saranno poi ricavate asportando materia per mezzo di utensili da scalpellino, essendo vietate in modo assoluto le stuccature, le tassellature ed in generale le aggiunte di materiale.

I getti saranno opportunamente armati con tondini di ferro e lo schema dell'armatura dovrà essere preventivamente approvato dalla Direzione dei Lavori.

Per la posa in opera dei getti sopra descritti valgono le stesse prescrizioni indicate per i marmi.

La dosatura e la stagionatura degli elementi di pietra artificiale devono essere tali che il conglomerato soddisfi le seguenti condizioni:

- inalterabilità agli agenti atmosferici;
- rispetto delle caratteristiche di resistenza assunte a progetto;
- le sostanze coloranti adoperate nella miscela non dovranno agire chimicamente sui cementi sia con azione immediata, sia con azione lenta e differita; non conterranno quindi né acidi, né anilina, né gesso; non daranno aumento di volume durante la presa né successiva sfioritura e saranno resistenti alla luce.

La pietra artificiale, da gettare sul posto come paramento di ossature grezze, sarà formata da rinzaffo ed arricciature in malta cementizia, e successivo strato di malta di cemento, con colori e graniglia della stessa pietra naturale da imitare.

Quando tale strato deve essere sagomato per formare cornici, oltre che a soddisfare tutti i requisiti sopra indicati, dovrà essere confezionato ed armato nel modo più idoneo per raggiungere la perfetta

adesione alle murature sottostanti, che saranno state in precedenza debitamente preparate, terse e lavate abbondantemente dopo profonde incisioni dei giunti con apposito ferro.

Le facce viste saranno ricavate dallo strato esterno a graniglia, mediante i soli utensili di scalpellino o marmista, vietandosi in modo assoluto ogni opera di stuccatura, riportati, ecc.

Materiali ferrosi e metalli vari

I materiali ferrosi dovranno presentare caratteristiche di ottima qualità essere privi di difetti, scorie, slabbrature, soffiature, ammaccature, soffiature, bruciature, paglie e da qualsiasi altro difetto apparente o latente di fusione, laminazione, trafilatura, fucinatura e simili; devono inoltre essere in stato di ottima conservazione e privi di ruggine. Sottoposti ad analisi chimica devono risultare esenti da impurità e da sostanze anormali.

La loro struttura micrografica deve essere tale da dimostrare l'ottima riuscita del processo metallurgico di fabbricazione e da escludere qualsiasi alterazione derivante dalla successiva lavorazione a macchina od a mano che possa menomare la sicurezza d'impiego.

I materiali destinati ad essere inseriti in altre strutture o che dovranno poi essere verniciati, devono pervenire in cantiere protetti da una mano di antiruggine.

Si dovrà tener conto delle prescrizioni contenute nel § 11.3 delle NTC 2008.

Essi dovranno presentare, a seconda della loro qualità, i seguenti requisiti:

Acciaio per cemento armato - È ammesso esclusivamente l'impiego di acciai saldabili qualificati e controllati secondo le procedure di cui alle NTC 2008. L'acciaio per cemento armato è generalmente prodotto in stabilimento sotto forma di barre o rotoli, reti o tralicci, per utilizzo diretto o come elementi di base per successive trasformazioni. Prima della fornitura in cantiere gli elementi di cui sopra possono essere saldati, presagomati (staffe, ferri piegati, ecc.) o preassemblati (gabbie di armatura, ecc.) a formare elementi composti direttamente utilizzabili in opera.

La sagomatura e/o l'assemblaggio possono avvenire in cantiere, sotto la vigilanza della Direzione Lavori, oppure in centri di trasformazione.

Tutti gli acciai per cemento armato devono essere ad aderenza migliorata, aventi cioè una superficie dotata di nervature o indentature trasversali, uniformemente distribuite sull'intera lunghezza, atte ad aumentarne l'aderenza al conglomerato cementizio.

Per quanto riguarda la marchiatura dei prodotti vale quanto indicato al § 11.3.1.4.

Per la documentazione di accompagnamento delle forniture vale quanto indicato al § 11.3.1.5

Le barre sono caratterizzate dal diametro Æ della barra tonda liscia equipesante, calcolato nell'ipotesi che la densità dell'acciaio sia pari a 7,85 kg/dm3.

Gli acciai B450C, di cui al § 11.3.2.1, possono essere impiegati in barre di diametro compreso tra 6 e 40 mm.

Per gli acciai B450A, di cui al § 11.3.2.2 il diametro delle barre deve essere compreso tra 5 e 10 mm. L'uso di acciai forniti in rotoli è ammesso, senza limitazioni, per diametri fino a Ø16 mm per B450C e fino a □10 mm per B450A.

- precedente § 11.3.1.2 e controllati con le modalità riportate nel § 11.3.2.11.
- Ferro Il ferro comune dovrà essere di prima qualità, eminentemente duttile e tenace e di marcatissima struttura fibrosa. Esso dovrà essere malleabile, liscio alla superficie esterna, privo di screpolature, saldature e di altre soluzioni di continuità. L'uso del ferro tondo per cemento armato, sul quale prima dell'impiego si fosse formato uno strato di ruggine, deve essere autorizzato dalla Direzione dei Lavori.

- Acciaio trafilato o dolce laminato Per la prima varietà è richiesta perfetta malleabilità e lavorabilità a freddo e a caldo, tali da non generare screpolature o alterazioni; esso dovrà essere inoltre saldabile e non suscettibile di prendere la tempera; alla rottura dovrà presentare struttura lucente e finemente granulare. L'acciaio extra dolce laminato dovrà essere eminentemente dolce e malleabile, perfettamente lavorabile a freddo ed a caldo, senza presentare screpolature od alterazioni; dovrà essere saldabile e non suscettibile di prendere la tempra.
- Acciaio fuso in getto L'acciaio in getti per cuscinetti, cerniere, rulli e per qualsiasi altro lavoro, dovrà essere di prima qualità, esente da soffiature e da qualsiasi altro difetto.
- Acciaio da cemento armato normale Gli acciai B450C possono essere impiegati in barre di diametro compreso tra 6 e 40 mm.
- Acciaio da cemento armato precompresso Le prescrizioni del D.M. 14 Gennaio 2008 (NTC2008) e alla relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008":
 - Filo: prodotto trafilato di sezione piena che possa fornirsi in rotoli;
 - Barra: prodotto laminato di sezione piena che possa fornirsi soltanto in forma di elementi rettilinei;
 - Treccia: gruppi di 2 e 3 fili avvolti ad elica intorno al loro comune asse longitudinale; passo e senso di avvolgimento dell'elica sono eguali per tutti i fili della treccia;
 - Trefolo: gruppi di fili avvolti ad elica in uno o più strati intorno ad un filo rettilineo disposto secondo l'asse longitudinale dell'insieme e completamente ricoperto dagli strati. Il passo ed il sento di avvolgimento dell'elica sono eguali per tutti i fili di uno stesso strato.

I fili possono essere lisci, ondulati, con impronte, tondi o di altre forme; vengono individuati mediante il diametro nominale o il diametro nominale equivalente riferito alla sezione circolare equipesante. Non è consentito l'uso di fili lisci nelle strutture precompresse ad armature pre-tese.

Le barre possono essere lisce, a filettatura continua o parziale, con risalti; vengono individuate mediante il diametro nominale.

- Ghisa - La ghisa dovrà essere di prima qualità e di seconda fusione dolce, tenace, leggermente malleabile, facilmente lavorabile con la lima e con lo scalpello; la frattura sarà grigia, finemente granulosa e perfettamente omogenea, esente da screpolature, vene, bolle, sbavature, asperità ed altri difetti capaci di menomarne la resistenza. Dovrà essere inoltre perfettamente modellata. È assolutamente escluso l'impiego di ghise fosforose. I chiusini e le caditoie saranno in ghisa grigia o ghisa sferoidale secondo la norma UNI ISO 1563/98, realizzati secondo norme UNI EN 124/95 di classe adeguata al luogo di utilizzo, in base al seguente schema:

Luogo di utilizzo	Classe	Portata
Per carichi elevati in aree speciali	E 600	t 60
Per strade a circolazione normale	D 400	t 40
Per banchine e parcheggi con presenza di veicoli pesanti	C 250	t 25
Per marciapiedi e parcheggi autovetture	B 125	t 12,5

 Trafilati, profilati, laminati - Devono presentare alle eventuali prove di laboratorio, previste dal Capitolato o richieste dalla Direzione dei Lavori, caratteristiche non inferiori a quelle prescritte dalle norme per la loro accettazione; in particolare il ferro tondo per cemento armato, dei vari tipi ammessi, deve essere fornito con i dati di collaudo del fornitore.
 Dalle prove di resistenza a trazione devono ottenersi i seguenti risultati:

- per l'acciaio dolce (ferro omogeneo): carico di rottura per trazione compreso fra 42 e 50 kg/mm², limite di snervamento non inferiore a 23 kg/mm², allungamento di rottura non inferiore al 20 per cento;
- per le legature o staffe di pilastri può impiegarsi acciaio dolce con carico di rottura compreso fra 37 e 45 kg/mm² senza fissarne il limite inferiore di snervamento;
- per l'acciaio semiduro: carico di rottura per trazione compreso fra 50 e 60 kg/mm²; limite di snervamento non inferiore a 27 kg/mm², allungamento di rottura non inferiore al 16%;
- per l'acciaio duro: carico di rottura per trazione compreso fra 60 e 70 kg/mm², limite di snervamento non inferiore a 31 kg/mm², allungamento di rottura non inferiore al 14%.

Il piombo, lo stagno, il rame e tutti gli altri metalli o leghe metalliche da impiegare devono essere delle migliori qualità, ben fusi o laminati a seconda della specie di lavori a cui sono destinati, e scevri da ogni impurità o difetto che ne vizi la forma, o ne alteri la resistenza o la durata.

Legnami

I legnami, da impiegare in opere stabili o provvisorie, di qualunque essenza essi siano, dovranno rispondere a tutte le prescrizioni di cui alla legislazione ed alle norme UNI vigenti; saranno provveduti fra le più scelte qualità della categoria prescritta e non presenteranno difetti incompatibili con l'uso a cui sono destinati: dovranno quindi essere di buona qualità, privi di alburno, fessure, spaccature, esenti da nodi profondi o passanti, cipollature, buchi od altri difetti, sufficientemente stagionati tranne che non siano stati essiccati artificialmente, presentare colore e venatura uniforme. Possono essere individuate quattro categorie di legname:

Caratteristiche	1ª categoria	2ª categoria	3ª categoria
Tipo di legname	Assolutamente sano	Sano	Sano
Alterazioni cromatiche	Immune	Lievi	Tollerate
Perforazioni da insetti o funghi	Immune	Immune	Immune
Tasche di resina	Escluse	Max spessore mm 3	
Canastro	Escluso	Escluso	
Cipollature	Escluse	Escluse	Escluse
Lesioni	Escluse	Escluse	Escluse
Fibratura	Regolare	Regolare	Regolare
Deviazione massima delle fibre ri-spetto all'asse longitudinale	1/15 (pari al 6,7%)	1/8 (pari al 12,5%)	1/5 (pari al 20%)
Nodi	Aderenti	Aderenti	Aderenti per almeno 2/3
Diametro	Max 1/5 della di-mensione minima di sezione e (max cm 5)	Max 1/3 della di-mensione minima di sezione (max cm 7)	Max 1/2 della di-mensione minima di sezione
Frequenza dei nodi in cm 15 di lunghezza della zona più nodosa	La somma dei diametri dei vari nodi non deve superare i 2/5 della larghezza di sezione	La somma dei diametri dei vari nodi non deve oltrepassare i 2/3 della larghezza di sezione	La somma dei diametri dei vari nodi non deve oltrepassare i ¾ della larghezza di sezione
Fessurazioni alle estremità	Assenti	Lievi	Tollerate
Smussi nel caso di segati a spigolo vivo	Assenti	Max 1/20 della di-mensione affetta	Max 1/10 della di-mensione affetta

Nella 4ª categoria (da non potersi ammettere per costruzioni permanenti) rientrano legnami con tolleranza di guasti, difetti, alterazioni e smussi superanti i limiti della 3ª categoria.

I legnami destinati alla costruzione degli infissi dovranno essere di prima scelta, di struttura e fibra compatta e resistente, non deteriorata, perfettamente sana, dritta, e priva di spaccature sia in senso radiale che circolare.

Il tavolame dovrà essere ricavato dai tronchi più diritti, affinché le fibre non risultino tagliate dalla sega.

I legnami rotondi o pali dovranno provenire dal tronco dell'albero e non dai rami, dovranno essere sufficientemente diritti, in modo che la congiungente i centri delle due basi non esca in nessun punto del palo. Dovranno inoltre essere scortecciati per tutta la loro lunghezza e conguagliati alla superficie; la differenza tra i diametri medi delle estremità non dovrà oltrepassare i 15 millesimi della lunghezza né il quarto del maggiore dei 2 diametri.

Nei legnami grossolanamente squadrati ed a spigolo smussato, tutte le facce dovranno essere spianate e senza scarniture, tollerandosene l'alburno o lo smusso in misura non maggiore di un sesto del lato della sezione trasversale.

legnami a spigolo vivo dovranno essere lavorati e squadrati a sega con le diverse facce esattamente spianate, senza rientranze o risalti, e con gli spigoli tirati a filo vivo, senza alburno né smussi di sorta.

I legnami si misurano per cubatura effettiva; per le antenne tonde si assume il diametro o la sezione a metà altezza; per le sottomisure coniche si assume la larghezza della tavola nel suo punto di mezzo.

Il legname, salvo diversa prescrizione, deve essere nuovo, nelle dimensioni richieste o prescritte.

Per quanto riguarda la resistenza al fuoco si fa riferimento alla norma UNI 9504/89 "Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi in legno", riferibile sia al legno massiccio che al legno lamellare, trattati e non, articolata in:

- determinazione della velocità di penetrazione della carbonizzazione;
- determinazione della sezione efficace ridotta (sezione resistente calcolata tenendo conto della riduzione dovuta alla carbonizzazione del legno);
- verifica della capacità portante allo stato limite ultimo di collasso nella sezione efficace ridotta più sollecitata secondo il metodo semiprobabilistico agli stati limite.

Colori e vernici

I materiali impiegati nelle opere da pittore dovranno essere sempre della migliore qualità.

- a) Olio di lino cotto L'olio di lino cotto sarà ben depurato, di colore assai chiaro e perfettamente limpido, di odore forte ed amarissimo al gusto, scevro di adulterazioni con olio minerale, olio di pesce, ecc. Non dovrà lasciare alcun deposito né essere rancido e, disteso sopra una lastra di vetro o di metallo, dovrà essiccare completamente nell'intervallo di 24 ore. Avrà acidità nella misura del 7%, impurità non superiore all'1% ed alla temperatura di 15℃ presenterà una densità compresa fra 0,91 e 0,93.
- b) Acquaragia (essenza di trementina) Dovrà essere limpida, incolore, di odore gradevole e volatilissima. La sua densità a 15℃ sarà di 0,87.
- c) Biacca La biacca o cerussa (carbonato basico di piombo) deve essere pura, senza miscele di sorta e priva di qualsiasi traccia di solfato di bario.

- d) Bianco di zinco Il bianco di zinco dovrà essere in polvere finissima, bianca, costituita da ossido di zinco e non dovrà contenere più del 4% di sali di piombo allo stato di solfato, né più dell'1% di altre impurità; l'umidità non deve superare il 3%.
- e) Latte di calce Il latte di calce sarà preparato con calce grassa, perfettamente bianca, spenta per immersione. Vi si potrà aggiungere la quantità di nerofumo strettamente necessaria per evitare la tinta giallastra.
- f) Colori all'acqua, a colla o ad olio Le terre coloranti destinate alle tinte all'acqua, a colla o ad olio, saranno finemente macinate e prive di sostanze eterogenee e dovranno venire perfettamente incorporate nell'acqua, nelle colle e negli oli, ma non per infusione. Potranno essere richieste in qualunque tonalità esistente.
- g) Vernici Le vernici che si impiegheranno per gli interni saranno a base di essenza di trementina e gomme pure e di qualità scelta; disciolte nell'olio di lino dovranno presentare una superficie brillante. È escluso l'impiego di gomme prodotte da distillazione. Le vernici speciali eventualmente prescritte dalla Direzione dei Lavori dovranno essere fornite nei loro recipienti originali chiusi.
- h) Encaustici Gli encaustici potranno essere all'acqua o all'essenza, secondo le disposizioni della Direzione dei Lavori. La cera gialla dovrà risultare perfettamente disciolta, a seconda dell'encaustico adottato, o nell'acqua calda alla quale sarà aggiunto sale di tartaro, o nell'essenza di trementina.

Materiali diversi

- a) Asfalto naturale L'asfalto sarà naturale e proverrà dalle miniere migliori. Sarà in pani, compatto, omogeneo, privo di catrame proveniente da distillazione del carbon fossile, ed il suo peso specifico varierà fra i limiti di 1104 a 1205 kg.
- b) Bitume asfaltico Il bitume asfaltico proverrà dalla distillazione di rocce di asfalto naturale. Sarà molle, assai scorrevole, di colore nero e scevro dell'odore proprio del catrame minerale proveniente dalla distillazione del carbonfossile e del catrame vegetale.
- c) Mastice di rocce asfaltiche e mastice di asfalto sintetico per la preparazione delle malte asfaltiche e degli asfalti colorati - I bitumi da spalmatura impiegati avranno di norma le caratteristiche seguenti o altre qualitativamente equivalenti:

Tipo	Indice di penetrazione	Penetrazione a 25°C	Punto di rammolliment o	Punto d'infiammabilit à (Cleveland)	Solubrità in cloruro di carbonio	Volatilità a 136℃ per 5 ore	Penetrazione a 25℃ del residuo della prova di volatilità
		dmm.	ဇ	°C	%	%	% del bitume originario
	(minimo)	(minimo)	(minimo)	(minimo)	(minimo)	(minimo)	(minimo)
0	0	40	55	230	99,5	0,3	75
15	+1,5	35	65	230	99,5	0,3	75
25	+2,5	20	80	230	99,5	0,3	75

Le eventuali verifiche e prove saranno eseguite con i criteri e le norme vigenti tenendo presenti le risultanze accertate in materia da organi specializzati ed in particolare dall'UNI.

d) Cartefeltro - Questi materiali avranno di norma le caratteristiche seguenti od altre qualitativamente equivalenti.

Tipo	Peso a m ²	Contenuto di:		Residuo ceneri %	Umidità %	Potere di assorbimento in olio di antracene %	Carico di rottura a trazione in senso longitudinale su striscia di 15 x 180 mm²/kg
		Lana %	Cotone, juta e fibre tessili %				
224	224-12	10	55	10	9	160	2,800
333	333-16	12	55	10	9	160	4,000
450	450-25	15	55	10	9	160	4,700

Le eventuali verifiche e prove saranno eseguite con i criteri e secondo le norme vigenti, tenendo presenti le risultanze accertate in materia da organi competenti ed in particolare dall'UNI.

e) Cartonfeltro bitumato cilindrato - È costituito da cartafeltro impregnata a saturazione di bitume in bagno a temperatura controllata. Esso avrà di norma le caratteristiche seguenti od altre qualitativamente equivalenti:

Tipo	Ca	Peso a m² del cartonfeltro (g)		
	Cartonfeltro tipo	Contenuto solubile in solfuro di carbonio (g/m²)	cartometro (g)	
224	224	233	450	
333	333	348	670	
450	450	467	900	

Questi cartonfeltri debbono risultare asciutti, uniformemente impregnati di bitume, presentare superficie piana, senza nodi, tagli, buchi od altre irregolarità ed essere di colore nero opaco. Per le eventuali prove saranno seguite le norme vigenti e le risultanze accertate da organi competenti in materia come in particolare l'UNI.

f) Cartonfeltro bitumato ricoperto - È costituito di cartafeltro impregnata a saturazione di bitume, successivamente ricoperta su entrambe le facce di un rivestimento di materiali bituminosi con un velo di materiale minerale finemente granulato, come scaglie di mica, sabbia finissima, talco, ecc. Esso avrà di norma le caratteristiche seguenti od altre qualitativamente equivalenti:

Tipo	Cai	Peso a m² del cartonfeltro (g)	
	Cartonfeltro tipo	Contenuto solubile in solfuro di carbonio (g/m²)	cartometro (g)
224	224	660	1100
333	333	875	1420
450	450	1200	1850

La cartafeltro impiegata deve risultare uniformemente impregnata di bitume; lo strato di rivestimento bituminoso deve avere spessore uniforme ed essere privo di bolle; il velo di protezione deve inoltre rimanere in superficie ed essere facilmente asportabile; le superfici debbono essere piane, lisce, prive di tagli, buchi ed altre irregolarità. Le eventuali verifiche e prove saranno eseguite con i criteri e secondo le norme vigenti, tenendo presenti le risultanze accertate da organi competenti in materia ed in particolare dall'UNI.

- g) Vetri e cristalli I vetri e cristalli dovranno essere, per le richieste dimensioni, di un sol pezzo, di spessore uniforme, di prima qualità, perfettamente incolori, molto trasparenti, privi di scorie, bolle, soffiature, ondulazioni, nodi, opacità lattiginose, macchie e di qualsiasi altro difetto.
- h) Materiali ceramici I prodotti ceramici più comunemente impiegati per apparecchi igienico-sanitari, rivestimento di pareti, tubazioni ecc., dovranno presentare struttura omogenea, superficie perfettamente liscia, non scheggiata e di colore uniforme, con lo smalto privo assolutamente di peli, cavillature, bolle, soffiature o simili difetti.
 I prodotti ceramici devono essere realizzati tramite minerali purissimi, i migliori reperibili sul mercato, accuratamente selezionati, dosati, miscelati e cotti perché formino un prodotto vetrificato totalmente impermeabile all'acqua, inattaccabile dagli acidi e dagli alcali, secondo le vigenti norme UNI. I materiali ceramici devono essere sottoposti a controll di produzione quali: lavorazione degli impasti e degli smalti, sulla regolarità di formatura, sulla robustezza (con prove di carico fino a 150 kg per i lavabi e fino a 400 kg per vasi e bidet) e sulla funzionalità.

I meteriali ceramici alla fabbricazione di sanitari di grandi dimensioni e ampie superfici, generalmente utilizzano ceramiche opportune. Hanno una massa bianca e compatta altamente resistente alle sollecitazioni; la smaltatura, durante la cottura fa corpo unico con supporto ceramico producendo una massa bianca e compatta altamente resistente alle sollecitazioni in modo da garantire anche dopo anni di impiego la totale impermeabilità secondo le vigenti norme UNI.

I prodotti ceramici per comunità devono avere caratteristiche di grande resistenza e alta igienicità, con cui garantita la solidità, la facilità di pulizia, la resistenza nel tempo.

Art. XIV Semilavorati

Laterizi

I laterizi da impiegare per lavori di qualsiasi genere, dovranno corrispondere alle norme per l'accettazione di cui al D.M. 20 novembre 1987, alla circolare di 4 gennaio 1989 n. 30787 ed alle norme UNI vigenti (da 8941-1-2-3/87 e UNI EN 771-1/05) nonché alle Nuove Norme Tecniche di cui al D.M. 14/01/2008.

I laterizi di qualsiasi tipo, forma e dimensione:

- debbono nella massa essere scevri da sassolini e da altre impurità;
- avere facce lisce e spigoli regolari;
- presentare alla frattura (non vetrosa) grana fine ed uniforme;
- dare, al colpo di martello, suono chiaro; assorbire acqua per immersione;
- asciugarsi all'aria con sufficiente rapidità;
- non sfaldarsi e non sfiorire sotto l'influenza degli agenti atmosferici e di soluzioni saline; non screpolarsi al fuoco;
- avere resistenza adeguata agli sforzi ai quali dovranno essere assoggettati, in relazione all'uso.

Essi devono provenire dalle migliori fornaci, presentare cottura uniforme, essere di pasta compatta, omogenea, priva di noduli e di calcinaroli e non contorti.

Agli effetti delle presenti norme, i materiali laterizi si suddividono in:

- materiali laterizi pieni, quali i mattoni ordinari, i mattoncini comuni e da pavimento, le pianelle per pavimentazione, ecc.;
- materiali laterizi forati, quali i mattoni con due, quattro, sei, otto fori, le tavelle, i tavelloni, le forme speciali per volterrane, per solai di struttura mista, ecc.;
- materiali laterizi per coperture, quali i coppi e le tegole di varia forma ed i rispettivi pezzi speciali.

I mattoni pieni e semipieni, i mattoni ed i blocchi forati per murature non devono contenere solfati alcalini solubili in quantità tale da dare all'analisi oltre lo $0.5\,^{\circ}/_{\circ 0}$ di anidride solforica (SO₃).

I mattoni pieni per uso corrente dovranno essere parallelepipedi, di lunghezza doppia della larghezza, salvo diverse proporzioni dipendenti da uso locale, di modello costante e presentare, sia all'asciutto che dopo prolungata immersione nell'acqua.

I mattoni da impiegarsi per l'esecuzione di muratura a faccia vista, dovranno essere di prima scelta e fra i migliori esistenti sul mercato, non dovranno presentare imperfezioni o irregolarità di sorta nelle facce a vista, dovranno essere a spigoli vivi, retti e senza smussatura; dovranno avere colore uniforme per l'intera fornitura.

Adeguata campionatura dei laterizi da impiegarsi dovrà essere sottoposta alla preventiva approvazione della Direzione dei Lavori.

Si computano, a seconda dei tipi, a numero, a metro quadrato, a metro quadrato per centimetro di spessore.

Malte, calcestruzzi e conglomerati

L'Appaltatore deve rispettare tutte le leggi, decreti, norme, circolari, ecc. esistenti. In particolare si ricorda il sotto indicato elenco senza pertanto esimere l'Appaltatore dalla completa conoscenza ed applicazione di tutta la normativa esistente.

- Nuove Norme Tecniche D.M. 14 Gennaio 2008 (NTC2008);
- Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008";
- D.P.R. n. 380 del 6 giugno 2001;

Cementi

I requisiti meccanici dovranno rispettare la legge n. 595 del 26 maggio 1965 ed alle norme armonizzate della serie UNI EN 197 ed in particolare:

Resistenza a compressione:

cementi normali7 gg. Kg/cmq 175

- 28 gg. Kg/cmq 325;

cementi ad alta resistenza
 3 gg. Kg/cmq 175

- 7 gg. Kg/cmq 325

- 28 gg. Kg/cmq 425;

cementi A.R./rapida presa
 3 gg. Kg/cmq 175

- 7 gg. Kg/cmq 325

- 28 gg. Kg/cmq 525.

Per le resistenze a flessione e le modalità di prova, per i requisiti chimici ed altre caratteristiche vedasi la legge n. 595 del 26 maggio 1965.

Ghiaia e pietrisco costituenti gli aggregati

Dovranno essere costituiti da elementi lapidei puliti non alterabili dal freddo e dall'acqua.

Dovranno essere esenti da polveri, gessi, cloruri, terra, limi, ecc. e dovranno avere forme tondeggianti o a spigoli vivi, comunque non affusolate o piatte.

Gli aggregati impiegabili per il confezionamento dei calcestruzzi possono essere di origine naturale, artificiale o di recupero come da normativa UNI EN 12620 e UNI EN 13055-1.

La massima dimensione degli aggregati sarà funzione dell'impiego previsto per il calcestruzzo, del diametro delle armature e della loro spaziatura.

Orientativamente si possono ritenere validi i seguenti valori:

fondazioni e muri di grosso spessore:
30 mm

travi, pilastri e solette:20 mm

solette di spessore < di 10 cm, nervature di solai e membrature sottili: 12/13 mm

Sabbie (per calcestruzzo)

Dovranno essere costituite da elementi silicei procurati da cave o fiumi, dovranno essere di forma angolosa, dimensioni assortite ed esenti da materiali estranei o aggressivi come per le ghiaie; in particolare dovranno essere esenti da limi, polveri, elementi vegetali od organici.

Le sabbie prodotte in mulino potranno essere usate previa accettazione della granulometria da parte del Direttore Lavori.

In ogni caso l'Appaltatore dovrà provvedere a suo onere alla formulazione delle granulometrie delle sabbie usate ogni qualvolta la Direzione Lavori ne faccia richiesta; le granulometrie dovranno essere determinate con tele e stacci UNI 2331-2/80 ed UNI 2332-1/79.

Per tutto quanto non specificato valgono le norme del D.M. 14/1/66 e successive.

Dosatura dei getti

Il cemento e gli aggregati sono di massima misurati a peso, mentre l'acqua è normalmente misurata a volume.

L'Appaltatore dovrà adottare, in accordo con la vigente normativa, un dosaggio di componenti (ghiaia, sabbia, acqua, cemento) tale da garantire le resistenze indicate sui disegni di progetto. Dovrà inoltre garantire che il calcestruzzo possa facilmente essere lavorato e posto in opera, in modo da passare attraverso le armature, circondarle completamente e raggiungere tutti gli angoli delle casseforme.

Qualora non espressamente altrove indicato, le dosature si intendono indicativamente così espresse:

_	calcestruzzo magro:	cemento:	150 kg
		sabbia:	$0,4 \text{ m}^3$
		ghiaia:	0.8 m^3
_	calcestruzzo normale:	cemento:	300 kg
		sabbia:	0,4 m ³
		ghiaia:	0,8 m ³
_	calcestruzzo grasso:	cemento:	350 kg
		sabbia:	$0,4 \text{ m}^3$
		ghiaia:	0,8 m ³

Dovranno comunque sempre essere raggiunte le caratteristiche e la classe di resistenza previste a progetto. Il rapporto acqua/cemento dovrà essere indicato e conforme alle prescrizioni di durabilità dettate dalla normativa.

Qualora venga utilizzato un additivo superfluidificante il rapporto acqua/cemento potrà essere usato a compensazione della quantità d'acqua; il dosaggio dovrà essere definito in accordo con le prescrizioni del produttore, con le specifiche condizioni di lavoro e con il grado di lavorabilità richiesto.

Come già indicato l'uso di additivi dovrà essere autorizzato dalla Direzione dei Lavori.

Confezione dei calcestruzzi

Dovrà essere eseguita in ottemperanza al D.M. 14 Gennaio 2008 (NTC2008) e la relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008".

E' ammesso l'uso di calcestruzzo preconfezionato, con esplicita approvazione della Direzione Lavori. Tutte le cautele e le prescrizioni esposte precedentemente dovranno essere applicate anche dal produttore del calcestruzzo preconfezionato. La Direzione dei Lavori si riserva comunque il diritto, dopo accordi e con il supporto dell'Appaltatore, di accedere agli impianti di preconfezionamento, eseguendo tutti i controlli e gli accertamenti che saranno ritenuti opportuni.

La Direzione dei Lavori richiederà comunque documenti comprovanti il dosaggio e la natura dei componenti del calcestruzzo fornito.

L'appaltatore è, comunque, responsabile unico delle dosature dei calcestruzzi e della loro rispondenza per l'ottenimento delle resistenze richieste nei disegni e documenti contrattuali.

Gli impianti a mano sono ammessi per piccoli getti non importanti staticamente e previa autorizzazione del Direttore dei Lavori.

Getto del calcestruzzo

Il getto verrà eseguito secondo le normative contenute nella Linee guida per la messa in opera del calcestruzzo strutturale e per la valutazione delle caratteristiche meccaniche del calcestruzzo indurito mediante prove non distruttive del febbraio 2008 a cura del Consiglio Superiore dei Lavori Pubblici.

Il getto dovrà essere eseguito con cura, opportunamente costipato ed eventualmente vibrato secondo le prescrizioni del Direttore dei Lavori.

Le interruzioni di getto dovranno essere evitate e comunque autorizzate dal Direttore dei Lavori. Le riprese dovranno essere eseguite in modo da trovarsi in zone di momento flettente nullo nelle strutture inflesse ed in modo da essere perpendicolari allo sforzo di compressione nelle strutture verticali.

Quando la ripresa avviene contro un getto ancora plastico, si dovrà procedere a previa boiaccatura del getto esistente. Se il getto esistente e' in fase di presa, occorre scalpellarlo e mettere a vivo la ghiaia quindi bagnare, applicare uno strato di malta di cemento di 1 - 2 cm. e procedere al nuovo getto.

Qualora richiesto dalla Direzione dei Lavori, l'appaltatore dovrà provvedere all'uso di additivi per la ripresa senza onere per il Committente.

Le strutture in fase di maturazione dovranno essere protette dal gelo, dal caldo eccessivo e dalle piogge violente; così pure sulle strutture suddette dovrà essere vietato il transito di persone, mezzi o comunque gualsiasi forma di sollecitazione.

La maturazione con riscaldamento locale diffuso e' ammessa solo previo accordo scritto con la Direzione dei Lavori.

Prescrizioni esecutive

I getti delle solette a sbalzo dovranno essere sempre eseguiti contemporaneamente al getto del solaio.

Nei getti dovranno essere inserite tutte le casserature, cassette, tubi, ecc. atti a creare i fori, le cavità, i passaggi indicati nei disegni delle strutture e degli impianti tecnologici, come pure dovranno essere messi in opera ferramenta varia (inserti metallici, tirafondi, ecc.) per i collegamenti di pareti e di altri elementi strutturali e/o di finitura.

Sono vietati, salvo approvazione della Direzione dei Lavori, i getti contro terra.

Indipendentemente dalle dosature, i getti di calcestruzzo eseguiti dovranno risultare compatti, privi di alveolature, senza affioramento di ferri; i ferri, nonché tutti gli accessori di ripresa (giunti di neoprene, lamierini, ecc.) e tutti gli inserti dovranno risultare correttamente posizionati; tutte le

dimensioni dei disegni dovranno essere rispettate ed a tal fine il costruttore dovrà provvedere a tenere anticipatamente in considerazione eventuali assestamenti o movimenti di casseri ed armature.

Tutti gli oneri relativi saranno compresi nel costo del calcestruzzo, a meno che esplicito diverso richiamo venga fatto nell'elenco voci del progetto.

I getti delle strutture destinate a ricevere una finitura di sola verniciatura dovranno essere realizzati con casseri metallici atti a garantire una superficie del getto la più liscia possibile. Eventuali irregolarità dovranno essere rettificate senza oneri aggiuntivi.

Provini

Durante la confezione dei calcestruzzi l'appaltatore dovrà prevedere il prelievo e la conservazione dei provini di calcestruzzo in numero sufficiente secondo le norme e secondo le prescrizioni del Direttore dei Lavori.

Per ciò che concerne la normativa di prova di esecuzione, collaudo, conservazione, nonché le pratiche per la denuncia dei cementi armati, valgono tutte le leggi vigenti e quelle che venissero promulgate in corso d'opera.

Dovranno inoltre essere eseguiti provini sulle barre di armatura, secondo le prescrizioni contenute nelle Nuove Norme Tecniche di cui al D.M. 14/01/2008. Gli oneri relativi al prelievo, maturazione e certificazione dei provini sono a carico dell'impresa esecutrice dei lavori.

Vibrazione

Le norme ed i tipi di vibrazione dovranno essere approvati dal Direttore dei Lavori sempre restando l'Appaltatore responsabile della vibrazione e di tutte le operazioni relative al getto, L'onere delle eventuali vibrazioni e' sempre considerato incluso nel prezzo del getto.

Condizioni climatiche

Sono vietati i getti con temperatura sotto zero e con prevedibile discesa sotto lo zero.

Fino a temperatura -5 ℃ il Direttore dei lavori, d'accordo con l'Impresa, sarà arbitro di autorizzare i getti previa sua approvazione degli additivi e delle precauzioni da adottare, sempre restando l'appaltatore responsabile dell'opera eseguita; conseguentemente il Direttore dei Lavori e' autorizzato ad ordinare all'appaltatore di eseguire a proprio onere (dell'Appaltatore) la demolizione dei getti soggetti a breve termine a temperatura eccessivamente bassa e non prevista.

I getti con temperatura superiore a 32 °C dovranno essere autorizzati dalla Direzione Lavori.

L'appaltatore e' obbligato all'innaffiamento costante dei getti in fase di maturazione per un minimo di 8 giorni e/o nei casi di getti massicci secondo indicazioni della Direzione Lavori.

Tolleranze

La tolleranza ammessa nella planarità dei getti, misurata con una staggia piana di 3 m, è di +/-4 mm. per tutti gli orizzontamenti .

La tolleranza ammessa per la verticalità dei getti misurata sull'altezza di un interpiano (intervallo tra due orizzontamenti parziali o totali) è di +/- 1 cm. non accumulabile per piano.

La tolleranza globale ammessa per la verticalità dei getti, misurata sull'altezza totale degli elementi, è pari a 1/1000 della altezza stessa.

La tolleranza ammessa per le misure in piano, riferita ad ogni piano e non cumulabile, è pari 1 +/-1 cm. per la massima dimensione in pianta. Particolare cura dovrà essere posta nella esecuzione dei getti che dovranno ricevere elementi metallici.

Materiali per pavimentazioni

I materiali per pavimentazione, pianelle di argilla, mattonelle o marmette di cemento, mattonelle greificate, lastre e quadrelli di marmo, mattonelle di asfalto, dovranno rispondere alla legislazione alle norme UNI vigenti.

a) Mattonelle, marmette e pietrini di cemento - Le mattonelle, le marmette ed i pietrini di cemento dovranno essere di ottima fabbricazione e resistenti a compressione meccanica, stagionati da almeno tre mesi, ben calibrati, a bordi sani e piani; non dovranno presentare né carie, né peli, né tendenza al distacco tra il sottofondo e lo strato superiore. La colorazione del cemento dovrà essere fatta con colori adatti, amalgamati ed uniformi.

Tipo di materiale	Spessore complessivo	Spessore strato superficiale	Materiali costituenti lo spessore superficiale
Mattonelle	almeno mm 25	almeno mm 7	cemento colorato
Marmette	almeno mm 25	almeno mm 7	impasto di cemento, sabbia e scaglie di marmo
Pietrini di cemento	almeno mm 30	almeno mm 8	cemento (la superficie sarà liscia, bugnata o scanalata secondo il disegno prescritto)

- b) Pietrini e mattonelle di terracotta greificate Le mattonelle ed i pietrini saranno di prima scelta, greificati per tutto lo spessore, inattaccabili dagli agenti chimici e meccanici, di forme esattamente regolari, a spigoli vivi ed a superficie piana. Sottoposte ad un esperimento di assorbimento, mediante gocce d'inchiostro, queste non dovranno essere assorbite neanche in minima misura. La forma, il colore e le dimensioni delle mattonelle saranno richieste dalla Direzione dei Lavori.
- c) Graniglia per pavimenti alla veneziana La graniglia di marmo o di altre pietre idonee dovrà corrispondere, per tipo e granulosità, ai campioni di pavimento prescelti e risultare perfettamente scevra di impurità.
- d) Pezzami per pavimenti a bollettonato. I pezzami di marmo o di altre pietre idonee dovranno essere costituiti da elementi, dello spessore da 2 a 3 cm, di forma e dimensioni opportune secondo i campioni prescelti.
- e) Linoleum e rivestimenti in plastica. Dovranno rispondere alle norme vigenti, presentare superficie liscia priva di discontinuità, strisciature, macchie e screpolature.
 - Salvo il caso di pavimentazione da sovrapporsi ad altre esistenti, gli spessori non dovranno essere inferiori a mm con una tolleranza non superiore al 5%. Lo spessore verrà determinato come media di dieci misurazioni eseguite sui campioni prelevati, impiegando un calibro che dia l'approssimazione di 1/10 di millimetro con piani di posa del diametro di almeno mm 10.

Il peso a metro quadrato non dovrà essere inferiore a kg /mm di spessore. Il peso verrà determinato sopra provini quadrati del lato di cm 50 con pesature che diano l'approssimazione di un grammo.

Tagliando i campioni a 45° nello spessore, la super ficie del taglio dovrà risultare uniforme e compatta e dovrà essere garantito un perfetto collegamento fra i vari strati.

Un pezzo di tappeto di forma quadrata di 20 cm di lato dovrà potersi curvare col preparato in fuori sopra un cilindro del diametro 10 x (s+1) mm, dove s rappresenta lo spessore in mm, senza che si formino fenditure e screpolature.

In base alla normativa vigente devono essere sottoposti alle prove di resistenza i materiali appresso indicati:

- Pianelle comuni in argilla.

- Pianelle pressate ed arrotate di argilla.
- Mattonelle di cemento con o senza colorazione, a superficie levigata.
- Mattonelle di cemento con o senza colorazione con superficie striata o con impronta.
- Marmette e mattonelle a mosaico di cemento e di detriti di pietra con superficie levigata.
- Mattonelle greificate.
- Lastre e quadrelli di marmo o di altre pietre.
- Mattonelle d'asfalto o di altra materia cementata a caldo.

Le condizioni di accettazione sono da determinarsi nei capitolati speciali, a seconda delle applicazioni che devono farsi dei singoli materiali per pavimentazione.

Per i materiali qui appresso indicati sono di regola adottati nei capitolati speciali, nei riguardi delle prove all'urto, alla flessione ed all'usura, i limiti di accettazione rispettivamente indicati per ciascuno dei materiali medesimi.

INDICAZIONE DEL MATERIALE	RESISTENZA		COEFFICIENTE DI USURA AL TRIBOMETRO (m/m)
	ALL'URTO kgm	ALLA FLESSIONE kg/cmq	TRIBOMETRO (IIIIII)
Pianelle comuni di argilla	0,20	25	15
Pianelle pressate ed arrotate di argilla	0,20	30	15
Mattonelle di cemento a superficie levigata	0,20	30	12
Mattonelle di cemento a superficie striata o con impronta	0,25	30	12
Marmette e mattonelle a mosaico	0,20	40	10
Mattonelle greificate	0,20	50	4
Lastre e quadrelli di marmo o di altra pietra (secondo la qualità della pietra):			
- Marmo saccaroide	-	-	10
- Calcare compatto	-	-	6
- Granito	-	-	4
Mattonelle di asfalto	0,40	30	15

Tubazioni e canali di gronda

a) Tubazioni in genere - Le tubazioni in genere, del tipo e dimensioni prescritte, dovranno seguire il minimo percorso compatibile col buon funzionamento di esse e con le necessità dell'estetica; dovranno evitare, per quanto possibile, gomiti, bruschi risvolti, giunti e cambiamenti di sezione ed essere collocate in modo da non ingombrare e da essere facilmente ispezionabili, specie in corrispondenza di giunti, sifoni, ecc. Inoltre quelle di scarico dovranno permettere il rapido e completo smaltimento delle materie, senza dar luogo ad ostruzioni, formazioni di depositi ed altri inconvenienti.

Le condutture interrate all'esterno dell'edificio dovranno ricorrere ad una profondità di almeno 1 m sotto il piano stradale; quelle orizzontali nell'interno dell'edificio dovranno per quanto possibile mantenersi distaccate, sia dai muri che dal fondo delle incassature, di 5 cm almeno (evitando di situarle sotto i pavimenti e nei soffitti), ed infine quelle verticali (colonne) anch'esse lungo le pareti, disponendole entro apposite incassature praticate nelle murature, di ampiezza sufficiente per eseguire le giunzioni, ecc., e fissandole con adatti sostegni.

Quando le tubazioni siano soggette a pressione, anche per breve tempo, dovranno essere sottoposte ad una pressione di prova eguale dal 1,5 a 2 volte la pressione di esercizio, a seconda delle disposizioni della Direzione dei Lavori.

Circa la tenuta, tanto le tubazioni a pressione che quelle a pelo libero dovranno essere provate prima della loro messa in funzione, a cura e spese dell'Impresa, e nel caso che si manifestassero delle perdite, anche di lieve entità, dovranno essere riparate e rese stagne a tutte spese di quest'ultima.

Così pure sarà a carico dell'Impresa la riparazione di qualsiasi perdita od altro difetto che si manifestasse nelle varie tubazioni, pluviali, docce, ecc. anche dopo la loro entrata in esercizio e sino al momento del collaudo, compresa ogni opera di ripristino.

b) Fissaggio delle tubazioni - Tutte le condutture non interrate dovranno essere fissate e sostenute con convenienti staffe, cravatte, mensole, grappe o simili, in numero tale da PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO- garantire il loro perfetto ancoraggio alle strutture di sostegno. Tali sostegni eseguiti di norma con ghisa malleabile, dovranno essere in due pezzi, snodati a cerniera o con fissaggio a vite, in modo da permettere la rapida rimozione del tubo, ed essere posti a distanze non superiori a 1 m.

Le condutture interrate poggeranno, a seconda delle disposizioni della Direzione dei Lavori, o su baggioli isolati in muratura di mattoni, o su letto costituito da un massetto di calcestruzzo, di gretonato, pietrisco, ecc., che dovrà avere forma tale da ricevere perfettamente la parte inferiore del tubo per almeno 60°, in ogni caso detti sostegni dovranno avere dimensioni tali da garantire il mantenimento delle tubazioni nell'esatta posizione stabilita.

Nel caso in cui i tubi posino su sostegni isolati, il rinterro dovrà essere curato in modo particolare.

- c) Tubi in ghisa I tubi in ghisa saranno perfetti in ogni loro parte, esenti da ogni difetto di fusione, di spessore uniforme e senza soluzione di continuità. Prima della loro messa in opera, a richiesta della Direzione dei Lavori, saranno incatramati a caldo internamente ed esternamente.
- d) Tubi in acciaio I tubi in acciaio dovranno essere trafilati e perfettamente calibrati. Quando i tubi di acciaio saranno zincati dovranno presentare una superficie ben pulita e scevra da grumi; lo strato di zinco sarà di spessore uniforme e ben aderente al pezzo, di cui dovrà ricoprire ogni parte.
- e) Tubi in acciaio per scarichi di impianti idrici sanitari, pluviali e fognature Detti tubi saranno tipo Luck o simili, di acciai laminato a freddo, di apposita qualità, saldato.
 I tubi, a seconda dell'impiego per i quali sono destinati, dovranno essere delle lunghezze maggiormente rispondenti alle normali esigenze applicative ed ai particolari problemi ricorrenti nelle costruzioni edili in genere.
 - I tubi dovranno essere smaltati sia internamente che esternamente, con speciale smalto nero, applicato a fuoco, in modo da garantire una sicura resistenza agli agenti atmosferici e da rendere il tubo inattaccabile dalla corrosione di acque nere e liquidi industriali in genere. I tubi smaltati a freddo dovranno essere usati esclusivamente per scarichi di acque piovane.
- f) Tubi in ferro Saranno del tipo "saldato" o "trafilato", a seconda del tipo e importanza della conduttura, con giunti a vite e manicotto, rese stagne con guarnizioni di canapa e mastice di manganese. I pezzi speciali dovranno essere in ghisa malleabile di ottima fabbricazione. A richiesta della Direzione dei Lavori le tubazioni in ferro (elementi ordinari e pezzi speciali) dovranno essere provviste di zincatura; i tubi di ferro zincato non dovranno essere lavorati a caldo per evitare la volatilizzazione dello zinco; in ogni caso la protezione dovrà essere ripristinata, sia pure con stagnatura, là dove essa sia venuta meno.
- g) Tubi in grès I materiali in grès devono essere di vero grès ceramico a struttura omogenea, smaltati internamente ed esternamente con smalto vetroso, non deformati, privi di screpolature, di lavorazione accurata e con innesto a manicotto o bicchiere.
 I tubi saranno cilindrici e diritti tollerandosi, solo eccezionalmente nel senso della lunghezza, curvature con freccia inferiore ad un centesimo della lunghezza di ciascun elemento.
 In ciascun pezzo i manicotti devono essere formati in modo da permettere una buona giunzione nel loro interno, e le estremità opposte saranno lavorate esternamente a scannellatura.

I pezzi battuti leggermente con un corpo metallico dovranno rispondere con un suono argentino per denotare buona cottura ed assenza di screpolature non apparenti.

Le giunzioni saranno eseguite con corda di canapa imbevuta di litargirio e compressa a mazzuolo; esse saranno poi stuccate con mastice di bitume o catrame.

Lo smalto vetroso deve essere liscio specialmente all'interno, aderire perfettamente con la pasta ceramica, essere di durezza non inferiore a quella dell'acciaio ed inattaccabile dagli alcali e dagli acidi concentrati, ad eccezione soltanto del fluoridrico.

La massa interna deve essere semifusa, omogenea, senza noduli estranei, assolutamente priva di calce, dura, compatta, resistente agli acidi (escluso il fluoridrico) ed agli alcali impermeabili in modo che un pezzo immerso, perfettamente secco, nell'acqua non ne assorba più del 3,5% in peso. Ogni tubo, provato isolatamente, deve resistere alla pressione interna di almeno tre atmosfere.

- h) Tubi in cemento I tubi in cemento dovranno essere confezionati con calcestruzzo sufficientemente ricco di cemento, ben stagionati, ben compatti, levigati, lisci, perfettamente rettilinei, a sezione interna esattamente circolare, di spessore uniforme e scevri da screpolature. Le superfici interne dovranno essere intonacate e lisciate. La frattura dei tubi di cemento dovrà essere pure compatta, senza fessure ed uniformi. Il ghiaietto del calcestruzzo dovrà essere così intimamente mescolato con la malta, ed i grani dovranno rompersi sotto l'azione del martello senza distaccarsi dalla malta.
 - Le giunzioni saranno eseguite distendendo sull'orlo del tubo in opera della pasta di cemento puro, innestando quindi il tubo successivo e sigillando poi tutto attorno, con malta di cemento, in modo da formare un anello di guarnizione.
- i) Tubi in ardesia artificiale I tubi in ardesia artificiale dovranno possedere un'elevata resistenza alla trazione ed alla flessione congiunta ad una sensibile elasticità, inalterabilità al gelo ed alle intemperie, assoluta impermeabilità all'acqua e resistenza al fuoco, scarsa conducibilità al calore. Dovranno inoltre essere ben stagionati mediante immersione in vasche di acqua per almeno una settimana.
 - Le giunzioni dovranno essere costituite da una guarnizione formata di anelli di gomma, ovvero calafata di canapa e successivamente colatura di boiacca semifluida da agglomerato cementizio, completata da una stuccatura di malta plastica dello stesso agglomerante, estesa sino all'orlo del manicotto. Nel caso di condotti di fumo si dovrà invece colare nei giunti malta fluida di terra refrattaria e calce, in luogo della boiacca di agglomerante.
- j) Tubi di cloruro di polivinile non plastificato Per i lavori nei quali è previsto l'impiego di tubi di PVC dovrà essere tenuto conto che i materiali forniti oltre a rispondere alle norme UNI vigenti dovranno essere muniti del "Marchio di conformità" rilasciato dall'Istituto Italiano dei Plastici. In materia si fa richiamo al D.M. 12 dicembre 1985 in G.U. n. 61 del 14 marzo 1986 riguardante "Norme tecniche relative alle tubazioni".
- k) Tubi di lamiera di ferro zincato Saranno eseguiti con lamiera di ferro zincato di peso non inferiore a 4,5 kg/m², con l'unione "ad aggraffatura" lungo la generatrice e giunzioni a libera dilatazione (sovrapposizione di 5 cm).
- Canali di gronda Potranno essere in lamiera di ferro zincato o in ardesia artificiale, e dovranno essere posti in opera con le esatte pendenze che verranno prescritte dalla Direzione dei Lavori.
 - Sopra le linee di colmo o sommità displuviali si dispongono sulle coperture a tegole curve dei coppi speciali, molto più grossi e più pesanti; per le coperture a lastre il colmo o viene coperto con lastre di piombo, pesanti ed aderenti, o più economicamente con comuni tegoloni di colmo che vengono murati con malta di cemento. Attorno al perimetro dei fumaioli e lungo i muri eventualmente superanti il tetto si protegge l'incontro e si convogliano le acque con una fascia di lamiera zincata o di zinco ripiegata, in modo che la parte verticale formi una fasciatura della parete e la parte orizzontale, terminante a bordo rivoltato in dentro o superiormente, segua l'andamento della falda accompagnando l'acqua sulla copertura inferiore. Le unioni tra le lastre si fanno con saldature di stagno o lega da saldatore.

Uguale protezione viene eseguita nei compluvi, dove le falde si incontrano, provvedendovi con un grosso canale della stessa lamiera fissata lungo la displuviale sopra due regoli di legno (compluvio), il quale deve avere un'ampiezza corrispondente alla massa d'acqua che dovrà ricevere dalle falde e convogliarla fino alla gronda che in quel punto, per evitare il rigurgito, verrà protetta da un frontalino.

I canali di gronda in lamiera zincata avranno una luce orizzontale da 15 a 25 cm e sviluppo da 25 a 40 cm circa in relazione alla massa d'acqua che devono ricevere; esternamente verranno sagomati in tondo od a gola con riccio esterno, ovvero a sezione quadrata e rettangolare, secondo le prescrizioni della Direzione dei Lavori, e forniti in opera con le occorrenti unioni o risvolti per seguire la linea di gronda; le gronde vengono sostenute con robuste cicogne in ferro per sostegno, e chiodate poi al legname del tetto secondo quanto sarà disposto e murate o fissate all'armatura della copertura a distanze non maggiori di 0,60 m i sostegni vengono disposti in modo che le gronde risultino leggermente inclinate verso i punti in cui immettono nei doccioni di discesa. Questi sono formati dello stesso materiale delle gronde, hanno diametro di circa 8 -10 cm secondo la massa acquea da raccogliere, e se ne colloca uno ogni 40 - 45 m² di falda. Il raccordo del doccione di scarico con la gronda è fatto mediante un gomito, nella cui sommità penetra un pezzo di tubo di lamiera zincata, leggermente conico, chiodato e saldato col suo orlo superiore alla gronda; l'orifizio è munito di reticella metallica per arrestare le materie estranee. I doccioni sono attaccati al muro per mezzo di staffe ad anelli disposte a distanza verticale di circa 2 metri; non è consigliabile incassarli nel muro, per la difficoltà che si incontra per riparare eventuali guasti e perdite, ed il maggiore danno per possibili infiltrazioni, a meno che i tubi di lamiera siano sostituiti da quelli in ghisa o in fibro-cemento o in materia plastica (cloruro di polivinile) estremamente leggera, inattaccabile dagli acidi e molto resistente, di facile posa, senza bisogno di cravatte di supporto, e la cui unione risulti indeformabile. A circa 3 m di altezza dal marciapiede il doccione presenta un gomito, col quale immette in un tubo di ghisa catramata, incassato nel muro, per maggiore difesa da eventuali urti, e scarica a sua volta l'acqua nelle canalette stradali. Il tubo di scarico in lamiera zincata non deve appoggiare alla parete perché i sali contenuti nella malta corroderebbero il metallo ossidandolo. Le giunzioni dovranno essere chiodate con ribattini di rame e saldate con saldature a ottone a perfetta tenuta; tutte le parti metalliche dovranno essere verniciate con vernice antiruggine.

Le grondaie in ardesia artificiale saranno poste in opera anch'esse su apposite cicogne in ferro, verniciate come sopra, e assicurate mediante legature in filo di ferro zincato: le giunzioni saranno eseguite con appositi coprigiunti chiodati e saldati con mastici speciali. Le grondaie in polivinile sono facilmente saldabili fra di loro.

Intonaci

Gli intonaci in genere dovranno essere eseguiti in stagione opportuna, dopo aver rimossa dai giunti delle murature la malta poco aderente, ed avere ripulita e abbondantemente bagnata la superficie della parete stessa.

Gli intonaci, di qualunque specie siano (lisci, a superficie rustica, a bugne, per cornici e quanto altro), non dovranno mai presentare peli, screpolature, irregolarità negli allineamenti e negli spigoli, od altri difetti.

Quelli comunque difettosi o che non presentassero la necessaria aderenza alle murature, dovranno essere demoliti e rifatti dall'impresa a sue spese.

La calce da usarsi negli intonaci dovrà essere estinta da almeno tre mesi per evitare scoppiettii, sfioriture e screpolature, verificandosi le quali sarà a carico dell'impresa il fare tutte le riparazioni occorrenti.

Ad opera finita l'intonaco dovrà avere uno spessore non inferiore ai 15 mm.

Gli spigoli sporgenti o rientranti verranno eseguiti ad angolo vivo oppure con opportuno arrotondamento a seconda degli ordini che in proposito darà la Direzione dei Lavori.

Particolarmente per ciascun tipo d'intonaco si prescrive quanto appresso:

- a) Intonaco grezzo o arricciatura Predisposte le fasce verticali, sotto regolo di guida, in numero sufficiente, verrà applicato alle murature un primo strato di malta, detto rinzaffo, gettato con forza in modo che possa penetrare nei giunti e riempirli. Dopo che questo strato sarà alquanto asciutto, si applicherà su di esso un secondo strato della medesima malta che si estenderà con la cazzuola o col frattone stuccando ogni fessura e togliendo ogni asprezza, sicché le pareti riescano per quanto possibile regolari.
- b) Intonaco comune o civile Appena l'intonaco grezzo avrà preso consistenza, si distenderà su di esso un terzo strato di malta fina (40 mm), che si conguaglierà con le fasce di guida per modo che l'intera superficie risulti piana ed uniforme, senza ondeggiamenti e disposta a perfetto piano verticale o secondo le superfici degli intradossi.
- c) Intonaci colorati Per gli intonaci delle facciate esterne, potrà essere ordinato che alla malta da adoperarsi sopra l'intonaco grezzo siano mischiati i colori che verranno indicati per ciascuna parte delle facciate stesse.
 - Per dette facciate potranno venire ordinati anche i graffiti, che si otterranno aggiungendo ad uno strato d'intonaco colorato, come sopra descritto, un secondo strato pure colorato ad altro colore, che poi verrà raschiato, secondo opportuni disegni, fino a far apparire il precedente. Il secondo strato d'intonaco colorato dovrà avere lo spessore di almeno 2 mm.
- d) Intonaco a stucco Sull'intonaco grezzo sarà sovrapposto uno strato alto almeno 4 mm di malta per stucchi, che verrà spianata con piccolo regolo e governata con la cazzuola così da avere pareti perfettamente piane nelle quali non sarà tollerata la minima imperfezione. Ove lo stucco debba colorarsi, nella malta verranno stemperati i colori prescelti dalla Direzione dei Lavori.
- e) Intonaco a stucco lucido Verrà preparato con lo stesso procedimento dello stucco semplice; l'abbozzo però deve essere con più diligenza apparecchiato, di uniforme grossezza e privo affatto di fenditure.
 - Spianato lo stucco, prima che esso sia asciutto si bagna con acqua in cui sia sciolto del sapone di Genova e quindi si comprime e si tira a lucido con ferri caldi, evitando qualsiasi macchia, la quale sarà sempre da attribuire a cattiva esecuzione del lavoro.
 - Terminata l'operazione, si bagna lo stucco con la medesima soluzione saponacea lisciandolo con pannolino.
- f) Intonaco di cemento liscio L'intonaco a cemento sarà fatto nella stessa guisa di quello di cui sopra alla lettera a) impiegando per rinzaffo una malta cementizia. L'ultimo strato dovrà essere tirato liscio col ferro e potrà essere ordinato anche colorato.
- g) Rivestimento in cemento a marmiglia martellinata. Questo rivestimento sarà formato in conglomerato di cemento nel quale sarà sostituita al pietrisco la marmiglia della qualità, delle dimensioni e del colore che saranno indicati. La superficie in vista sarà lavorata a bugne, a fasce, a riquadri eccetera secondo i disegni e quindi martellinata, ad eccezione di quegli spigoli che la Direzione dei Lavori ordinasse di formare lisci o lavorati a scalpello piatto.
- h) Rabboccature Le rabboccature che occorressero su muri vecchi o comunque non eseguiti con faccia vista in malta o sui muri a secco, saranno formate con malta.

Prima dell'applicazione della malta, le connessioni saranno diligentemente ripulite, fino a conveniente profondità, lavate con acqua abbondante e poi riscagliate e profilate con apposito ferro.

Decorazioni

Nelle facciate esterne, nei pilastri e nelle pareti interne, saranno formati i cornicioni, le cornici, le lesene, gli archi, le fasce, gli aggetti, le riquadrature, i bassifondi, ecc., in conformità dei particolari che saranno forniti dalla Direzione dei Lavori, nonché fatte le decorazioni, anche policrome, che pure saranno indicate, sia con colore a tinta, sia a graffito.

L'ossatura dei cornicioni, delle cornici e delle fasce sarà formata, sempre in costruzione, con più ordini di pietre o di mattoni e anche in conglomerato semplice od armato, secondo lo sporto e l'altezza che le conviene.

Per i cornicioni di grande sporto saranno adottati i materiali speciali che prescriverà la Direzione dei lavori oppure sarà provveduto alla formazione di apposite lastre in cemento armato con o senza mensole.

Tutti i cornicioni saranno contrappesati opportunamente e, ove occorra, ancorati alle murature inferiori.

Per le pilastrate o mostre e finestre, quando non sia diversamente disposto dalla Direzione dei lavori, l'ossatura dovrà sempre venire eseguita contemporaneamente alla costruzione.

Predisposti i pezzi dell'ossatura nelle proporzioni stabilite e sfettate in modo da presentare l'insieme del profilo che si intende realizzare, si riveste tale ossatura con un grosso strato di malta,aggiunto alla meglio con la cazzuola. Prosciugato questo primo strato si abbozza la cornice con un calibro o sagoma di legno, appositamente preparato, ove sia tagliato il controprofilo della cornice, che si farà scorrere sulla bozza con la guida di un regolo di legno. L'abbozzo sarà poi rivestito con apposita superficie di stucco da tirarsi e lisciarsi convenientemente.

Quando nella costruzione delle murature non siano state predisposte le ossature per lesene, cornici, fasce, ecc., e queste debbano quindi applicarsi completamente in oggetto, o quando siano troppo limitate rispetto alla decorazione, o quando infine possa temersi che la parte di rifinitura delle decorazioni, per eccessiva sporgenza o per deficiente aderenza all'ossatura predisposta, col tempo possa staccarsi, si curerà di ottenere il maggiore e più solido collegamento della decorazione sporgente alle pareti od alle ossature mediante infissione in esse di adatti chiodi, collegati tra loro con filo di ferro del diametro di 1 mm, attorcigliato ad essi e formante maglia di 10 cm circa di lato.

Le decorazioni a cemento delle porte e delle finestre e quelle della parte ornata delle cornici, davanzali, pannelli, ecc. verranno eseguite in conformità dei particolari architettonici forniti dalla Direzione dei Lavori. Le parti più sporgenti del piano della facciata ed i davanzali saranno formati con speciali pezzi prefabbricati di conglomerato cementizio dosato a 400 kg gettato in apposite forme all'uopo predisposte a cura e spese dell'Impresa, e saranno opportunamente ancorati alle murature. Il resto della decorazione, meno sporgente, sarà fatta in posto, con ossature di cotto o di conglomerato cementizio, la quale verrà poi, con malta di cemento, tirata in sagoma e lisciata.

Per le decorazioni in genere, siano queste da eseguirsi a stucco, in cemento od in pietra l'Impresa è tenuta ad approntare il relativo modello in gesso al naturale, a richiesta della Direzione dei lavori.

Materiali da copertura

 a) Laterizi - I materiali di copertura in laterizio devono presentare cottura uniforme, essere sani, privi di screpolature, cavillature, deformazioni, corpi eterogenei e calcinaroli che li rendano fragili o comunque difformi dalla norma commerciale: in particolare non devono essere gelivi, né presentare sfioriture e comunque rispondenti alle norme UNI 8626:1984 e 8635:1984, UNI 9460:1989 e UNI EN 1304:2005.

Le tegole piane o curve, appoggiate su due regoli posti a 20 mm dai bordi estremi dei due lati più corti, dovranno sopportare sia un carico graduale di 120 kg, concentrato in mezzeria, sia l'urto di una palla di ghisa del peso di 1 kg cadente dall'altezza di 20 cm. Sotto un carico di 50 mm d'acqua mantenuta per 24 ore le tegole devono risultare impermeabili.

Le tegole marsigliesi in cotto devono avere il foro per le legature.

Le tegole piane e comuni, di qualsiasi tipo siano, dovranno essere di tinta uniforme, esattamente adattabili le une sulle altre senza sbavature, e non presenteranno difetti nel nasello di aggancio. Sono fornite sciolte, reggiate od in contenitori, e vanno computate a numero.

- b) Cemento Le tegole in cemento devono risultare impermeabili, resistenti alla rottura, resistenti al gelo e colorate in pasta in modo uniforme con coloranti ossidei e con granulati di ardesia, marmo o quarzo e rispondere alle norme UNI 8626/84 8635/84 e UNI 9460/89. Lastre metalliche Le lastre metalliche devono presentare caratteristiche analoghe a quelle prescritte per i materiali ferrosi; in particolare le lamiere non devono presentare degradi della zincatura protettiva, devono essere prive di ammaccature, squamature ed irregolarità nelle onde e nei bordi.
 - I materiali da copertura costituiti da lastre metalliche devono rispondere alle norme UNI 8626/84 8635/84, UNI EN 14782/06 506/02 e 508/02.
 - Tali materiali si computano a kg.
- c) Plastica I materiali in plastica devono presentare aspetto uniforme, essere privi di screpolature, cavillature, deformazioni, corpi estranei che li rendano fragili o comunque difformi dalla norma commerciale; in particolare il colore deve essere uniforme e, per le lastre traslucide, non devono esistere ombre e macchie nella trasparenza.
 - Le norme cui devono rispondere sono le ASTM D570/05-D635/06-D638/03D-D695/02A-D696/03-D790/07, le DIN 4102-B2 e le UNI 8626/84 e 8635/84.
 - Tali materiali sono forniti sciolti; le lastre si computano a metro quadrato, mentre gli accessori vanno computati a numero.
- d) Lastre di pietra Sono costituite da lastre di circa m 1 di lato e dello spessore di 3-5 cm, e possono facilmente resistere al peso della neve abbondante e specialmente alla pressione dei venti impetuosi; per queste coperture l'armatura in legname deve essere molto robusta, e in genere disposta grossolanamente alla lombarda impiegando terzere o arcarecci di notevole sezione, almeno 10 x 14 cm, oppure mediante puntoni molto accostati (circa 0,90-1 metri) i quali reggono direttamente le lastre disposte a rombo o a corsi più o meno regolari.
- e) Ardesie naturali o artificiali Si tratta di lastre relativamente leggere, aventi uno spessore di 4-8 mm. di colore scuro, molto resistenti.
 - Le ardesie artificiali ad imitazione delle lastre di pietra, sono preparate sotto svariate forme, quadri, rombi, rettangoli di varia dimensione e sono per lo più o piccole (da 0,30 x 0,30 m fino a dimensioni di 1 x 1 metri).
 - Tali lastre sono leggere, resistenti al gelo e richiedono una armatura di legname assai leggera, formata normalmente con costoloni di legno da 5 x 16 a 6 x 20 cm a seconda della tesata, collegati dalla piccola orditura e disposti a distanza di 1 m. La piccola orditura, in conformità alle dimensioni delle lastre sarà di listelli o di correntini od anche con tavolato pieno sopra il quale vengono disposte e fissate le ardesie mediante grappette di zinco.

Additivi

Gli additivi sono sostanze di diversa composizione chimica, in forma di polveri o di soluzioni acquose, classificati secondo la natura delle modificazioni che apportano agli impasti cementizi. La norma UNI EN 934-2:2007 classifica gli additivi aventi, come azione principale, quella di:

- fluidificante e superfluidificante di normale utilizzo che sfruttano le proprietà disperdenti e bagnanti di polimeri di origine naturale e sintetica. La loro azione si esplica attraverso meccanismi di tipo elettrostatico e favorisce l'allontanamento delle singole particelle di cemento in fase di incipiente idratazione le une dalle altre, consentendo così una migliore bagnabilità del sistema, a parità di contenuto d'acqua;
- aerante, il cui effetto viene ottenuto mediante l'impiego di particolari tensioattivi di varia natura, come sali di resine di origine naturale, sali idrocarburi solfonati, sali di acidi grassi, sostanze proteiche, ecc. Il processo di funzionamento si basa sull'introduzione di piccole bolle d'aria nell'impasto di calcestruzzo, le quali diventano un tutt'uno con la matrice (gel) che lega tra loro gli aggregati nel conglomerato indurito. La presenza di bolle d'aria favorisce la resistenza del calcestruzzo ai cicli gelo-disgelo;
- ritardante, che agiscono direttamente sul processo di idratazione della pasta cementizia rallentandone l'inizio della presa e dilatando l'intervento di inizio e fine-presa. Sono principalmente costituiti da polimeri derivati dalla lignina opportunamente solfonati, o da sostanze a tenore zuccherino provenienti da residui di lavorazioni agro-alimentari;
- accelerante, costituito principalmente da sali inorganici di varia provenienza (cloruri, fosfati, carbonati, etc.) che ha la proprietà di influenzare i tempi di indurimento della pasta cementizia, favorendo il processo di aggregazione della matrice cementizia mediante un meccanismo di scambio ionico tra tali sostanze ed i silicati idrati in corso di formazione;
- antigelo, che consente di abbassare il punto di congelamento di una soluzione acquosa (nella fattispecie quella dell'acqua d'impasto) e il procedere della reazione di idratazione, pur rallentata nella sua cinetica, anche in condizioni di temperatura inferiori a 0°.

Per ottenere il massimo beneficio, ogni aggiunta deve essere prevista ed eseguita con la massima attenzione, sequendo alla lettera le modalità d'uso dei fabbricanti.

TITOLO V - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI OPERE EDILI

Art. XV Strutture portanti

a) Strutture di fondazione

Fondazioni continue in calcestruzzo

Se il terreno compatto ed idoneo alla fondazione si trova a profondità non superiore a m 1, generalmente si procede con una gettata di calcestruzzo denominato "magrone di pulizia".

Le gettate di calcestruzzo se fatte si devono eseguire stendendo a strati orizzontali e procedere per spessori di circa 10-12 cm, costipando e vibrando meccanicamente con vibratori e/o mediante battitura dei casseri, assicurandosi che non risultino più degli interstizi vuoti e tutte gli aggregati vadano ad assestarsi. Non vengono accettati i getti contro terra. Le armature devono essere distanziate tramite spessori di calcestruzzo o materiale plastico, comunque anche se è presente il magrone. I getti della fondazione, se da eseguirsi mediante riprese, occorre che le superfici siano pulite e cosparse con aggrappante (tipo lattice).

Fondazioni a plinto

Per allargare la base d'appoggio su terreno poco resistente, al posto di approfondire lo scavo, lo si allarga a forma di piastra su plinti isolati disposti in corrispondenza delle strutture portanti.

Ciascun plinto deve avere una superficie tale da corrispondere alla capacità di resistenza del terreno in relazione al carico gravante.

Fondazioni a platea

Per allargare la base d'appoggio su terreno poco resistente o nelle costruzioni antisismiche, al posto di approfondire lo scavo, lo si allarga a forma di piastra anche continua. In genere la platea occupa tutta la superficie fabbricata e funziona come una piastra in cemento armato: oltre a distribuire il carico sopra una grande superficie di terreno in modo da gravarlo unitariamente in misura limitata, si ottiene che la intera struttura sia solidale nelle pareti e nell'insieme con il fondo.

Fondazione a pozzo

Quando per la profondità non sia più conveniente la fondazione continua si procede mediante pozzi spinti fino al terreno buono collegati tra di loro con archi in muratura o con travi in cemento armato. I pozzi vengono disposti in corrispondenza dei muri perimetrali e d'asse ed anche dei muri trasversali e più precisamente in corrispondenza dei fulcri portanti - pilastri, incroci, cantonali o angoli - dando ad essi una sezione circolare, sotto i fulcri pilastri, od ovoidale, sotto i fulcri incroci od angolari.

I pozzi si riempiono di calcestruzzo, generalmente cementizio, steso a strati di 10 in 10 cm., spianati, energicamente pressati fino al livello del piano d'imposta.

b) Opere speciali di fondazioni (pali, diaframmi e ancoraggi)

Si premette che per criteri di progetto, le indagini geotecniche e la determinazione dei carichi limitedel singolo palo o della palificata devono essere conformi alle vigenti Nuove Norme Tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008".

Prima di iniziare il lavoro di infissione (o di trivellazione) l'Impresa esecutrice deve presentare un programma cronologico di infissione (o di trivellazione) dei pali, elaborato in modo tale da eliminare o quanto meno minimizzare gli effetti negativi dell'infissione (o trivellazione) sulle opere vicine e sui

pali già realizzati, nel pieno rispetto delle indicazioni progettuali. Tale programma dovrà essere sottoposto all'approvazione della Direzione dei Lavori.

I pali di qualsiasi tipo devono essere realizzati secondo la posizione e le dimensioni fissate nei disegni di progetto con la tolleranza - sulle coordinate planimetriche del centro del palo - del 10% del diametro del palo e comunque non oltre i 10 cm per pali di medio e grande diametro e non oltre i 5 cm per pali di piccolo diametro.

Il calcestruzzo dei pali deve essere del tipo detto "a resistenza garantita"; qualora non diversamente prescritto si deve di norma usare cemento Portland; il rapporto in peso acqua/cemento non dovrà superare il valore di 0,40 - 0,45, tenendo conto anche del contenuto d'acqua degli inerti all'atto del confezionamento del calcestruzzo.

Posta D la dimensione massima dell'aggregato, il dosaggio del cemento (kg/mc), salvo diversa prescrizione progettuale, deve essere non inferiore a:

300 kg/mc per D=70 mm

330 kg/mc per D=50 mm

370 kg/mc per D=30 mm

450 kg/mc per D=20 mm.

Le resistenza caratteristiche per i calcestruzzi armati e precompressi non devono essere inferiori a quelle previste nelle Nuove Norme tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e la relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008", ed essere corrispondenti a quelle indicate dal progettista. Qualora fosse prescritto l'utilizzo di malta o di boiacca, questa dovrà essere costituita da cemento R 325 ed acqua nel rapporto A/C = 0.5 (200 kg di cemento secco ogni 100 lt di acqua).

Il calcestruzzo per la formazione dei pali va messo in opera con modalità dipendenti dalle attrezzature impiegate e in maniera tale che risulti privo di altre materie, specie terrose.

Pali di piccolo diametro

I pali di piccolo diametro sono realizzati con tecnologie e attrezzature speciali ed armati per tutta la loro lunghezza. Essi hanno di norma diametro superiore a 80 mm ed inferiore a 320 mm.

La perforazione avviene con sistema a rotazione, a rotopercussione o con entrambi questi sistemi, attraverso terreni di qualsiasi natura e consistenza, nonché attraverso trovanti, murature e conglomerati semplici o armati. Qualora si presenti la necessità, il foro va rivestito in modo da assicurare la stabilità delle pareti prima di eseguire il getto. Al termine della perforazione il foro deve essere pulito dai detriti mediante il fluido di circolazione o l'utensile asportatore.

L'armatura è costituita da una barra di acciaio ad aderenza migliorata provvista di opportuni centratori, oppure da un tubo in acciaio eventualmente munito di valvole di non ritorno. L'armatura dovrà essere provvista di tre fori o finestre laterali (circa 3-4 cm2 ciascuna) disposti a 20 cm dall'estremità terminale. Lungo il tubo d'armatura saranno posti in opera dei centratori, ad interasse massimo di 3 metri. Il collegamento tra i vari spezzoni dell'armatura (lunghezza ≥ 3 m), sarà realizzato con filettatura maschio-manicotto esterno-maschio o, in alternativa, con filettatura femmina-manicotto interno-femmina.

Il getto del palo avverrà per iniezione di boiacca di cemento attraverso il tubo d'armatura mediante l'utilizzo di un packer o di un apposito manicotto di collegamento con la culotta d'iniezione posizionati a boccaforo. La boiacca dovrà fluire dalla sommità del palo e risultare esente da elementi estranei prima di iniziare l'estrazione della colonna di rivestimento. Durante l'estrazione di quest'ultima si controllerà costantemente il livello della boiacca nel rivestimento e si provvederà a ripristinarlo quando se ne osservi l'abbassamento. L'ordine di esecuzione dei pali di piccolo diametro, per gruppi

di pali, da sottoporre preventivamente al Direttore dei Lavori, deve garantire la non interferenza delle perforazioni con fori in corso di iniezione o in attesa di riempimento.

Pali iniettati a gravità

L'iniezione deve essere eseguita a mezzo di idonea pompa con malta cementizia costituita da una miscela ternaria di acqua-sabbia-cemento R325 dosato a 600 kg per m³ oppure con miscela acqua-cemento (rapporto acqua/cemento max 0.5) ed eventuale additivo.

Si fa assoluto divieto di eseguire il getto del palo mediante immissione di malta dalla testa del foro e non dal tubo d'armatura o da apposito tubo di iniezione la cui estremità giunga alla base del palo.

L'armatura viene posta in opera previa accurata pulizia del fondo del foro. Qualora il foro sia rivestito, si inizia ad estrarre il rivestimento quando la malta iniettata è uscita pulita dalla testa del palo. Nel corso dell'estrazione, il livello della malta all'interno del rivestimento deve essere mantenuto costante con continui rabbocchi e la manovra di estrazione deve avvenire con continuità e lentamente. In assenza di rivestimento l'iniezione viene sospesa dopo la fuoriuscita della malta dalla testa del palo, ponendo cura affinché la prima emissione mista ad acqua di perforazione, fango o detriti, sia esaurita ed il materiale in uscita sia esente da impurità. Qualora non si verifichi la fuoruscita della malta dalla testa del foro si provvederà all'estrazione dell'armatura ed alla riperforazione del palo.

Le tolleranze rispetto ai valori teorici sono i seguenti:

- sulle coordinate planimetriche del centro del palo, in corrispondenza della sua estremità superiore: ± 3 cm;
- sulla verticalità: 3%;
- sulla lunghezza: ± 15 cm;
- sul diametro nominale: 5%; + 15%.

La trasmissione del carico dalle fondazioni al palo avviene per aderenza o per mezzo di staffe saldate al tubo di armatura.

Pali iniettati a pressione

L'iniezione viene eseguita con boiacca dosata a 50 kg di cemento Portland R325 ogni 25 I di acqua.

All'interno del foro viene introdotto un tubo di elevate caratteristiche meccaniche munito, nella parte terminale, per una lunghezza da definire in relazione alla lunghezza complessiva, di "finestre" per il passaggio della miscela cementizia. Quest'ultima viene iniettata in pressione dalla testa del tubo di armatura, in modo da occupare le intercapedini tubo-terreno e tubo esterno-tubo interno, fino a risalire a livello del piano campagna.

La trasmissione del carico dalle fondazioni al palo avviene per aderenza o per mezzo di staffe saldate al tubo d'armatura.

Prove di carico sui pali

Nell'esecuzione delle prove di carico sui pali per la determinazione del carico limite del palo singolo o per la verifica del comportamento dei pali realizzati valgono le indicazioni contenute nelle Nuove Norme Tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008".

Le prove dovranno essere nella misura non inferiore di:

- 1 se il numero di pali è inferiore o uguale a 20,
- 2 se il numero di pali è compreso tra 21 e 50,

- 3 se il numero di pali è compreso tra 51 e 100,
- 4 se il numero di pali è compreso tra 101 e 200,
- 5 se il numero di pali è compreso tra 201 e 500,
- il numero intero più prossimo al valore 5 + n/500, se il numero n di pali è superiore a 500.

Tali prove devono essere spinte ad un carico assiale pari a 1,5 volte l'azione di progetto utilizzata per le verifiche degli stati limite di esercizio.

Pali di prova

Prima dell'inizio della costruzione della palificata, se richiesto dalla Direzione dei Lavori, devono essere eseguiti pali pilota, il cui numero e la cui ubicazione devono essere indicati dalla medesima Direzione dei Lavori, e risultare esattamente dai verbali che verranno redatti sulle prove eseguite.

Le prove di carico per la determinazione del carico limite del palo singolo devono essere spinte fino a valori del carico assiale tali da portare a rottura il complesso palo-terreno, o comunque tali da consentire di ricavare significativi diagrammi abbassamenti-carichi e abbassamenti-tempi.

Prove di collaudo statico

Per le prove di collaudo i pali di prova vanno prescelti fra quelli costituenti l'intera palificata e indicati dalla Direzione dei Lavori.

Le prove di collaudo dei pali di diametro inferiore a 80 cm devono essere spinte fino ad 1,5 volte il carico ammissibile del palo singolo, con applicazione graduale del carico sul palo.

Ove previsto in progetto, l'Impresa è tenuta ad effettuare su pali prove di carico orizzontale, prove estensimetriche, carotaggi sonici, ecc.; le prove di carico verticale di cui alle norme vigenti sono integralmente a carico dell'Impresa, mentre per le prove di altro tipo sarà applicata la corrispondente voce dell'Elenco dei Prezzi Unitari.

Diaframmi di pali (berlinese)

Il diaframma è costituito da uno a più allineamenti di pali di piccolo diametro posti ad interessi prefissati. Le modalità esecutive non si discostano da quelle sopradescritte, relative ai pali di piccolo diametro.

Nel caso di diaframma non sono previste prove di carico a meno che il diaframma non abbia, oltre che funzioni di sostegno di una parete di scavo, anche quelle di sostegno di strutture fuori terra.

Le giunzioni dei tubi di armatura, sottoposte a carichi orizzontali, dovranno essere definite dopo accurato calcolo e non dovranno essere poste alla medesima profondità lungo gli allineamenti dei pali. Non dovranno inoltre coincidere con la posizione degli ancoraggi.

Ancoraggi

Con il termine di "ancoraggio" si intende un elemento strutturale operante in trazione, atto a trasmettere forze di coazione ai terreni ed alle rocce.

Le parti funzionali del tirante sono rappresentate da:

- testata: insieme degli elementi terminali atti a trasmettere alla struttura ancorata, o direttamente alla roccia in superficie, la forza di trazione del tirante;
- parte libera: insieme degli elementi atti a trasmettere la forza di trazione dalla testata alla fondazione:
- fondazione: insieme degli elementi atti a trasmettere al terreno le forze di trazione del tirante.

I tiranti, classificati in funzione della tensione nell'armatura dopo il collaudo, si distinguono in:

- pretesi: tiranti nella cui armatura viene indotta una forza di tesatura pari a quella di esercizio;

- parzialmente pretesi: tiranti nella cui armatura viene indotta una forza di tesatura inferiore a quella di esercizio;
- non pretesi: tiranti nella cui armatura non viene indotta alcuna forza di tesatura.

In base alla durata di esercizio si distinguono in:

- permanenti: tiranti destinati ad esercitare la loro funzione per un periodo uguale o superiore a due anni:
- provvisori: tiranti destinati ad esercitare la loro funzione per un periodo inferiore a due anni.

L'armatura dei tiranti può essere di tipo a barre, a fili o a trefoli.

La parte libera può essere semplice (una sola guaina per tutti gli elementi costituenti l'armatura), multipla (una guaina per ciascun elemento dell'armatura) o composta (una guaina per ciascun elemento più una guaina per tutti gli elementi costituenti l'armatura). La fondazione può invece essere senza guaina o con guaina (fondazione protetta).

Materiali ed elementi costruttivi

I materiali devono avere le seguenti caratteristiche:

- gli acciai devono essere conformi alle specifiche disposizioni in vigore al momento della posa in opera;
- le piastre di ripartizione vanno dimensionate in relazione alle caratteristiche del materiale di cui sono costituite e del materiale di contrasto;
- la scelta del cemento deve essere fatta tenendo conto dei seguenti fattori: ritiro, resistenza e lavorabilità della miscela, interazione cemento-acciaio, interazione cemento-ambiente circostante. Le caratteristiche del cemento devono essere determinate in conformità al D.M. 3 giugno 1968 e successivi aggiornamenti⁴. Devono essere utilizzati solo cementi con contenuto totale di cloro inferiore allo 0,05% del peso del cemento e contenuto totale di zolfo (da solfuri S--) inferiore allo 0,15% del peso del cemento, al fine di evitare pericolo di corrosione sotto tensione. L'idoneità del cemento deve essere certificata dal fabbricante. Il tempo di presa a 20°C deve essere superiore a tre ore, mentre il tempo di fine presa a 5°C deve essere inferiore a 24 ore;
- possono essere impiegati additivi per migliorare le caratteristiche delle miscele di iniezione, sempre che non introducano elementi pregiudizievoli nei riguardi della durabilità e dell'affidabilità di tutti i componenti del tirante.

Tecnologie esecutive

Le perforazioni per l'esecuzione dei tiranti di ancoraggio devono essere condotte in modo tale da comportare il minimo disturbo del terreno e da evitare danni alle opere circostanti. Il metodo deve essere scelto in modo tale da:

- impedire il franamento della parete del foro, sia durante la perforazione sia durante la posa delle armature;
- ridurre al minimo la decompressione del terreno circostante;
- non alterare, per quanto possibile, le falde idriche e le relative distribuzioni delle pressioni.

Qualora le caratteristiche dei terreni o la presenza dell'acqua lo richiedesse, il foro potrà essere sostenuto mediante idonee tubazioni durante la perforazione e nelle fasi successive. Il fluido di perforazione e gli eventuali additivi non devono risultare inquinanti in base alle vigenti leggi. Allo scopo di estrarre completamente i detriti al termine della perforazione si deve procedere in tutti i casi alla pulizia del foro con il fluido di perforazione senza azionare l'utensile tagliente. I fori devono essere eseguiti rispettando le seguenti condizioni:

⁴ D.M. 20 novembre 1984 - Modificazioni al decreto ministeriale 3 giugno 1968 (G.U. n. 353 del 27 dicembre 1984) e D.M. 13 settembre 1993 - Abrogazione di alcune disposizioni contenute nel D.M. 3 giugno 1968 (G.U. n. 223 del 22 settembre 1993).

- per il diametro, quanto esplicitamente indicato in progetto; in ogni caso il diametro dell'utensile di perforazione deve essere almeno pari al diametro specificato per il foro.
- la riduzione di lunghezza del tratto di fondazione non può essere maggiore del 5% della lunghezza prevista per la fondazione stessa.

Prima di procedere alle iniezioni viene eseguita una prova di tenuta del foro con immissione di acqua su tutta la lunghezza del foro o sulla sola lunghezza di fondazione (perdita massima 1 l/min x metro x bar) oppure di miscela di iniezione (perdita massima 0.2 l/min x metro x bar) con pressione minima di 1 bar. Nei terreni sciolti o coesivi la prova va eseguita esclusivamente con la miscela di iniezione.

La posa in opera delle armature deve avvenire secondo modalità che ne assicurino il corretto posizionamento e l'efficacia della connessione al terreno.

Il tempo intercorrente tra la perforazione e la posa in opera delle armature e la successiva iniezione deve essere ridotto al minimo, soprattutto in terreni soggetti a fenomeni di rigonfiamento o soggetti a franare. Ove ciò non sia possibile, ogni foro deve essere opportunamente rivestito e protetto.

L'intercapedine fra armatura e terreno circostante deve essere intasata con miscela cementante. Nel caso di semplice riempimento con miscela cementizia dell'intercapedine tra armatura e parete del foro, devono essere previsti opportuni organi di sfiato per evitare inclusioni d'aria o fluido di perforazione. Nel caso d'iniezione a pressione è necessario l'uso di un dispositivo otturatore.

Tesatura delle armature

La funzionalità dell'apparecchiatura di tesatura (pompa, collegamento elettroidraulici, martinetti), e l'affidabilità della strumentazione di controllo (manometri), devono essere verificate ad ogni turno di lavoro, oppure quando si riscontrino anomalie nella tesatura. In particolare il cantiere deve essere dotato di un manometro campione (debitamente tarato presso un laboratorio ufficiale in data non anteriore a 6 mesi) con la possibilità di montaggio sulla pompa in parallelo con il manometro di servizio.

La tesatura del tirante deve poter procedere in conformità al programma di progetto (gradini di carico, tempi, misure e registrazioni, bloccaggio) con una tolleranza del ± 5% rispetto ai valori nominali.

Rapporto tecnico

Per ciascun tirante devono essere compilati i rapporti relativi alle varie fasi esecutive, sui quali devono essere almeno indicate tutte le informazioni inerenti:

- le tipologie di perforazione adottate e le caratteristiche sommarie dei terreni attraversati;
- la composizione del tirante e le protezioni adottate;
- le modalità esecutive delle iniezioni e le tipologie della miscela;
- le fasi di taratura e le modalità di controllo delle misurazioni.

Protezioni contro la corrosione

Un sistema di protezione contro la corrosione per tiranti nei terreni e nelle rocce:

- deve garantire la conservazione degli elementi meccanici del tirante, mantenendo nel contempo un proprio stato di conservazione chimico-fisico accettabile rispetto alle funzioni protettive da assolvere:
- non deve interagire in maniera dannosa con l'ambiente circostante;
- deve essere costituito da materiali mutuamente compatibili, da un punto di vista elettrochimico, con le parti meccaniche del tirante;
- deve poter superare le fasi iniziali di manipolazione, installazione e taratura delle parti meccaniche del tirante senza subire danni funzionali, con riferimento soprattutto alle giunzioni tra i diversi elementi ed alle zone di variazione geometrica delle sezioni trasversali degli elementi stessi.

Salvo espressa deroga contenuta nel progetto, dovranno essere adottati dispositivi di centraggio interni alla guaina tali da assicurare uno spessore minimo di ricoprimento dell'armatura di 5 mm, e dispositivi di centraggio esterni alla guaina tali da assicurare un ricoprimento minimo di 20 mm rispetto alla guaina. Essi dovranno essere costituiti da materiali che non inneschino processi di corrosione.

La testata del tirante ed il tratto immediatamente retrostante sono i punti più soggetti al rischio di corrosione sia nelle varie fasi costruttive che in esercizio. Qualora per la protezione di tali zone vengano impiegati materiali diversi dalle comuni malte cementizie, la protezione anti-corrosiva dovrà consentire l'assestabilità delle parti meccaniche della testata senza che si producano discontinuità o fratture nello strato protettivo predisposto, il quale dovrà risultare agevolmente ripristinabile nel caso in cui debbano essere eseguiti successivi interventi di controllo e di ritesatura delle armature del tirante.

Gli ancoraggi di prova devono essere realizzati con lo stesso sistema costruttivo di quelli definitivi, nello stesso sito e nelle stesse condizioni ambientali.

Il numero di prove di progetto non deve essere inferiore a:

- 1 se il numero degli ancoraggi è inferiore a 30,
- 2 se il numero degli ancoraggi è compreso tra 31 e 50,
- 3 se il numero degli ancoraggi è compreso tra 51 e 100,
- 7 se il numero degli ancoraggi è compreso tra 101 e 200,
- 8 se il numero degli ancoraggi è compreso tra 201 e 500,
- 10 se il numero degli ancoraggi è superiore a 500.

Le prove di verifica, da effettuarsi su tutti gli ancoraggi, consistono in un ciclo semplice di carico e scarico; in questo ciclo il tirante viene sottoposto ad una forza pari a 1,2 volte quella massima prevista in esercizio, verificando che gli allungamenti misurati siano nei limiti previsti in progetto e/o compatibili con le misure sugli ancoraggi preliminari di prova.

c) Strutture di elevazione verticali

Muro a cassavuota

La muratura consiste in uno strato esterno di elementi lapidei artificiali di cm 12 di spessore ed uno di 8 cm di spessore con interposta una camera d'aria di circa 3 cm ed uno strato di materiale isolante (lana di vetro o di roccia) di 4 cm.

I rivestimenti consistono nell'intonacatura esterna ed interna, la seconda con intonaco di scagliola. Le finiture comprendono la tinteggiatura da entrambi i lati.

Muro a facciavista

Consiste in uno strato esterno di elementi lapidei naturali o artificiali di 5,5 cm di spessore, con un rinzaffo di malta di calce idraulica sulla faccia interna, e uno strato parallelo di blocchi tipo di 30 cm. La malta non deve essere inutilmente abbondante, ma sufficiente; non si devono riempire i vani che possono essere occupati da un concio di pietra con della malta, la quale presenta una resistenza minore della pietra. Non bisogna lasciare vuoti, ma far poggiare bene le facce inferiori delle pietre sopra un piano orizzontale e accuratamente spianate, anche se sono di piccole dimensioni; daranno una solida muratura se impiegate con malta idraulica.

Tra i due strati è interposta una camera d'aria di 3 cm ed uno strato di lana di roccia di 4 cm. L'esterno non necessita di finitura, mentre l'interno è rivestito da uno strato di lana di intonaco di gesso di 1,5 cm.

Muro con blocco monostrato

Consiste in un unico strato di blocchi di elementi lapidei artificiali o naturali di 30 cm di spessore, intonacati esternamente con intonaco plastico ed internamente con intonaco di gesso.

Muratura mista di pietrame e mattoni

Le spigolature, le spallette, le lesene e le cinture o ricorsi vanno eseguiti in mattoni, mentre tutto il resto sarà in pietrame. Le cinture o liste vengono fatte con due filari di mattoni; la distanza tra una cintura e l'altra è normalmente uguale a nove spessori di mattoni - 3 riseghe di tre corsi ciascuna - (63 cm) e tra asse ed asse delle cinture 77 cm.

Questa muratura si inizia con un corso di mattoni, col quale si determina il contorno del blocco di muro, quindi si procede elevando i tre corsi della prima risega di mattoni presso le spallette o spigoli, i quali vengono a formare un pilastro di tre teste per l'intero spessore del muro; poi, assicurandosi con il piombino affinché vi sia una perfetta verticalità nei due sensi, e tirato il filo tra i due spigoli estremi del blocco murario, si dispongono i massi di pietra procedendo dai più voluminosi, avendo cura che i blocchi opposti si intersechino affiancandosi.

Disposti per tutto lo spazio tra le due riseghe estreme i massi di pietra più grossi, accostati in modo da lasciare il minimo spazio possibile tra di loro, sopra uno strato di malta sufficiente ma non troppo spesso, si avrà cura di premere sui massi man mano che questi vengono posati per farli aderire al letto di posa e di batterli con qualche colpo di martello. Si procederà quindi allo spianamento tra masso e masso con pietrame di grossezza minore assicurando sempre un piano di posa ottenuto con scaglie di pietra e malta, fino a formare una superficie livellata ad occhio e quasi esatta.

Si riprende poi la formazione della seconda risega con altri tre corsi, quindi si procede come precedentemente fino a raggiungere il piano della nuova cintura, imprigionando il pietrame nella risega centrale e chiudendolo superiormente con la cintura, che sarà disposta a perfetta orizzontalità, controllando ogni cintura mediante la bolla d'aria.

Muro di mattoni

Occorre curare la perfetta orizzontalità di ogni corso o filare di mattoni, lo sfalsamento dei giunti e la legatura dei mattoni tra di loro. Gli strati di malta devono avere uno spessore non superiore ai 10-12 mm e devono essere uniformi, sia nei letti orizzontali di giacitura dei mattoni come nei giunti verticali, per evitare un cedimento sensibile durante l'assestamento e l'indurimento della malta; ad ogni corso si devono riempire i giunti vuoti e gli interstizi tra i mattoni facendo penetrare la malta resa fluida da un poco d'acqua in modo da non lasciare alcun vuoto neppure minimo. Una abbondante annaffiatura, oltre a far penetrare la malta nei vuoti fino a saturare ogni interstizio, serve anche ad impedire un troppo rapido prosciugamento della malta consentendo ad essa il suo naturale periodo di presa, specialmente durante il clima troppo caldo della stagione o della giornata, per cui questa si seccherebbe prima di aver raggiunto la presa. Per lo stesso motivo occorre bagnare a saturazione i mattoni, la cui porosità li rende avidi di acqua e li porterebbe ad assorbire tutta quella contenuta nella malta distruggendone la possibilità di presa regolare.

Gli spessori dei muri di mattoni sono di solito riferiti a multipli della larghezza di una testa. Abbiamo così i tramezzi dello spessore di una testa, i muri sottili di 2 o 3 teste o i muri più comuni di 4 o più teste, spessori intesi sul vivo del rustico escluso lo spessore dell'intonaco.

Gli spessori minimi delle murature in assenza di sisma sono:

- muratura in elementi resistenti artificiali pieni 150 mm;

- muratura in elementi resistenti artificiali semipieni 200 mm;
- muratura in elementi resistenti artificiali forati 240 mm;
- muratura di pietra squadrata 240 mm;
- muratura di pietra listata 400 mm;
- muratura di pietra non squadrata 500 mm;

Invece, per elementi soggetti a sollecitazioni sismiche, valgono i seguenti requisiti minmi:

Muratura ordinaria, realizzata con elementi in pietra squadrata 300 mm;

Muratura ordinaria, realizzata con elementi artificiali 240 mm;

Muratura armata, realizzata con elementi artificiali 240 mm;

Muratura ordinaria, realizzata con elementi in pietra squadrata, in siti ricadenti in

zona 3 e 4 240 mm;

Muratura realizzata con elementi artificiali semipieni, in siti ricadenti in zona 4 200 mm 20 ;

Muratura realizzata con elementi artificiali pieni, in siti ricadenti in zona 4 150 mm;

d) Strutture portanti orizzontali

Solai

Le coperture degli ambienti e dei vani potranno essere eseguite, a seconda degli ordini della Direzione dei Lavori, con solai di uno dei tipi descritti in appresso.

La Direzione dei Lavori ha la facoltà di prescrivere il sistema e tipo di solaio di ogni ambiente e per ogni tipo di solaio essa stabilirà anche il sovraccarico accidentale da considerare e l'Impresa dovrà senza eccezioni eseguire le prescrizioni della Direzione dei lavori.

L'Impresa dovrà provvedere ad assicurare solidamente alla faccia inferiore di tutti i solai ganci di ferro appendi lumi del numero, forma e posizione che, a sua richiesta, sarà precisato dalla Direzione dei Lavori.

Solai su travi e travicelli di legno

Le travi principali a quattro fili di legno avranno le dimensioni e le distanze che saranno indicate in relazione alla luce ed al sovraccarico.

I travicelli di 8 x 10 cm, pure a quattro fili, saranno collocati alla distanza, fra asse e asse, corrispondente alla lunghezza delle tavelle che devono essere collocate su di essi. I vani su travi, fra i travicelli, dovranno essere riempiti di murature, e sull'estradosso delle tavelle deve essere disteso uno strato di calcestruzzo magro di calce idraulica formato con ghiaietto fino.

Solai su travi di ferro a doppio T (putrelle) con voltine di mattoni (pieni o forati) o con elementi laterizi interposti

Questi solai saranno composti delle putrelle, dei copriferri, delle voltine in mattoni (pieni o forati) o dei tavelloni o delle volterrane ed infine del riempimento.

Le putrelle saranno delle dimensioni fissate a progetto e collocate alla distanza, tra asse ed asse, come indicato dalle prescrizioni; in ogni caso tale distanza non sarà superiore a 1 m. Prima del loro collocamento in opera dovranno essere colorate a minio di piombo e forate per l'applicazione delle chiavi, dei tiranti e dei tondini di armatura delle piattabande.

Le chiavi saranno applicate agli estremi delle putrelle alternativamente (e cioè una con le chiavi e la successiva senza) e i tiranti trasversali, per le travi lunghe più di 5 m, a distanza non maggiore di 2,50 m.

Le voltine, di mattoni pieni o forati, saranno eseguite ad un testa in malta comune od in foglio con malta di cemento a rapida presa, con una freccia variabile fra cinque e dieci centimetri.

Quando la freccia è superiore ai 5 cm dovranno intercalarsi fra i mattoni delle voltine delle grappe in ferro per meglio assicurare l'aderenza della malta di riempimento dell'intradosso.

I tavelloni e le volterrane saranno appoggiati alle travi con l'interposizione di copriferri.

Le voltine di mattoni, le volterrane ed i tavoloni, saranno poi rinfiancati sino all'altezza dell'ala superiore della trave e dell'estradosso delle voltine e volterrane, se più alto, con scoria leggera di fornace o pietra pomice, convenientemente crivellata e depurata da ogni materiale pesante, impastata con malta magra fino ad intasamento completo.

Quando la faccia inferiore dei tavelloni o volterrane debba essere intonacata sarà opportuno applicarvi preventivamente una sbruffatura di malta cementizia ad evitare eventuali distacchi dell'intonaco stesso.

Solai a travetti

I travetti in calcestruzzo sono realizzati interamente con questo materiale; i travetti misti sono costituiti da una suola generalmente in laterizio e da un getto poco importante in calcestruzzo di solidarizzazione della suola con l'armatura.

La messa in opera richiede attrezzatura di sollevamento alquanto modesta. Una volta posati i travetti opportunamente distanziati, su di essi vengono impostati i blocchi. È richiesta poca impalcatura di sostegno: normalmente una fascia rompitratta in mezzeria per regolarizzare le quote d'intradosso dei vari travetti. Un getto di calcestruzzo completa, solidarizzando.

I blocchi di alleggerimento richiedono una suola superiore di calcestruzzo, mentre quelli collaboranti presentano una propria suola sostitutiva o integrativa di quella in calcestruzzo.

Solai in cemento armato

Per tali solai si richiamano tutte le norme e prescrizioni per l'esecuzione delle opere in cemento armato.

Solai di tipo misto in cemento armato ed elementi laterizi forati

I laterizi dei solai di tipo misto in cemento armato, quando abbiano funzione statica, dovranno rispondere alle seguenti prescrizioni:

- essere conformati in modo che le loro parti resistenti a pressione vengano nella posa a collegarsi tra di loro così da assicurare una uniforme trasmissione degli sforzi di pressione dall'uno all'altro elemento;
- ove sia disposta una soletta di calcestruzzo staticamente integrativa di quella in laterizio, quest'ultima deve avere forma e finitura tali da assicurare la perfetta aderenza tra i due materiali ai fini della trasmissione degli sforzi di scorrimento;
- qualsiasi superficie metallica deve risultare circondata da una massa di cemento che abbia in ogni direzione spessore non minore del copriferro di progetto;
- per la confezione a pie' d'opera di travi in laterizio armato, l'impasto di malta di cemento deve essere realizzato secondo le indicazioni progettuali o della Direzione Lavori, al fine di raggiungere le caratteristiche meccaniche prescritte dal progetto;

In tutti i solai con laterizi la larghezza delle nervature non potrà essere minore di 7 cm ed il loro interasse non dovrà superare 40 cm nei tipi a nervature parallele e 80 cm in quelli a nervature incrociate.

Di regola devono essere previste nervature trasversali di ripartizione nei tipi a nervature parallele di campata maggiore di 5 m.

È consentito l'impiego di solai speciali con nervature di cemento armato e laterizi, senza soletta di conglomerato, purché i laterizi, di provata resistenza, presentino rinforzi di conveniente spessore atti a sostituire la soletta di conglomerato e rimangono incastrati fra le dette nervature.

Le eventuali mensole triangolari di raccordo alle estremità delle solette e delle nervature devono essere profilate inferiormente con inclinazione non maggiore di tre di base per uno di altezza.

Per le solette a pianta rettangolare, qualora non si eseguisca una precisa determinazione delle armature, oltre all'armatura principale portante, disposta parallelamente al lato minore, si deve adottare un'armatura secondaria di ripartizione, disposta secondo il lato maggiore di sezione uguale almeno al 25% di quella dell'armatura principale. Quando il rapporto tra i lati del rettangolo è compreso fra 3/5 e 1, la soletta deve essere di regola calcolata come piastra.

Nelle solette dei solai con laterizi l'armatura di ripartizione deve essere costituita almeno da una rete metallica di diametro di 5mm e passo 200x200mm.

Un carico isolato agente sulla soletta indirettamente, attraverso una massicciata o pavimentazione, deve essere considerato come ripartito uniformemente su di un rettangolo di lati eguali a quelli della base effettiva di appoggio sulla soprastruttura, aumentati ambedue del doppio dello spessore della massicciata (o pavimentazione).

Qualora non si esegua il calcolo della soletta come piastra elastica, per tener conto in modo approssimativo dalla compartecipazione delle strisce adiacenti a quella sotto carico, la soletta può calcolarsi come una trave di sezione rettangolare di larghezza eguale a quella della striscia, come sopra determinata, aumentata ancora di 1/3 della portata, ma non maggiore della portata medesima; l'aumento del terzo della portata non deve essere praticato quando il carico sia prossimo ad un appoggio.

Voltine di mattoni pieni o forati di piatto o di costa a lievissima monta

I mattoni che formano la volta vengono appoggiati alla trave di ferro non direttamente, ma contro uno speciale mattone (mattone copriferro) che si incastra nell'ala della stessa a mezzo di un dente e, mentre protegge la stessa, consente un piano d'imposta e copre la suola della putrella dando all'intonaco una superficie laterizia che evita l'antiestetico segno della trave. Queste voltine, generalmente eseguite di piatto, in taluni casi sono pure eseguite di costa con lo stesso procedimento, impiegando preferibilmente mattoni forati o pieni secondo il caso. Bisogna evitare di fissare il mattone copriferro con malta di gesso per evitare che questo si ossidi. Le travi di sezione conveniente ed in relazione alla portata ed al carico vengono disposte nel senso della minore ampiezza del locale, a interdistanza tra i 0,80 e 1.00 m; più raramente a distanza maggiore e comunque non oltre 1.10 m a meno di dare una maggiore monta lasciando la soffittatura curvata o naturale. Queste travi saranno prima delle pose verniciate.

Tra le due imposte offerte dal mattone copriferro si procederà all'esecuzione delle voltine, dando ad esse una minima monta, dovendo in seguito essere spianate con l'intonaco onde offrire una superficie piana del soffitto. Se lo spessore del soffitto è superiore al foglio, conviene procedere ad una armatura solida e completa mediante piccole centine e tavole appoggiate a formare un tamburo. Generalmente le voltine su ferri vengono eseguite (quando non si impieghi un laterizio forato speciale) dello spessore del foglio o di quarto: in questo caso si eseguiranno piccole centine scorrenti sopra due regoli fissati alle stesse travi con appositi ganci di ferro spostabili. Disposti contro

le travi i mattoni copriferro, l'esecutore vi colloca la centina sopra i due regoli portati da un numero di ganci formati da tondino, a due terzi della lunghezza del mattone e, quindi, a mano, dopo aver regolato il piano della centina mediante piccoli cunei di legno, con malta di gesso e sabbia o di gesso e calce, malta bastarda o, impiegando un cemento speciale di rapido indurimento, procede a posare i mattoni premendo contro il filare precedente per far aderire la malta colpendo il mattone leggermente con il martello sulla costa contro il copriferro o il mattone già in posto, e così l'uno dopo l'altro fino alla chiusura dell'anello in chiave; poi si sposta in avanti la centina e si procede nell'esecuzione dell'anello susseguente e così via fino alla chiusura della volta.

Per quanto sia lieve la monta della voltine, questa esercita una spinta sul fianco della trave, la quale subirebbe una flessione nel vuoto se non fosse contrastata, causando lo sfasciamento della volta che ha perso con la monta la sua coesione, perciò è necessario procedere con la simultanea costruzione di tutte le voltine che coprono il locale; quando ciò non sia possibile o pratico, si provvede collocando tra i fianchi delle travi di ferro, dei pezzi di tavola di costa o dei travicelli di piccola sezione, disposti a distanza uno dall'altra non oltre a 2 m, sbadacchi che verranno rimossi col procedere delle voltine. Man mano che si procede nella formazione degli anelli, per contrastarne la spinta, si rinfianca la volta spianandone la superficie di estradosso con malta prima di passare ad un secondo anello.

Art. XVI Chiusure

a) Chiusure verticali

Murature in genere

Nelle costruzioni delle murature in genere verrà curata la perfetta esecuzione degli spigoli, delle voltine, sordine, piattabande, archi e verranno lasciati tutti i necessari ricavi, sfondi, canne e fori:

- per ricevere le chiavi e i capochiave delle volte, gli ancoraggi delle catene e delle travi a doppio T, le testate delle travi in legno ed in ferro, le pietre da taglio e quanto altro non venga messo in opera durante la formazione delle murature;
- per il passaggio dei tubi pluviali, dell'acqua potabile, canne di stufa e camini, cessi orinatoi, lavandini, immondizie, ecc.;
- per le condutture elettriche di campanelli, di telefono e di illuminazione;
- per le imposte delle volte e degli archi;
- per gli zoccoli, arpioni di porte e finestre, zanche, soglie, ferriate, ringhiere, davanzali, ecc.

Quanto detto, in modo che non vi sia mai bisogno di scalpellare le murature già eseguite.

La costruzione delle murature deve iniziarsi e proseguire uniformemente, assicurando il perfetto collegamento sia con le murature esistenti, sia fra le varie parti di esse, evitando nel corso dei lavori la formazione di strutture eccessivamente emergenti dal resto della costruzione.

La muratura procederà a filari rettilinei, coi piani di posa normali alle superfici viste o come altrimenti venisse prescritto.

All'innesto con muri da costruirsi in tempo successivo dovranno essere lasciate opportune ammorsature in relazione al materiale impiegato.

I lavori di muratura, qualunque sia il sistema costruttivo adottato, debbono essere sospesi nei periodi di gelo, durante i quali la temperatura si mantenga, per molte ore, al di sotto di 0°C.

Quando il gelo si verifichi solo per alcune ore della notte, le opere in muratura ordinaria possono essere eseguite nelle ore meno fredde del giorno, purché, al distacco del lavoro, vengano adottati opportuni provvedimenti per difendere le murature dal gelo notturno.

Le facce delle murature in malta dovranno essere mantenute bagnate almeno per giorni 15 dalla loro ultimazione od anche più se sarà richiesto dalla Direzione dei Lavori.

Le canne, le gole da camino e simili, saranno intonacate a grana fina. Si potrà ordinare che tutte le canne, le gole, ecc., nello spessore dei muri siano lasciate aperte sopra una faccia, temporaneamente, anche per tutta la loro altezza; in questi casi, il tramezzo di chiusura si eseguirà posteriormente.

Le impostature per le volte, gli archi, ecc. devono essere lasciate nelle murature sia con gli addentellati d'uso, sia col costruire l'origine delle volte e degli archi a sbalzo mediante le debite sagome, secondo quanto verrà prescritto.

La Direzione Lavori stessa potrà ordinare che sulle aperture di vani di porte e finestre siano collocati degli architravi in cemento armato delle dimensioni che saranno fissate in relazione alla luce dei vani, allo spessore del muro e al sovraccarico.

Murature e riempimenti in pietrame a secco - Vespai

- a) Murature in pietrame a secco Dovranno essere eseguite con pietre ridotte col martello alla forma più che sia possibile regolare, restando assolutamente escluse quelle di forma rotonda. Le pietre saranno collocate in opera in modo che si colleghino perfettamente fra loro; scegliendo per i parametri quelle di maggiori dimensioni, non inferiori a 20 cm di lato, e le più adatte per il miglior combaciamento, onde supplire così con l'accuratezza della costruzione alla mancanza di malta. Si eviterà sempre la ricorrenza delle connessioni verticali. Nell'interno delle murature si farà uso delle scaglie soltanto per appianare i corsi e riempire gli interstizi tra pietra e pietra. La muratura in pietrame a secco per muri di sostegno in controriva o comunque isolati sarà sempre coronata da uno strato di muratura in malta di altezza non minore di 30 cm; a richiesta della Direzione dei Lavori vi si dovranno eseguire anche opportune feritoie regolari regolarmente disposte, anche a più ordini, per lo scolo delle acque.
- b) Riempimenti in pietrame a secco (per drenaggi, fognature, banchettoni di consolidamento e simili) Dovranno essere formati con pietrame da collocarsi in opera a mano su terreno ben costipato, al fine di evitare cedimenti per effetto dei carichi superiori. Per drenaggi o fognature si dovranno scegliere le pietre più grosse e regolari e possibilmente a forma di lastroni quelle da impiegare nella copertura dei sottostanti pozzetti o cunicoli; oppure infine negli strati inferiori il pietrame di maggiore dimensione, impiegando nell'ultimo strato superiore pietrame minuto, ghiaia o anche pietrisco per impedire alle terre sovrastanti di penetrare e scendere otturando così gli interstizi tra le pietre. Sull'ultimo strato di pietrisco si dovranno pigiare convenientemente le terre, con le quali dovrà completarsi il riempimento dei cavi aperti per la costruzione di fognature e drenaggi.
- c) Vespai e intercapedini Nei locali in genere i cui pavimenti verrebbero a trovarsi in contatto con il terreno naturale, potranno essere ordinati vespai in pietrame o intercapedini in laterizio. In ogni caso il terreno di sostegno di tali opere dovrà essere debitamente spianato, bagnato e ben battuto con la mazzaranga per evitare qualsiasi cedimento. Per i vespai in pietrame si dovrà formare anzitutto in ciascun ambiente una rete di cunicoli di ventilazione, costituita da canaletti paralleli aventi interasse massimo di 1,50 m; essi dovranno correre anche lungo

tutte le pareti ed essere comunicanti fra loro. Detti canali dovranno avere sezione non minore di 15 x 20 cm ed un sufficiente sbocco all'aperto, in modo da assicurare il ricambio dell'aria. Ricoperti tali canali con adatto pietrame di forma pianeggiante, si completerà il sottofondo riempiendo le zone rimaste fra cunicolo e cunicolo con pietrame in grossi scheggioni disposti con l'asse maggiore verticale ed in contrasto fra loro, intasando i grossi vuoti con scaglie di pietra e spargendo infine uno strato di ghiaietto di conveniente grossezza sino al piano prescritto. Le intercapedini, a sostituzione di vespai, potranno essere costituite da un piano di tavelloni mutati in malta idraulica fina e poggianti su muretti in pietrame o mattoni, ovvero da voltine di mattoni, ecc.

Murature di pietrame con malta

La muratura a getto ("a sacco") per fondazioni risulterà composta di scheggioni di pietra e malta grossa, quest'ultima in proporzione non minore di 0,45 m³ per metro cubo di murature.

La muratura sarà eseguita facendo gettate alternate entro i cavi fondazione di malta fluida e scheggioni di pietra, preventivamente puliti e bagnati, assestando e spianando regolarmente gli strati ogni 40 cm di altezza, riempiendo accuratamente i vuoti con materiale minuto e distribuendo la malta in modo da ottenere strati regolari di muratura, in cui le pietre dovranno risultare completamente rivestite di malta.

La gettata dovrà essere abbondantemente rifornita d'acqua in modo che la malta penetri in tutti gli interstizi; tale operazione sarà aiutata con beveroni di malta molto grassa. La muratura dovrà risultare ben costipata ed aderente alle pareti dei cavi, qualunque sia la forma degli stessi.

Qualora in corrispondenza delle pareti degli scavi di fondazione si incontrassero vani di gallerie o cunicoli, l'Impresa dovrà provvedere alla perfetta chiusura di detti vani con murature o chiusure in legname in guisa da evitare il disperdimento della malta attraverso tali vie, ed in ogni caso sarà cura adottare tutti i mezzi necessari perché le murature di fondazione riescano perfettamente compatte e riempite di malta.

La muratura di pietrame così detta lavorata a mano sarà eseguita con scapoli di pietrame, delle maggiori dimensioni consentite dalla grossezza della massa muraria, spianati grossolanamente nei panni di posa ed allettati di malta.

Le pietre, prima di essere collocate in opera, saranno diligentemente ripulite dalle sostanze terrose ed ove occorra, a giudizio della Direzione dei Lavori, accuratamente lavate. Saranno poi bagnate, essendo proibito di eseguire la bagnatura dopo di averle disposte sul letto di malta.

Tanto le pietre quanto la malta saranno interamente disposte a mano, seguendo le migliori regole d'arte, in modo da costituire una massa perfettamente compatta nel cui interno le pietre stesse ben battute col martello risultino concatenate fra loro e rivestite da ogni parte di malta, senza alcun interstizio.

La costruzione della muratura dovrà progredire a strati orizzontali di conveniente altezza, concatenati nel senso della grossezza del muro, disponendo successivamente ed alternativamente una pietra trasversale (di punta) dopo ogni due pietre in senso longitudinale, allo scopo di ben legare la muratura anche nel senso della grossezza.

Dovrà sempre evitarsi la corrispondenza della connessione fra due corsi consecutivi.

Gli spazi vuoti che verranno a formarsi per l'irregolarità delle pietre saranno riempiti con piccole pietre che non tocchino mai a secco e non lasciano mai spazi vuoti, colmando con malta tutti gli interstizi.

Nelle murature senza speciale paramento si impiegheranno per le facce viste le pietre di maggiori dimensioni, con le facce interne rese piane e regolari in modo da costituire un paramento rustico a

faccia vista e si disporranno negli angoli le pietre più grosse e più regolari. Detto paramento rustico dovrà essere più accurato e maggiormente regolare nelle murature di elevazione di tutti i muri dei fabbricati.

Qualora la muratura avesse un rivestimento esterno, il nucleo della muratura dovrà risultare, con opportuni accorgimenti, perfettamente concatenato col detto rivestimento nonostante la diversità di materiale, di struttura e di forma dell'uno e dell'altro.

Le facce viste delle murature in pietrame, che non debbano essere intonacate o comunque rivestite, saranno sempre rabboccate diligentemente con malta idraulica mezzana.

Paramenti per le murature di pietrame

Per le facce viste delle murature di pietrame, secondo gli ordini della Direzione dei Lavori, potrà essere prescritta l'esecuzione delle seguenti speciali lavorazioni:

- con pietra rasa e teste scoperte (ad opera incerta);
- a mosaico greggio;
- con pietra squadrata a corsi pressoché regolari;
- con pietra squadrata a corsi regolari.

Nel paramento con pietra rasa e teste scoperte (ad opera incerta) il pietrame dovrà essere scelto diligentemente fra il migliore e la sua faccia vista dovrà essere ridotta col martello a superficie approssimativamente piana; le pareti esterne dei muri dovranno risultare bene allineate e non presentare alla prova del regolo rientranze o sporgenze maggiori di 25 mm. Le facce di posa e combaciamento delle pietre dovranno essere spianate ed adattate col martello in modo che il contatto dei pezzi avvenga in tutti i giunti per una rientranza non minore di 8 cm.

La rientranza totale delle pietre di paramento non dovrà essere mai minore di 0,25 m e nelle connessioni esterne dovrà essere ridotto al minimo possibile l'uso delle scaglie.

Nel paramento a mosaico greggio la faccia vista dei singoli pezzi dovrà essere ridotta col martello e la grossa punta a superficie perfettamente piana ed a figura poligonale, ed i singoli pezzi dovranno combaciare regolarmente, restando vietato l'uso delle scaglie.

In tutto il resto si seguiranno le norme indicate per il paramento a pietra rasa.

Nel paramento a corsi pressoché regolari il pietrame dovrà essere ridotto a conci piani e squadrati, sia col martello che con la grossa punta, con le facce di posa parallele fra loro e quelle di combaciamento normali a quelle di posa. I conci saranno posti in opera a corsi orizzontali di altezza che può variare da corso a corso, e potrà non essere costante per l'intero filare. Nelle superfici esterne dei muri saranno tollerate alla prova del regolo rientranze o sporgenze non maggiori di 15 mm.

Nel paramento a corsi regolari i conci dovranno essere perfettamente piani e squadrati, con la faccia vista rettangolare, lavorati a grana ordinaria; essi dovranno avere la stessa altezza per tutta la lunghezza del medesimo corso, e qualora i vari corsi non avessero eguale altezza, questa dovrà essere disposta in ordine decrescente dai corsi inferiori ai corsi superiori con differenza però fra due corsi successivi non maggiore di 5 cm. La Direzione dei Lavori potrà anche prescrivere l'altezza dei singoli corsi, ed ove nella stessa superficie di paramento venissero impiegati conci di pietra da taglio, per rivestimento di alcune parti, i filari di paramento a corsi regolari dovranno essere in perfetta corrispondenza con quelli della pietra da taglio.

Tanto nel paramento a corsi pressoché regolari, quanto in quello a corsi regolari, non sarà tollerato l'impiego di scaglie nella faccia esterna; il combaciamento dei corsi dovrà avvenire per almeno un terzo della loro rientranza nelle facce di posa, e non potrà essere mai minore di 10 cm nei giunti verticali.

La rientranza dei singoli pezzi non sarà mai minore della loro altezza, né inferiore a 25 cm; l'altezza minima dei corsi non dovrà mai essere minore di 20 cm.

In entrambi i paramenti a corsi, lo sfalsamento di due giunti verticali consecutivi non dovrà essere minore di 10 cm e le connessioni avranno larghezza non maggiore di 1 cm.

Per tutti i tipi di paramento le pietre dovranno mettersi in opera alternativamente di punta in modo da assicurare il collegamento col nucleo interno della muratura.

Per le murature con malta, quando questa avrà fatto convenientemente presa, le connessioni delle facce di paramento dovranno essere accuratamente stuccate.

In tutte le specie di paramenti la stuccatura dovrà essere fatta raschiando preventivamente le connessioni fino a conveniente profondità per purgarle dalla malta, dalla polvere, e da qualunque altra materia estranea, lavandole con acqua abbondante e riempiendo quindi le connessioni stesse con nuova malta della qualità prescritta, curando che questa penetri bene dentro, comprimendola e lisciandola con apposito ferro, in modo che il contorno dei conci sui fronti del paramento, a lavoro finito, si disegni nettamente e senza sbavature.

Murature di mattoni

Gli elementi costituenti la muratura dovranno mettersi in opera con le connessioni alternative in corsi ben regolari e normali alla superficie esterna; saranno posati sopra un abbondante strato di malta e premuti sopra di esso in modo che la malta refluisca attorno e riempia tutte le connessioni.

La larghezza delle connessioni non dovrà essere maggiore di 8 mm né minore di 5 mm.

I giunti non verranno rabboccati durante la costruzione per dare maggiore presa all'intonaco od alla stuccatura col ferro.

Le malte da impiegarsi per l'esecuzione di questa muratura dovranno essere passate al setaccio per evitare che i giunti fra i mattoni riescano superiori al limite di tolleranza fissato.

Le murature di rivestimento saranno fatte a corsi bene allineati e dovranno essere opportunamente ammorsate con la parte interna.

Se la muratura dovesse eseguirsi a paramento visto (cortina) si dovrà avere cura di scegliere per le facce esterne i mattoni di migliore cottura, meglio formati e di colore più uniforme, disponendoli con perfetta regolarità e ricorrenza nelle connessioni orizzontali, alternando con precisione i giunti verticali.

In questo genere di paramento le connessioni di faccia vista non dovranno avere grossezza maggiore di 5 mm, e, previa raschiatura e pulitura, dovranno essere profilate con malta idraulica o di cemento, diligentemente compresse e lisciate con apposito ferro, senza sbavatura.

Le sordine, gli archi, le piattabande e le volte dovranno essere costruite in modo che i mattoni siano sempre disposti in direzione normale alla curva dell'intradosso e le connessioni dei giunti non dovranno mai eccedere la larghezza di 5 mm all'intradosso e 10 mm all'estradosso.

Pareti di una testa ed in foglio con mattoni pieni e forati

Le pareti di una testa ed in foglio verranno eseguite con mattoni scelti, esclusi i rottami, i laterizi incompleti e quelli mancanti di qualche spigolo. Tutte le dette pareti saranno eseguite con le migliori regole dell'arte, a corsi orizzontali ed a perfetto filo, per evitare la necessità di forte impiego di malta per l'intonaco.

Nelle pareti in foglio saranno introdotte nella costruzione intelaiature in legno attorno ai vani delle porte, allo scopo di poter fissare i serramenti al telaio, anziché alla parete, oppure ai lati od alle sommità delle pareti stesse, per il loro consolidamento, quando esse non arrivano fino ad un'altra

parete od al soffitto. Quando una parete deve eseguirsi fino sotto al soffitto, la chiusura dell'ultimo corso sarà ben serrata, se occorre, dopo congruo tempo con scaglie e cemento.

Murature miste

La muratura mista di pietrame e mattoni dovrà progredire a strati orizzontali intercalando n....... di filari di mattoni ogni m di altezza di muratura di pietrame. I filari dovranno essere estesi a tutta la grossezza del muro e disposti secondo piani orizzontali.

Nelle murature miste per i fabbricati, oltre ai filari suddetti, si debbono costruire in mattoni tutti gli angoli e spigoli dei muri, i pilastri, i risalti e le incassature qualsiasi, le spallette e squarci delle aperture di porte e finestre, i parapetti delle finestre, gli archi di scarico, e le volte, i voltini e le piattabande, l'ossatura delle cornici, le canne da fumo, le latrine, i condotti in genere, e qualunque altra parte di muro all'esecuzione della quale non si prestasse il pietrame, in conformità delle prescrizioni che potrà dare la Direzione dei Lavori all'atto esecutivo. Il collegamento delle due differenti strutture deve essere fatto nel migliore modo possibile e tanto in senso orizzontale che in senso verticale.

Murature in calcestruzzo

Il calcestruzzo da impiegarsi per qualsiasi lavoro sarà messo in opera appena confezionato e disposto a strati orizzontali di altezza da 20 a 30 cm, su tutta l'estensione della parte di opera che si esegue ad un tempo, ben battuto e costipato e vibrato, per modo che non resti alcun vano nello spazio che deve contenerlo e nella sua massa.

Quando il calcestruzzo sia da collocare in opera entro cavi molto stretti od a pozzo esso dovrà essere calato nello scavo mediante secchi a ribaltamento. Solo nel caso di cavi molto larghi, la Direzione dei Lavori potrà consentire che il calcestruzzo venga gettato liberamente, nel qual caso prima del conguagliamento e della battitura deve, per ogni strato di 30 cm d'altezza, essere ripreso dal fondo del cavo e rimpastato per rendere uniforme la miscela dei componenti.

Quando il calcestruzzo sia da calare sott'acqua, si dovranno impiegare tramogge, casse apribili o quegli altri mezzi d'immersione che la Direzione dei Lavori prescriverà, ed usare la diligenza necessaria ad impedire che, nel passare attraverso l'acqua, il calcestruzzo si dilavi con pregiudizio della sua consistenza.

Finito che sia il getto, e spianata con ogni diligenza la superficie superiore, il calcestruzzo dovrà essere lasciato assodare per tutto il tempo che la Direzione dei Lavori stimerà necessario.

Altre murature

Per quanto riguarda altri tipi di murature dello stesso tipo di quelle esterne, si faccia riferimento al capitolo riservato alle "strutture di elevazione verticali".

b) Infissi esterni verticali

In base al D.M. 14 giugno 1989, n. 236, "Regolamento di attuazione dell'art. 1 della legge 9 gennaio 1989, n. 13 - Prescrizioni tecniche necessarie a garantire l'accessibilità, l'adattabilità e la visitabilità degli edifici privati e di edilizia residenziale pubblica sovvenzionata e agevolata", le porte, le finestre e le porte-finestre devono essere facilmente utilizzabili anche da persone con ridotte o impedite capacità motorie o sensoriali.

I meccanismi di apertura e chiusura devono essere facilmente manovrabili e percepibili e le parti mobili devono poter essere usate esercitando una lieve pressione.

Ove possibile si deve dare preferenza a finestre e parapetti che consentono la visuale anche alla persona seduta. Si devono comunque garantire i requisiti di sicurezza e protezione dalle cadute verso l'esterno.

L'altezza delle maniglie o del dispositivo di comando deve essere compresa tra 100 e 130 cm (consigliata 115 cm).

Per consentire alla persona seduta la visuale anche all'esterno, devono essere preferite soluzioni per le quali la parte opaca del parapetto, se presente, non superi i 60 cm di altezza dal calpestio, con l'avvertenza, però, per ragioni di sicurezza, che l'intero parapetto sia complessivamente alto almeno 100 cm e inattraversabile da una sfera di 10 cm di diametro. Nelle finestre lo spigolo vivo della traversa inferiore dell'anta apribile deve essere opportunamente sagomato o protetto per non causare infortuni. Le ante mobili degli infissi esterni devono poter essere usate esercitando una pressione non superiore a 8 kg.

Infissi in legno

Per l'esecuzione dei serramenti od altri lavori in legno l'impresa dovrà servirsi di una Ditta specialista e ben accetta alla Direzione dei Lavori. Essi saranno sagomati e muniti degli accessori necessari, secondo i disegni di dettaglio, i campioni e le indicazioni che darà la Direzione dei Lavori.

Il legname dovrà essere di essenza forte per i serramenti in legno, di essenza tenera o dolce per quelli interni, perfettamente lavorato e piallato e risultare, dopo ciò, dello spessore richiesto, intendendosi che le dimensioni dei disegni e gli spessori debbono essere quelli del lavoro ultimato, né saranno tollerate eccezioni a tale riguardo.

I serramenti e gli altri manufatti saranno piallati e raspati con carta vetrata e pomice in modo da fare scomparire qualsiasi sbavatura. È proibito inoltre assolutamente l'uso del mastice per coprire difetti naturali di legno o difetti di costruzione.

Le unioni dei ritti con traversi saranno eseguite con le migliori regole dell'arte: i ritti saranno continui per tutta l'altezza del serramento, ed i traversi collegati a dente e mortisa, con caviscie di legno duro e con biette, a norma delle indicazioni che darà la Direzione dei Lavori.

I denti e gli incastri a maschio e femmina dovranno attraversare dall'una all'altra parte i pezzi in cui verranno calettati, e le linguette avranno comunemente la grossezza di 1/3 del legno e saranno incollate.

Nei serramenti ed altri lavori a specchiature i pannelli saranno uniti a telai ed ai traversi intermedi mediante scanalature nei telai e linguette nella specchiatura, con sufficiente riduzione dello spessore per non indebolire il telaio. Fra le estremità della linguetta ed il fondo della scanalatura deve lasciarsi un gioco per consentire i movimenti del legno della specchiatura.

Nelle fodere dei serramenti e dei rivestimenti, a superficie o perlinata, le tavole di legno saranno connesse, a richiesta della Direzione dei Lavori, o a dente e canale ed incollatura, oppure a canale unite da apposita animella o linguetta di legno duro incollata a tutta la lunghezza.

Le battute delle porte senza telaio verranno eseguite a risega, tanto contro la mazzetta quanto fra le imposte.

Le unioni delle parti delle opere in legno e dei serramenti verranno fatte con viti; i chiodi o le punte di Parigi saranno consentiti solo quando sia espressamente indicato dalla Direzione dei Lavori.

Tutti gli accessori, ferri ed apparecchi di chiusura, di sostegno, di manovra, ecc. dovranno essere, prima della loro applicazione, accettati dalla Direzione dei Lavori. La loro applicazione ai vari manufatti dovrà venire eseguita a perfetto incastro, per modo da non lasciare alcuna discontinuità, quando sia possibile, mediante bulloni a viti.

Quando trattasi di serramenti da aprire e chiudere, ai telai od ai muri dovranno essere sempre assicurati appositi ganci, catenelle od altro, che, mediante opportuni occhielli ai serramenti, ne fissino la posizione quando i serramenti stessi debbono restare aperti. Per ogni serratura di porta od uscio dovranno essere consegnate due chiavi.

A tutti i serramenti ed altre opere in legno, prima del loro collocamento in opera e previa accurata pulitura a raspa e carta vetrata, verrà applicata una prima mano di olio di lino cotto accuratamente spalmato in modo che il legno ne resti bene impregnato. Essi dovranno conservare il loro colore naturale e, quando la prima mano sarà ben essiccata, si procederà alla loro posa in opera e quindi alla loro pulitura con pomice e carta vetrata.

Resta inoltre stabilito che quando l'ordinazione riguarda la fornitura di più serramenti, appena avuti i particolari per la costruzione di ciascun tipo, l'Impresa dovrà allestire il campione di ogni tipo che dovrà essere approvato dalla Direzione dei Lavori e verrà depositato presso di essa. Detti campioni verranno posti in opera per ultimi, quando tutti gli altri serramenti saranno stati presentati ed accettati.

Ciascun manufatto in legno o serramento prima dell'applicazione della prima mano d'olio cotto dovrà essere sottoposto all'esame ed all'accettazione provvisoria della Direzione dei Lavori, la quale potrà rifiutare tutti quelli che fossero stati verniciati o colorati senza tale accettazione.

L'accettazione dei serramenti e delle altre opere in legno non è definitiva se non dopo che siano stati posti in opera, e se, malgrado ciò, i lavori andassero poi soggetti a fenditure e screpolature, incurvamenti e dissesti di qualsiasi specie, prima che l'opera sia definitivamente collaudata, l'Impresa sarà obbligata a rimediarvi, cambiando a sue spese i materiali e le opere difettose.

Infissi metallici

Le opere in ferro devono ricevere un'applicazione di vernice antiruggine prima del loro collocamento in opera. Gli apparecchi di manovra, se di metallo fino, vanno protetti con una fasciatura di stracci.

Particolare riguardo nella posa richiedono le serrande di sicurezza per grandi aperture, vetrine, negozi, uffici a terreno, ecc., murando gli assi rotanti dei tamburi e le guide in modo che le serrande scorrano con estrema facilità nelle loro guide.

I serramenti in ferro devono disporsi in modo tale da evitare qualsiasi deformazione, in posizione orizzontale, interponendo tra un infisso e l'altro delle assicelle, o verticalmente leggermente inclinati contro una parete.

Infissi PVC

I serramenti in PVC rigido dovranno avere una resilienza secondo la normativa UNI EN ISO 180/01.

La miscela impiegata per l'estrusione dei profili componenti i serramenti a vetri per finestra o porte-finestre è costituita da una miscela di resina ed additivi stabilizzanti e lubrificanti con esclusione di plastificanti e cariche minerali od organiche e dovrà rispondere alle sotto elencate caratteristiche:

- il peso specifico determinato secondo le norme ASTM D792/00 deve essere < a 1,49 kg/dm³;
- la resistenza all'urto a trazione determinata secondo le norme UNI EN ISO 8256:1998 e superiore a 500 KJ/m² a 0℃ e > a 700 Kg/m² a 23℃;
- il modulo elastico in flessione dovrà essere > a 2250 MPA determinato secondo le norme UNI vigenti:
- carico di rottura e > a 400 Kg/cm² secondo metodo di prova ASTM D638/03;
- la resistenza all'urto non deve dare, secondo le norme UNI 8649/85, nessuna rottura a 0℃ e non più di 1 rottura su 10 provini a -10℃;
- secondo le norme ASTM D1525/07 la temperatura di rammollimento o grado di Vicat dovrà essere > 76℃:
- la resistenza alla luce, secondo le norme UNI EN ISO 4892/02 e UNI ISO 4582/85 dovrà essere > al grado 3 della scala dei grigi;
- durezza Shore > 75 secondo il metodo di prova ASTM D2240/05;

- per la resistenza della saldatura secondo la norma UNI EN 12608/05, la rottura non deve avvenire per oltre il 50% del piano di saldatura;
- autoestinguenza in caso d'incendio.

Le giunzioni degli angoli devono essere eseguite con la tecnica della saldatura a piastra calda senza apporto di materiali (polifusione), in modo da ottenere elementi monolitici senza soluzione di continuità nei punti di giunzione. Lo spessore delle pareti perimetrali dei profilati non dovrà essere inferiore a mm 3. Per il fissaggio delle parti staccate le viti devono essere di ottone con testa a goccia di sego.

I serramenti in PVC dovranno garantire la permeabilità dell'aria con classe A3, la tenuta all'acqua con categoria E2 e la resistenza ai carichi del vento con categoria V2.

Soglie e davanzali

Nel vano delle finestre, verso l'interno, si dispongono dei davanzali, in marmo o in legno della larghezza di 25-35 cm e dello spessore di 3-4 cm, murati tra le due spallette del muro. Così per le porte esterne, si dispongono attraverso l'apertura una soglia, di pietra o di marmo, che, oltre a completare l'apertura e a consentire la chiusura del serramento mediante il chiavistello che scende nello spessore ed entra nell'apposito astuccio fissato nella soglia, impedendo anche l'entrata dell'acqua dall'esterno. Dove i climi umidi facilitano la condensazione sui vetri, i davanzali interni recheranno una leggera inclinazione ed un foro per mandar fuori l'acqua colato, mediante un tubo metallico.

c) Chiusure orizzontali

Chiusura orizzontale inferiore e su spazi esterni

Per le chiusure orizzontali inferiori e su spazi esterni valgono le medesime norme e prescrizioni e regole delle strutture portanti orizzontali.

Controsoffitti

Tutti i controsoffitti in genere dovranno eseguirsi con cure particolari allo scopo di ottenere superfici orizzontali (od anche sagomate secondo le prescritte centine), senza ondulazioni od altri difetti e di evitare in modo assoluto la formazione, in un tempo più o meno prossimo, di crepe, crinature o distacchi nell'intonaco. Al manifestarsi di tali screpolature la Direzione dei Lavori avrà facoltà, a suo insindacabile giudizio, di ordinare all'Impresa il rifacimento, a carico di quest'ultima, dell'intero controsoffitto con l'onere del ripristino di ogni altra opera già eseguita (stucchi, tinteggiature, ecc.).

Dalla faccia inferiore di tutti i controsoffitti dovranno sporgere i ganci di ferro appendilumi. Tutti i legnami impiegati per qualsiasi scopo nei controsoffitti dovranno essere abbondantemente spalmati di carbolinio su tutte le facce.

La Direzione dei Lavori potrà prescrivere anche le predisposizioni di adatte griglie o sfiatatoi in metallo per la ventilazione dei vani racchiusi dai controsoffitti.

- a) Controsoffitto in rete metallica (cameracanna). I controsoffitti in rete metallica saranno composti:
 - dall'armatura principale retta o centinata in legno di abete, formata con semplici costoloni di 6 x 12 cm, oppure con centine composte di due o tre tavole sovrapposte ed insieme collegate ad interasse di 100 cm;
 - dall'orditura di correntini in abete della sezione di 4 x 4 cm, posti alla distanza di 30 cm gli uni dagli altri e fissati solidamente con chiodi e reggette alle centine od ai costoloni di cui sopra ed incassati ai lati entro le murature in modo da assicurare l'immobilità;
 - dalla rete metallica, in filo di ferro lucido del diametro di 1 mm circa con maglie di circa 15 mm di lato, che sarà fissata all'orditura di correntini con opportune grappette;

- dal rinzaffo di malta bastarda o malta di cemento, secondo quanto prescritto, la quale deve risalire superiormente alla rete;
- dall'intonaco (eseguito con malta di calce e sabbia e incollato a colla di malta fina) steso con le dovute cautele e con le migliori regole dell'arte perché riesca del minore spessore possibile, con superficie piana e liscia.
- b) Controsoffitto tipo "Perret". I controsoffitti eseguiti con materiale laterizio speciale tipo "Perret", "Italia" o simili saranno costituiti da tavelline sottili di cotto dello stesso spessore di 2,5 cm armate longitudinalmente da tondini d'acciaio annegato in malta a 3 q di cemento Portland per m³ di sabbia, il tutto ancorato al solaio sovrastante mediante robusti cavallotti di ferro posti a opportuna distanza. La faccia vista del controsoffitto sarà sbruffata con malta bastarda.
- Controsoffitto in graticcio tipo "Stauss". I controsoffitti con graticcio di cotto armato tipo "Stauss" o simile saranno costituiti essenzialmente da strisce di rete di filo di ferro ricotto del diametro di 1 mm a maglie di 20 mm di lato aventi gli incroci annegati in crocettine di forma poliedrica in argilla cotta ad alta temperatura, che assicurano alla malta una buona superficie di aderenza. Dette strisce, assicurate agli estremi a tondini di ferro da 8 mm almeno ancorati a loro volta nelle murature perimetrali con opportune grappe poste a distanza di 25 cm, e ben tese mediante taglie tendifili, verranno sostenute con cavalloni intermedi (a distanza di circa 0,40 m) ed occorrendo mediante irrigidimenti di tondino di ferro da 3 mm in modo da risultare in tutta la superficie saldamente fissate al soffitto senza possibilità di cedimenti. Per l'intonacatura si procederà come per un controsoffitto normale: la malta gettata con forza contro il graticcio deve penetrare nei fori fra le varie crocette, formando al di là di esse tante piccole teste di fungo che trattengono fortemente l'intonaco alla rete. Trattandosi di rivestire superfici curve comunque centinate, la rete metallica del controsoffitto tanto del tipo comune (lett. a) che del tipo "Stauss" (lett. c) dovrà seguire le sagome di sostegno retrostanti opportunamente disposte ed essere fissata ad esse con tutti i necessari accorgimenti per assicurare la rete e farle assumere la curvatura prescritta.

Coperture non ventilate

L'elemento di isolamento termico, in coperture non ventilate e salvo esigenze particolari, deve essere preferibilmente sempre posato al di sopra del supporto strutturale il più possibile verso l'esterno, per sfruttare l'inerzia termica della struttura e per trovarsi in condizioni favorevoli rispetto ai problemi di condensazione interstiziale del vapor acqueo.

Deve essere sempre garantita la microventilazione della superficie inferiore dell'elemento di tenuta (tegole, lastre, ecc.) e contemporaneamente è opportuno garantire una ventilazione della superficie esterna dell'isolante termico. Ciò si ottiene con l'uso di elementi distanziatori, generalmente listelli in legno, più alti dello spessore dell'isolante, che permettono il fissaggio della listellatura che sorregge le tegole o le lastre e lasciando uno spazio adeguato tra il listello e la superficie dell'isolante termico.

Nel caso in cui si disponga di uno strato impermeabile sotto l'elemento di tenuta, occorre garantire la microventilazione della superficie inferiore dei prodotti di tenuta e, se possibile, la ventilazione della superficie esterna dell'isolante: ciò può comportare una doppia orditura di listelli distanziatori sopra e sotto il telo impermeabile, con la creazione di una intercapedine ventilata, oppure occorrerà predisporre una barriera al vapore, sotto l'isolante termico, per evitare possibili fenomeni di condensazione dovuti alla presenza del telo impermeabile.

È preferibile che l'isolamento termico sia formato da due strati di elementi con giunti sfalsati, o da un solo strato con giunti ad incastro.

I prodotti dell'elemento termoisolante devono essere sensibili alle variazioni di temperatura e di umidità che si verificano sotto al manto per evitare deformazioni con la conseguente apertura dei giunti.

Se la listellatura viene posata direttamente sul pannello di isolamento termico (con semplice o doppia orditura ortogonale), è necessario che lo stesso sia rigido, permetta la chiodatura e abbia una sufficiente resistenza alla compressione.

I sistemi con lastre isolate a sandwich, se non ventilati, devono disporre di una efficace barriera al vapore dal lato caldo.

Coperture ventilate

Al di sopra dell'ultimo solaio viene posto l'elemento isolante che dovrà avere una adeguata resistenza termica e potrà essere costituito da doppio strato di pannelli posati con giunti sfalsati o da un monostrato con giunti ad incastro. Sono da evitare i materiali isolanti leggeri sfusi o granulari quando possono essere rimossi dalle correnti d'aria. Se la zona del sottotetto è praticabile l'elemento termoisolante dovrà avere una resistenza a compressione adeguata oppure dovrà essere protetto o completato da uno strato di ripartizione dei carichi.

Si possono realizzare coperture ventilate anche mediante intercapedine a spessore costante lungo la falda. Lo spazio di ventilazione dovrà avere nel punto più basso dell'intercapedine o del sottotetto un'altezza minima di 10 cm. Sono comunque da preferire altezze maggiori (almeno 30 -60 cm). Tutto il volume d'aria dovrà essere ventilato con regolarità, senza zone morte, per mezzo di aperture generalmente poste in corrispondenza della gronda e del colmo. Le uscite dell'aria saranno comunque a livello più elevato di quelle d'entrata. Aperture laterali possono risultare dannose per un efficace tiraggio.

La sezione utile delle aperture nel caso di spazi da ventilare di ridotta altezza dovrà essere non minore di 1/500 della superficie della copertura.

Per falde di copertura molto estese occorre prevedere 100 cm² di aperture (in ingresso e altrettante in uscita) ogni m3 di volume di sottotetto da ventilare. Nel caso che le falde siano realizzate con strutture in legno discontinue i giunti tra i prodotti costituenti l'elemento di tenuta possono contribuire alla ventilazione del sottotetto stesso (es: coperture in coppi di laterizio, ecc.).

Per la realizzazione delle aperture di ventilazione è possibile ricorrere ad appositi elementi speciali quali le tegole con aeratore, ecc., che vengono integrati con i prodotti costituenti l'elemento di tenuta. Tali prodotti devono però essere realizzati in modo da evitare infiltrazioni d'acqua (per pioggia di stravento) e intrusioni di animali.

Sono preferibili aperture continue (tipo feritoia) a quelle discontinue (fori distanziati). Le aperture dovranno avere un contatto diretto tra lo spazio ventilato e l'esterno e dovranno essere attrezzate con reti di protezione per evitare l'intrusione di animali (volatili, ecc.).

Nel caso che la ventilazione sia ottenuta mediante una intercapedine a spessore costante lungo la falda occorrerà verificare che non vi siano in essa strozzature causate da elementi strutturali, impianti, ecc.

Nel caso l'elemento inferiore (o la struttura inferiore dell'intercapedine) non garantisca la tenuta all'aria verso gli ambienti è possibile predisporre un apposito telo di tenuta. Se questo è disposto al di sopra dell'isolante termico occorre predisporre una barriera al vapore prima dell'isolante, verso il lato caldo.

Occorre evitare in ogni caso la comunicazione tra locale abitato e intercapedine: ciò potrebbe portare a infiltrazioni di vapore d'acqua dovute a depressioni o sovrapressioni del vento.

Coperture non praticabili (coperture a tetto)

La copertura a tetto sarà sostenuta da una grossa armatura in legno, ferro e cemento armato, il tutto con le disposizioni che saranno prescritte dai tipi di progetto o dalla Direzione dei Lavori.

Sulla grossa armatura saranno poi disposti i travicelli ed i listelli in legno (piccola armatura) sui quali sarà poi distesa la copertura di tegole direttamente o con l'interposizione di un sottomanto in legno od in laterizi.

- Sottomanto di legno Sarà costituito da tavole di legno di abete dello spessore di 2,5 cm, piallate dalla parte in vista, unite a filo piano e chiodate alla sottostante orditura di travicelli.
- Sottomanto di pianelle o tavelline Il sottomanto di pianelle o tavelline si eseguirà collocando sui travicelli o correntini del tetto le pianelle o tavelline una vicina all'altra, bene allineate in modo che le estremità di esse posino sull'asse di detti legnami e le connessioni non siano maggiori di 6 mm. Le dette connessioni saranno stuccate con malta idraulica liquida. I corsi estremi lungo la gronda saranno ritenuti da un listello di abete chiodato alla sottostante armatura del tetto.
- Copertura di tegole curve o coppi La copertura di tegole a secco si farà posando sulla superficie da coprire un primo strato di tegole con la convessità rivolta in basso, disposte a filari ben allineati ed attigui, sovrapposte per 15 cm ed assicurate con frammenti di laterizi. Su questo tratto se ne collocherà un secondo con la convessità rivolta in alto, similmente accavallate per 15 cm disposte in modo che ricoprano le connessioni fra le tegole sottostanti. Le teste delle tegole in ambedue gli strati saranno perfettamente allineate con la cordicella, sia nel parallelo alla gronda che in qualunque senso diagonale.
 - Il comignolo, i displuvi ed i compluvi saranno diligentemente suggellati con malta, e così pure suggellate tutte le tegole che formano il contorno delle falde, o che poggiano contro i muri, lucernari, canne da camino e simili.
 - Le tegole che vanno in opera sulle murature verranno posate su letto di malta. La copertura di tegole su letto di malta verrà eseguita con le stesse norme indicate per la copertura di tegole a secco; il letto di malta avrà lo spessore di 4-5 cm.
- Copertura in tegole alla romana La copertura in tegole alla romana (o "maritate") composta di tegole piane (embrici) e di tegole curve (coppi) si eseguirà con le stesse norme della precedente, salvo che si poserà sulla superficie da coprire il primo strato di tegole curve che ricopriranno i vuoti tra i vari filari di tegole piane. Anche per questo tipo di copertura a secco dovrà eseguirsi con malta idraulica mezzana la necessaria muratura delle testate e dei colmi, la calce a scarpa, ecc. In corrispondenza delle gronde dovranno impiegarsi embrici speciali a lato parallelo.
- Copertura di tegole piane. Nella copertura di tegole piane ad incastro (marsigliesi o simili), le tegole, quando devono poggiare su armatura di correnti, correntini o listelli, saranno fissate a detti legnami mediante legature di filo di ferro zincato, grosso 1 mm circa, il quale, passando nell'orecchio esistente in riporto alla faccia inferiore di ogni tegola, si avvolgerà ad un chiodo pure zincato, fissato in una delle facce dei correnti o listelli. Quando invece le tegole devono poggiare sopra un assito, sul medesimo, prima della collocazione delle tegole, saranno chiodati parallelamente alla gronda dei listelli della sezione di 4 x 3 cm a distanza tale, fra loro, che vi possano poggiare i denti delle tegole di ciascun filare.
 - Per la copertura di tegole piane ad incastro su sottomanto di laterizio, le tegole dovranno posare sopra uno strato di malta grosso da 4 a 5 cm, ed ogni tegola dovrà essere suggellata accuratamente con la malta stessa. In ogni caso dovranno essere impiegate, nella posa della copertura, mezze tegole rette e diagonali alle estremità delle falde e negli spigoli, in modo da alternare le tegole da un filare all'altro.
 - Sopra i displuvi dovranno essere disposti appositi tegoloni di colmo murati in malta idraulica; inoltre dovrà essere inserito un numero adeguato di cappucci di aerazione.
- Copertura in lastre di ardesia artificiale. Le coperture in ardesia artificiale potranno essere eseguite nei seguenti tipi:

con lastre ondulate normali
 con lastre ondulate alla romana
 con lastre ondulate alla toscana
 con lastre piane alla francese
 spessore da 5,5 a 6 mm
 spessore da 5,5 mm
 spessore da 4 mm

In ogni caso le lastre di copertura verranno poste in opera su tavolato di legno di abete dello spessore di almeno 25 mm con superiore rivestimento in cartone catramato, ovvero sopra orditura di listelli pure in abete della sezione da 4 x 4 a 7 x 7 cm² a seconda dell'interasse e del tipo di copertura, fissandole con speciali accessori in ferro zincato (grappe, chiodi, o viti, ranelle triple in piombo, ecc.). La loro sovrapposizione dovrà essere, a seconda del tipo di lastra, da 5 a 8 cm; i colmi ed i pezzi speciali terminali di ogni tipo saranno anch'essi fissati con gli appositi accessori.

L'ardesia artificiale per coperture potrà essere richiesta nei colori grigio naturale, rosso, nero-lavagna, ruggine.

Coperture in lastre ondulate di fibrocemento ecologico e materie plastiche - Per le lastre in fibrocemento ecologico le pendenze minime sono dell'ordine del 15 % a seconda della zona climatica (per falde di lunghezza inferiore ai 20 m), la sovrapposizione di testa è dell'ordine di 20-25 cm per le pendenze minime e può essere ridotta a circa 15 cm per le pendenze più elevate (oltre il 25%) a seconda della lunghezza di falda.

L'interasse degli appoggi, listelli, arcarecci metallici disposti parallelamente alla linea di gronda, dipende dallo spessore delle lastre, dai carichi agenti sulla copertura e dalla lunghezza delle lastre. Per le lastre in fibrocemento ecologico non è mai superiore a 115 cm, se sotto le stesse non vi è una struttura portante continua (esempio soletta), o a 140 cm con lastre spesse 6,5 mm e struttura continua sottostante.

Nelle parti a sbalzo, le lastre non devono sporgere oltre i 25 cm se lo sbalzo è sul vuoto o 35 cm se vi è sottostante struttura continua. Così pure non sono ammesse parti terminali laterali senza sostegno.

La direzione di posa deve essere opposta a quella dei venti di pioggia dominanti. È possibile l'uso di sigillanti, nei giunti di sovrapposizione, in condizioni ambientali o di posa sfavorevoli (pendenze inferiori al 15%, ecc.).

Il fissaggio delle lastre sull'orditura viene eseguito a mezzo di viti munite di rondella e guarnizione (su orditura lignea) o con ganci filettati (su struttura metallica). Viti e ganci vanno applicati ad una distanza non inferiore ad un minimo dalle estremità delle lastre per evitare inneschi di fessurazioni o rotture sotto sforzo.

I fori di fissaggio vanno praticati di dimensioni maggiori di quelli della vite o del gancio, per permettere che gli assestamenti della struttura non coinvolgano le lastre. Il numero di fissaggi è in funzione della lunghezza della lastra, della sua posizione (centrale o di bordo), della zona climatica (più o meno ventosa).

I suddetti principi valgono anche per le lastre in materia plastica rinforzata, quelle fibrobituminose, ecc.

Le coperture in elementi ondulati di materia plastica rinforzata con fibre di vetro possono essere fornite in lastre oppure in rotoli da svolgere in senso parallelo alla linea di gronda. La sporgenza massima della lastra dai listelli di supporto è di 10 cm, limite valido anche per le lastre fibrobituminose.

Le lastre in materia plastica possono essere fornite sia opache sia traslucide; queste ultime possono essere integrate con sistemi di captazione dell'energia solare.

Coperture in tegole bituminose (tegole canadesi) - Le coperture in tegole bituminose vengono posate su un supporto continuo, assito ligneo o soletta in cemento armato o similari. In genere, per pendenze ridotte, comprese tra 20% e 30%, la posa avviene su un preventivo sottostrato di impermeabilizzazione (es. cartonfeltro bituminato cilindrato) posato in senso parallelo alla linea di gronda e con sormonti. Il fissaggio può avvenire mediante chiodatura,

se su supporto chiodabile o riscaldando a fiamma la superficie inferiore delle tegole. Per i punti particolari si possono anche usare adesivi.

- Coperture in lastre di lamiera di rame, di alluminio, di acciaio inossidabile, ecc. Il piano di posa è in genere una superficie piana, soletta, tavolato continuo, ecc., con eventuale interposizione di uno strato di separazione (cartonfeltro, ecc.). I giunti laterali sono ad aggraffatura (su squadrette di ancoraggio) o a tassello con coprigiunti, in taluni casi a saldatura. Gli eventuali giunti orizzontali sono a sovrapposizione ed aggraffatura, ad aggraffatura, a sovrapposizione e saldatura.
- Coperture in lastre metalliche nervate di grandi dimensioni (grecate, ondulate, ecc.). Tali lastre possono essere fornite con lunghezza uguale a quella di falda (sino a 10-14 cm) e permettono pendenze molto ridotte (7 8%) o inferiori se la falda risulta di lunghezza minore. Le sovrapposizioni sono in questo caso solo laterali e occorrerà effettuare la posa in senso opposto alla direzione dei venti dominanti. È possibile utilizzare guarnizioni per migliorare la tenuta dell'acqua.

Tutte le lastre sono fissate tramite appositi ancoraggi (viti, ecc.) generalmente posti in corrispondenza della sommità delle nervature, muniti di cappellotti e guarnizioni. L'elemento di supporto è costituito da arcarecci metallici o in legno.

Gli aggetti massimi delle lastre dai supporti sono di circa 30 cm e i minimi di circa 10 cm (per permettere una zona sufficiente per l'ancoraggio).

Per evitare la possibilità di condensazioni, poiché le lastre non permettono la diffusione del vapore, occorre predisporre una ventilazione sotto le lastre, ciò risulta valido anche per ridurre il calore estivo.

- Coperture in pannelli metallici coibentati a sandwich Si tratta di pannelli coibentati formati da due lastre metalliche e interposto strato isolante costituite da schiume rigide sintetiche ottenute mediante iniezione o colata tra le due lastre. Gli elementi sono autoportanti e richiedono appoggi piuttosto distanziati.
- Coperture in tegole metalliche Gli elementi sono in rame, acciaio inossidabile, alluminio, ecc., di piccole dimensioni e di forma poligonale. Sono a semplice e doppia profilatura e vengono fissati con chiodi, viti o rivetti su arcarecci in legno o metallo utilizzando anche particolari supporti distanziatori. È opportuno prevedere una ventilazione sottotegola.

Coperture praticabili (coperture a terrazzo) e non praticabili non ventilate

Il solaio di copertura dell'ultimo piano a terrazzo sarà eseguito in piano, mentre le pendenze da darsi al terrazzo, non inferiori al 3% verso i punti di raccolta delle acque meteoriche (1,5-2% nel caso di coperture praticabili) saranno raggiunte mediante inclinazione del lastrico di copertura da eseguirsi in smalto, gretonato e comunque con materiali aventi le stesse caratteristiche del solaio.

Strati di pendenza realizzati con massetti in calcestruzzo alleggerito, di supporto ad una barriera al vapore, si comportano come un ulteriore strato di isolamento e possono dare origine a condensazione. Lo strato di protezione in ghiaia è applicabile su pendenze non superiori al 9%.

L'elemento di supporto deve essere in grado di accogliere gli elementi di isolamento e di tenuta, cioè deve essere piano o con eventuale strato di regolarizzazione, secco, senza tracce di olii, pitture o elementi che possano produrre danni agli strati superiori o limitare l'eventuale adesione richiesta.

L'elemento di isolamento termico deve essere preferibilmente sempre posto al di sopra del supporto strutturale. Al di sotto dell'elemento isolante andrà posta una barriera al vapore. I materiali isolanti posti sulle coperture praticabili devono poter sopportare sovraccarichi notevoli. Perciò andrà rivolta particolare cura nel caso di adozione di quadrotti prefabbricati di grandi dimensioni posati su supporti o in presenza di carichi concentrati (fioriere, ecc.). La resistenza minima a compressione dei materiali isolanti dovrà essere superiore a 20 N/cm³ al 10% di deformazione.

È preferibile che l'elemento isolante sia formato da due strati di elementi con giunti sfalsati o da un solo strato ad incastro.

La massima attenzione va rivolta agli effetti provocati dai prodotti o tecniche di incollaggio degli elementi di tenuta dell'elemento isolante che può venire deformato o alterato da particolari sostanze chimiche o dalla temperatura sviluppata durante l'incollaggio a caldo o la saldatura delle membrane.

È da evitare il ristagno di umidità tra l'elemento di tenuta e l'elemento isolante e lo strato di barriera al vapore. I materiali isolanti andranno protetti dall'umidità prima e durante le operazioni di posa in opera.

L'incollaggio dell'elemento di tenuta sull'elemento isolante va effettuato per punti o per linee continue, quando non sia previsto uno strato di scorrimento. Eventuali ispessimenti dell'elemento di tenuta in corrispondenza di raccordi, camini, bocchettoni di scolo delle acque, ecc., richiedono speciali conformazioni di supporto in modo da evitare il ristagno d'acqua. Nel caso di impiego di elementi di tenuta bituminosi, le sovrapposizioni dei giunti devono avere una larghezza minima di 10 cm. Nel caso di manto pluristrato gli strati devono essere incollati tra loro su tutta la superficie.

L'incollaggio a caldo deve essere realizzato con tempo secco e temperatura esterna non inferiore a 5°C. Gli strati possono essere messi in opera per t eli paralleli o a teli incrociati (per membrane anisotrope) avendo cura di sfalsare i giunti di due strati paralleli successivi.

Gli strati di tenuta devono essere perfettamente integri, soprattutto in prossimità di raccordi, giunti o cambiamenti di direzione dello strato.

Il raccordo dell'elemento di tenuta e della barriera al vapore con le superfici verticali o in corrispondenza del bordo del tetto deve essere di altezza superiore a quella massima prevedibilmente raggiungibile dall'acqua (e comunque minimo 15 cm a partire dal livello finito della copertura o maggiore nel caso di precipitazioni abbondanti, neve o venti forti).

Lo strato di barriera al vapore deve essere solidale con lo strato di supporto ed essere messo in opera contemporaneamente allo strato isolante e congiunto perimetralmente con l'elemento di tenuta. È raccomandabile l'adozione di sistemi di raccordo dotati di giunti di dilatazione.

La parte di raccordo verticale dell'elemento di tenuta va protetta, soprattutto in corrispondenza dell'attacco al supporto, da elementi che deviino il flusso dell'acqua. Anche per tali strati di protezione è raccomandabile l'inserimento di giunti di dilatazione. Il fissaggio dello strato di tenuta va effettuato con dispositivi distanziati con regolarità.

Il collegamento tra la superficie verticale e quella orizzontale di supporto dell'elemento di tenuta non deve presentare spigoli vivi, ma deve essere accompagnato da spessori inclinati realizzati dall'elemento isolante o da altri dispositivi aventi comunque superficie regolare.

Lo strato di separazione, quando praticabile, non deve essere solidale con lo strato di tenuta per non trasmettergli dilatazioni termiche: vanno quindi previsti degli strati di scorrimento.

Prima di uno strato di protezione in ghiaia deve essere previsto uno strato di separazione in tessuto non tessuto. La ghiaia per realizzare lo strato di protezione deve avere granulometria 16-32 mm e non essere di frantoio.

Gli strati di protezione praticabili continui (massetti, pavimenti su massetto) devono essere frazionati in elementi di lunghezza non superiore a 1,5 m ed essere staccati dalle superfici verticali (muretti, camini, bordi) da opportuni giunti sul perimetro. La separazione dovrà raggiungere lo strato d'indipendenza ed essere eventualmente sigillata con materiali elastici imputrescibili.

Gli strati di protezione praticabile realizzati con massetti o pavimentazioni su massetto dovranno avere uno spessore minimo di 5 cm, eventualmente armato con rete elettrosaldata di ripartizione nel caso di notevoli carichi statici.

Gli sfoghi dell'acqua meteorica, così come i canali devono essere distanziati dalle superfici verticali o altre emergenze di almeno un metro, per evitare che l'accumulo di depositi dovuto dal vento li possa ostruire e permettere inoltre un adeguato raccordo dell'elemento di tenuta. I dispositivi di evacuazione delle acque devono essere collegati completamente all'elemento di tenuta mediante materiali estensibili, incollandoli sull'elemento di tenuta solo sulla parte esterna.

In corrispondenza delle soglie di porte e porte finestre su coperture praticabili, l'elemento di tenuta dovrà avere un'altezza tale da impedire l'ingresso dell'acqua nella peggiore delle situazioni prevedibili. Nel caso non sia possibile ricavare soglie (passaggio di carrozzine, ecc.) dovrà essere previsto l'arretramento della porta e il collegamento con il piano della copertura mediante una rampa. L'altezza delle soglie dipenderà dallo spessore degli strati posti sulla copertura.

Nel caso di fioriere situate al bordo delle coperture (terrazze, logge) esse devono essere impermeabilizzate in modo durevole, oppure va previsto che l'elemento di tenuta prosegua al di sotto di esse, prevedendone la loro possibile amovibilità.

Coperture piane ventilate

Al di sopra del solaio inferiore andrà posto un elemento isolante avente resistenza termica non inferiore a 1,5 mq h °C/Kcal a doppio strato con giunti sfalsati o monostrato con giunti ad incastro. Sono da evitare materiali leggeri sfusi quando possono essere rimossi dalle correnti d'aria.

Lo spazio di ventilazione dovrà avere, nel punto più basso dell'intercapedine, un'altezza minima pari a 10 cm. Sono comunque da preferire altezze da 30 a 60 cm e pendenze di circa il 9% (pendenza massima per la collocazione di uno strato di protezione in ghiaia). Sono preferibili le aperture continue (fessure, feritoie) a quelle discontinue (fori, aperture distanziate). Le aperture dovranno permettere un contatto diretto tra lo spazio ventilato e l'esterno, e dovranno essere attrezzate con reti di protezione antintrusione.

Quando il supporto dell'elemento di tenuta è realizzato con elementi di grande dimensione, in corrispondenza delle giunzioni di detti elementi, l'elemento di tenuta non andrà incollato.

Il supporto dell'elemento di tenuta andrà sempre realizzato con materiali resistenti all'umidità (ad esempio pannelli in fibre di legno mineralizzato o tavelle). Sopra tale lastrico verrà eseguita una spianata di malta idraulica dello spessore di 2 cm (camicia di calce) e quindi la spianata di asfalto, che sarà data in due strati successivi dello spessore ciascuno di 8 mm, dati l'uno in senso normale all'altro, e ciò allo scopo di evitare ogni infiltrazione d'acqua.

Anche le pareti perimetrali del terrazzo verranno protette, nella parte inferiore, previamente preparate con intonaco grezzo, mediante un'applicazione verticale di asfalto dello spessore di 8 mm e dell'altezza non inferiore a 20 cm. raccordata opportunamente con gli strati suddetti.

Sulla spianata di asfalto sarà poi applicata direttamente (senza massetto) la pavimentazione.

Art. XVII Partizioni interne

a) Partizione interna verticale

Blocchi di gesso, latero-gesso e in calcestruzzo leggero vibrocompresso

I tramezzi possono essere posati sia sulla soletta al rustico, sia sul pavimento finito. Dopo un accurato tracciamento dello sviluppo previsto dal tramezzo, avviene la preparazione dell'adesivo a base di gesso rispettando le proporzioni indicate dal fabbricante e generalmente riportate sulle confezioni del prodotto, mescolando eventualmente mediante mescolatori elettrici, fino ad ottenere un impasto omogeneo e semifluido.

Si stende quindi un primo cordolo continuo di adesivo sul quale si posa la prima fila di blocchi che deve essere accuratamente messa in bolla.

Le file successive si posano sovrapponendo i blocchi gli uni sugli altri avendo cura di verificare che le sagomature dei bordi siano prive di scaglie e di frammenti che non consentano un corretto accoppiamento.

L'adesivo deve essere distribuito accuratamente su tutta la lunghezza dei bordi, sia longitudinalmente che trasversalmente, di ogni pannello, in modo tale che esso risulti presente su tutti e quattro i lati dei blocchi. Eventuali eccedenze di adesivo vengono eliminate con una spatola.

La posa dei giunti deve avvenire a giunti sfalsati, provvedendo al taglio degli elementi mediante l'uso di una taglierina ad acqua, un flessibile o semplicemente un martello adatto.

La posa del controtelaio si esegue a tramezzatura ultimata, creando nel vano previsto le sedi per le zanche di fissaggio del controtelaio e riempiendo il vuoto con malta cementizia. Le porte in plastica o in metallo devono invece essere posizionate prima della realizzazione del tramezzo che andrà in seguito a legarsi ai montanti del telaio da entrambi i lati.

Il passaggio degli impianti avverrà sotto traccia e, dove possibile, utilizzando i vuoti interni dei singoli blocchi. La realizzazione delle tracce può avvenire solo mediante scanalatori elettrici, sia in modo tradizionale con martello e scalpello. Le tracce saranno poi chiuse con malta cementizia. Occorre prestare attenzione alla chiusura di tracce contenenti l'impianto idrico e termico. I tubi dovranno essere adeguatamente protetti dai fenomeni corrosivi che possono verificarsi utilizzando scagliola.

L'operazione conclusiva che consente di ottenere una superficie liscia e piana adatta ai successivi lavori di tinteggiatura o di posa della tappezzeria, è la rasatura da eseguirsi con adesivi a base di gesso ed eventualmente previa applicazione di primer. Nel caso di posa di rivestimenti ceramici, la rasatura non è necessaria; è sufficiente l'applicazione del primer.

Le altezze ammissibili per le pareti costituite da blocchi in latero-gesso sono riportate nella tabella seguente.

Spessore parete (cm)	Altezza parete (m)	Lunghezza parete (m)
6	3	6
5	4	6.50
10	5	7
12	6.50	7.50

Lastre di gesso rinforzato

Prima di iniziare le operazioni di posa della struttura è necessario procedere al tracciamento, individuando le superfici delle varie parti dell'edificio alle quali la tramezzatura dovrà raccordarsi. Le canalizzazioni relative agli impianti devono di preferenza essere posate prima del montaggio della struttura.

La guida deve essere fissata al suolo mediante fissaggio meccanico, ogni 50-60 cm, o di incollaggio con adesivi poliuretanici a due componenti da miscelare o adesivi in solvente a base di elastomeri. Nel caso di posa su solette al rustico è opportuno interporre tra la guida e la soletta, una striscia di membrana bituminosa o sintetica di larghezza sufficiente per superare, dopo la piega di risvolto, il livello del pavimento finito di circa 2 cm. Ciò ai fini della protezione da infiltrazioni di acqua durante la posa dei pavimenti.

La posa della guida superiore avviene in modo analogo a quello previsto per la guida superiore.

In corrispondenza di vani delle porte, la guida deve essere interrotta a meno che non sia previsto che essa contorni tutto il vano. Le guide devono essere in questo caso tagliate in modo tale da prevedere una eccedenza di 15-20 cm rispetto all'ultimo punto di fissaggio.

I montanti vengono tagliati con lunghezze inferiori di 1 cm a quella esistente fra guida superiore ed inferiore e vengono posizionati in modo tale che la loro apertura sia disposta nel senso di posa delle lastre ed il loro interasse sia compreso fra 40 e 60 cm. L'asolatura per agevolare il passaggio di eventuali cavi deve essere praticata nella loro parte inferiore; solo in corrispondenza dei vani porta essi devono venire capovolti per avere l'asolatura in alto.

Le lastre devono essere posizionate a giunti sfalsati ed in modo tale da lasciare alla base una distanza di circa 1 cm. Il loro fissaggio all'orditura avviene mediante viti autofilettanti in ragione di una ogni 25-30 cm in verticale ed i giunti fra le lastre adiacenti vengono in seguito trattati procedendo al riempimento dell'assottigliamento dopo aver applicato, con adesivo a base di gesso, uno speciale nastro di armatura.

b) Partizione interna orizzontale

Solai

Per i solai interni valgono le stesse norme e prescrizioni descritte per le strutture portanti orizzontali.

Costruzione delle volte

Le volte in genere saranno costruite sopra solide armature, formate secondo le migliori regole, ed in guisa che il manto o tamburo assuma la conformazione assegnata all'intradosso degli archi, volte o piattabande, salvo a tenere conto di quel tanto in più, nel sesto delle centine, che si crederà necessario a compenso del presumibile abbassamento della volta dopo il disarmo.

È data facoltà all'Impresa di adottare nella formazione delle armature suddette quel sistema che crederà di sua convenienza, purché presenti la necessaria stabilità e sicurezza, avendo l'Impresa l'intera responsabilità della loro riuscita con l'obbligo di demolire e rifare a sue spese i volti che, in seguito al disarmo, avessero a deformarsi o perdere la voluta robustezza.

Ultimata l'armatura e diligentemente preparate le superfici d'imposta delle volte, saranno collocati in opera i conci di pietra od i mattoni con le connessioni disposte nella direzione precisa dei successivi raggi di curvatura dell'intradosso, curando di far procedere la costruzione gradatamente e di conserva sui due fianchi. Dovranno inoltre essere sovraccaricate le centine alla chiave per impedire lo sfiancamento impiegando a tal uopo lo stesso materiale destinato alla costruzione della volta.

In quanto alle connessioni, saranno mantenuti i limiti di larghezza fissati negli articoli precedenti secondo le diverse categorie di murature.

Per le volte in pietrame si impiegheranno pietre di forma, per quanto possibile, regolare, aventi i letti di posa o naturalmente piani o resi grossolanamente tali con la mazza o col martello.

Nelle volte con mattoni di forma ordinaria le connessioni non dovranno mai eccedere la larghezza di 5 mm all'intradosso e di 10 mm all'estradosso. A tal uopo l'Impresa per le volte di piccolo raggio, è obbligata, senza diritto ad alcun compenso speciale, a tagliare diligentemente i mattoni per renderli cuneiformi, ovvero a provvedere, pure senza speciale compenso, mattoni speciali lavorati a raggio.

Si avrà la maggiore cura tanto nella scelta dei materiali, quanto nel loro collocamento in opera, e nell'unire con malta gli ultimi filari alla chiave si useranno metodi suggeriti dall'arte, onde abbia a risultare un lavoro in ogni parte perfetto.

Le imposte degli archi, piattabande e volte, dovranno essere eseguite contemporaneamente ai muri e dovranno riuscire bene collegate ad essi. La larghezza delle imposte stesse non dovrà in nessun caso essere inferiore a 20 cm. Occorrendo impostare volte od archi su piedritti esistenti, si dovranno

preparare preventivamente i piani di imposta mediante i lavori che saranno necessari, e che sono compresi fra gli oneri a carico dell'Impresa.

Per le volte oblique, i mattoni debbono essere tagliati sulle teste e disposti giusta la linea dell'apparecchio prescritto.

Nelle murature di mattoni pieni, messi in foglio o di costa, murati con cemento a pronta presa per formazione di volte a botte, a schifo, a crociera, a padiglione, a vela, ecc. e per volte di scale alla romana, saranno seguite tutte le norme e cautele che l'arte specializzata prescrive, in modo da ottenere una perfetta riuscita dei lavori.

Sulle volte saranno formati i regolari rinfianchi fino al livello dell'estradosso in chiave, con buona muratura in malta in corrispondenza delle pareti superiori e con calcestruzzo per il resto.

Le sopraindicate volte in foglio dovranno essere rinforzate, ove occorra, da ghiere o fasce della grossezza di una testa di mattoni collegate alla volta durante la costruzione.

Per le volte e gli archi di qualsiasi natura l'Impresa non procederà al disarmo senza il preventivo assenso della Direzione dei Lavori. Le centinature saranno abbassate lentamente ed uniformemente per tutta la lunghezza, evitando soprattutto che per una parte il volto rimanga privo di appoggio, mentre l'altra si trovi tuttavia sostenuto dall'armatura.

c) Partizione interna inclinata

Scale interne

Secondo quanto previsto dal D.M. 14 giugno 1989, n. 236, "Regolamento di attuazione dell'art. 1 della legge 9 gennaio 1989, n. 13 - Prescrizioni tecniche necessarie a garantire l'accessibilità, l'adattabilità e la visitabilità degli edifici privati e di edilizia residenziale pubblica sovvenzionata e agevolata", le scale devono presentare un andamento regolare ed omogeneo per tutto il loro sviluppo. Ove questo non risulti possibile è necessario mediare ogni variazione del loro andamento per mezzo di ripiani di adeguate dimensioni. Per ogni rampa di scale i gradini devono avere la stessa alzata e pedata. Le rampe devono contenere possibilmente lo stesso numero di gradini, caratterizzati da un corretto rapporto tra alzata e pedata.

Le porte con apertura verso la scala devono avere uno spazio antistante di adeguata profondità.

I gradini delle scale devono avere una pedata antisdrucciolevole a pianta preferibilmente rettangolare e con un profilo preferibilmente continuo a spigoli arrotondati.

Le scale devono essere dotate di parapetto atto a costituire difesa verso il vuoto e di corrimano. I corrimano devono essere di facile prendibilità e realizzati con materiale resistente e non tagliente.

La larghezza delle rampe e dei pianerottoli deve permettere il passaggio contemporaneo di due persone ed il passaggio orizzontale di una barella con una inclinazione massima del 15 per cento lungo l'asse longitudinale. Le scale comuni e quelle degli edifici aperti al pubblico devono avere i seguenti ulteriori requisiti:

- la lunghezza delle rampe deve essere contenuta; in caso contrario si deve interporre un ripiano in grado di arrestare la caduta di un corpo umano;
- il corrimano deve essere installato su entrambi i lati;
- in caso di utenza prevalente di bambini si deve prevedere un secondo corrimano ad altezza proporzionata;
- è preferibile una illuminazione naturale laterale. Si deve dotare la scala di una illuminazione artificiale, anche essa laterale, con comando individuabile al buio e disposto su ogni pianerottolo;

le rampe di scale devono essere facilmente percepibili, anche per i non vedenti.

Le rampe di scale che costituiscono parte comune o siano di uso pubblico devono avere una larghezza minima di 1,20 m, avere una pendenza limitata e costante per l'intero sviluppo della scala. I gradini devono essere caratterizzati da un corretto rapporto tra alzata e pedata (pedata minimo 30 cm): la somma tra il doppio dell'alzata e la pedata deve essere compresa tra 62-64 cm.

Il profilo del gradino deve presentare preferibilmente un disegno continuo a spigoli arrotondati, con sottogrado inclinato rispetto al grado, e formante con esso un angolo di circa 75°-80°.

In caso di disegno discontinuo, l'aggetto del grado rispetto al sottogrado deve essere compreso fra un minimo di 2 cm e un massimo di 2,5 cm.

Un segnale al pavimento (fascia di materiale diverso o comunque percepibile anche da parte dei non vedenti), situato almeno a 30 cm dal primo e dall'ultimo scalino, deve indicare l'inizio e la fine della rampa.

Il parapetto che costituisce la difesa verso il vuoto deve avere un'altezza minima di 1,00 m ed essere inattraversabile da una sfera di diametro di cm 10. In corrispondenza delle interruzioni del corrimano, questo deve essere prolungato di 30 cm oltre il primo e l'ultimo gradino. Il corrimano deve essere posto ad una altezza compresa tra 0,90-1 m. Nel caso in cui è opportuno prevedere un secondo corrimano, questo deve essere posto ad una altezza di 0,75 m. Il corrimano su parapetto o parete piena deve essere distante da essi almeno 4 cm.

Le rampe di scale che non costituiscono parte comune e non sono di uso pubblico devono avere una larghezza minima di 0,80 m. In tal caso devono comunque essere rispettati il già citato rapporto tra alzata e pedata (in questo caso minimo 25 cm), e l'altezza minima del parapetto.

Scale in cemento armato

La loro realizzazione richiede l'impiego delle casseforme entro le quali viene colato il calcestruzzo. Le scale in cemento armato possono distinguersi in:

- Scale a sbalzo: in esse la rampa risulta costituita dall'insieme dei gradini uscenti a sbalzo dalla struttura portante (muratura della gabbia, colonna centrale, ovvero da una trave a ginocchio in c.a. che poi viene mascherata dai muri di tamponamento). L'ossatura dei gradini che costituiscono la rampa vanno realizzati contemporaneamente alla struttura portante, generalmente in c.a., costituendo quindi un unico corpo monolitico.
 - Se la muratura portante può essere composta anche con mattoni o blocchi in laterizio, l'esecuzione della muratura viene interrotta temporaneamente, a livello del piano d'intradosso della rampa, per consentire l'appoggio dei gradini e dei pianerottoli. All'incastro della scala si perverrà dopo il getto del calcestruzzo, entro l'apposita cassaforma, a muratura ultimata.
 - In entrambi i casi, al fine di costituire un collegamento fra tutte le mensole, si provvederà a dotare la rampa di un proprio spessore statico non inferiore a 6 cm, chiamato anima della rampa, nel quale vengono disposti i ferri ripartitori.
- Scale a soletta continua: la rampa è formata da una soletta continua in c.a. (a ginocchio o curvilinea), sulla quale sono appoggiati i gradini; questi ultimi si possono realizzare contemporaneamente alla soletta oppure in un secondo tempo con laterizi forati o conglomerato cementizio leggero. Lo spessore della soletta sarà fornito dai relativi calcoli statici; comunque è consigliabile che esso non sia inferiore a cm 10.

Scale prefabbricate

Sia la prefabbricazione totale che quella parziale devono sottostare alle seguenti condizioni essenziali:

- la scala deve essere formata dal minor numero di componenti possibile;
- i vari componenti devono poter essere montati, nei limiti del possibile, senza necessità di casseri o di ulteriore manodopera per finitura in cantiere;
- deve poter essere posta in opera in tempo utile per assicurare la circolazione verticale del personale addetto al cantiere e dei materiali;
- deve essere resistente all'usura di cantiere in modo da poter essere consegnata in condizioni perfette.

Una scala prefabbricata esclusivamente ad uso privato può essere progettata con un'alzata di cm 20 ed una pedata di 25 cm e consente di salire a 3 metri con 15 passi. Considerando la formula ergonomica 2a + p = 63-65, una scala prefabbricata può arrivare al parametro 65 con un ingombro minore rispetto ad una rampa rettilinea: quest'ultima infatti occuperà circa 4,60 m² di superficie contro i 3,1 m² della scala prefabbricata.

Scale prefabbricate in metallo

Le scale prefabbricate in metallo sono integralmente prefabbricate in officina e vengono montate in cantiere con elementi gradino o a rampe intere. Il rivestimento definitivo dei gradini viene montato solo all'ultimo momento poiché, per il cantiere, viene utilizzato il piano in lamiera dei gradini. Nei tipi più avanzati si arriva all'eliminazione totale delle saldature in sito, il che permette di avere già predisposta fin dall'officina la verniciatura o la finitura definitiva delle parti metalliche, mentre la protezione in cantiere può venir affidata a pellicole asportabili al momento della consegna. Con questi materiali si possono costruire scale di sicurezza antincendio di ogni tipologia e misura, garantendo quindi la ricercata flessibilità progettuale.

Scale prefabbricate in calcestruzzo

Le scale prefabbricate in calcestruzzo possono venir prefabbricate in officina o in cantiere ed a loro volta possono essere distinte in due tipi fondamentali:

- ad elementi di prefabbricazione pesante, che comporta al massimo quattro pezzi da montare per ogni piano e cioè due rampe, un pianerottolo intermedio ed il pianerottolo d'arrivo. Con questo sistema sorgono solo problemi di montaggio date le dimensioni ed il peso dei singoli elementi, ed inoltre vi è una certa rigidità dimensionale, rigidità che aumenta con il diminuire del numero dei componenti;
- a gradini e guide di sostegno indipendenti, che offre alcuni vantaggi: montare in cantiere solo le guide a cremagliera con dei gradini provvisori in legno, rimandando la posa dei gradini definitivi (completamente rifiniti) solo al momento della consegna. Un altro vantaggio consiste nella possibilità di avere dei sostegni in calcestruzzo a faccia vista perfetti solo se le casseforme sono curate, mentre i gradini possono essere realizzati in materiali differenti come marmo, metallo, legno, materie plastiche, calcestruzzo, ecc. e possono essere presi singolarmente o variamente combinati tra loro. Anche il montaggio è semplificato per quanto riguarda le dimensioni ed il peso dei componenti, mentre le misure possono, entro certi limiti ed a seconda del sistema adottato, avere una buona elasticità.

Si può anche attuare solo una prefabbricazione parziale, sia in officina che in cantiere, usando solo i gradini prefabbricati costituiti da svariati materiali e messi in opera durante la costruzione sia se il gradino è un pezzo monolitico completo di finitura, sia se il gradino è composto da un supporto e da un rivestimento. Questo sistema è più oneroso per la maggior incidenza di manodopera e di opere secondarie che comporta, ma è più elastico dimensionalmente, ed inoltre può essere conveniente dal punto di vista economico nel caso di costruzioni di mole modesta.

Scale prefabbricate modulari (scale a giorno)

Particolarmente indicate nelle ristrutturazioni, le scale modulari offrono anche vantaggi nel campo delle nuove costruzioni per la loro velocità (l'intero ciclo delle operazioni di montaggio si svolge in sei-otto ore) e semplicità di posa. Il sistema modulare consente di montare scale senza interventi sulla struttura.

La colonna vertebrale sarà costituita da una serie di elementi in acciaio stampato che, uniti tra loro, determinano la struttura di supporto dei gradini. Gli elementi consentono una libera regolazione in orizzontale e in verticale, che permette una realizzazione di scale con qualsiasi forma: a chiocciola, rettilinea, ellittica, a esse.

In genere si realizzano due elementi per consentire il fissaggio dell'intera struttura al pavimento ed al solaio.

I gradini possono essere realizzati in legno lamellare, pigmentati in tonalità diverse e finiti con vernici protettive. Sono predisposti per il fissaggio alla struttura portante e per l'inserimento delle colonnine di ringhiera e sono disponibili in cinque larghezze diverse: 640, 740, 840, 940, 1040 mm, con profondità fino a 315 mm. La pedata è di 255 mm per tutti i gradini, escluso l'ultimo che misura 315 mm. Inoltre i gradini vengono coperti con apposite pedane antisdrucciolo ed antirumore.

Il corrimano può essere in materia plastica, ed è dotato di un'anima flessibile interna in metallo che permette al pezzo di assumere qualsiasi forma e curvatura.

Prima di iniziare l'operazione, occorre misurare la distanza tra soletta e pavimento, così da poter calcolare l'esatta dimensione delle alzate. La posa inizia sempre dal solaio.

Le operazioni, che si ripetono identiche per ogni elemento, si articolano in:

- montaggio provvisorio del supporto e del gradino: alla soletta va fissata una piastra dotata di due prigionieri mobili ai quali si fissa il supporto che si appoggia e si assicura con due dadi da non stringere definitivamente. Al supporto va poi fissato il gradino, tramite cinque bulloni con testa a brugola;
- misurazione dell'alzata di un gradino rispetto a quello superiore: è necessario misurare con precisione il parallelismo e la distanza tra la soletta e il gradino agendo sui dadi del supporto per compensare eventuali differenze;
- fissaggio definitivo del supporto appena ottenuta la posizione desiderata;
- smontaggio dell'ultimo gradino per l'inserimento del supporto successivo infilato a baionetta da sotto e bloccato con i due elementi appositi.

Per aiutarsi nelle misurazioni è bene infilare nei gradini le colonnine dei corrimano che, attraversando due gradini successivi, consentono di fissarne la reciproca posizione con precisione.

Ogni tre o quattro gradini montati è bene sistemare un sostegno che sorregga il peso della porzione di scala, evitando flessioni che potrebbero compromettere la corretta messa in opera della sezione successiva. Si procede così fino all'ultimo supporto, che incorpora la piastra di fissaggio al pavimento. Anche in questo caso le operazioni sono analoghe alle precedenti: dopo aver montato l'ultimo gradino e dopo aver determinato le misure esatte, lo si asporta per consentire di praticare i cinque fori al pavimento.

Terminato il fissaggio della piastra si procede verificando di nuovo, con una livella o bolla, la planarità di ogni singolo gradino, che solo a questo punto può essere fissato stringendo i quattro bulloni a brugola. La struttura della scala è così terminata: si eliminano adesso i sostegni e si completano gli elementi di finitura. Innanzitutto è necessario fissare le staffette di appoggio, che servono a scaricare le flessioni orizzontali alla parete senza che le forze torsionali gravino sulla spinta dorsale della scala. Le piccole staffe sono costituite da un tubetto metallico, dello stesso diametro delle colonnine del corrimano, tagliato a misura e fissato, da un lato, alla parete con tre

tasselli a pressione, dall'altro all'elemento che collega tra loro lateralmente i gradini. Un'altra staffa di collegamento va fissata tra le colonnine del corrimano ogni volta che questo si interrompe per seguire la curvatura della scala. Simili alle precedenti, le staffe si fissano tramite due pinze con bloccaggio dato da una vite a brugola.

Successivamente va completato il corrimano. Con una vite si assicurano alle colonnine le piastrine di aggancio su cui vanno fissati i moduli corrimano tagliati a misura. Le ultime operazioni consistono nell'inserimento di tappi di materiale plastico a chiusura degli alloggiamenti degli occhielli nei gradini, e nell'incollaggio delle pedane antisdrucciolo. Queste ultime, fornite dall'azienda già a misura, vanno applicate con due strisce di nastro bi-adesivo e contribuiscono a riparare il gradino da eventuali scheggiature.

Scale in legno

Questo tipo di scale si realizza con legno dolce (essenza tenera) o legno forte (essenza dura), o anche ambedue le qualità di legno insieme, utilizzando legno forte (più costoso) per le parti più soggette a consumo come le pedate, e legno dolce (più economico) per le altre parti come le alzate.

Le scale in legno si distinguono in:

- scale con gradini massicci, costruite con lo stesso principio di quelle in pietra, con gradini di legno massicci che sono sostenuti da fianchi aventi la forma di travetti. Le teste dei gradini possono rimanere visibili, oppure venire coperte con tavole che formano una specie di sponda (cosciali o fianchi);
- scale a sole pedate, cioè con gradini costituiti da semplici assi incastrate nei fianchi. Sono costruite per lo più con legno dolce e destinate a locali secondari;
- scale con gradini comuni costituiti da alzate e da pedate calettate tra loro ed incastrate nei fianchi. Il collegamento dei gradini con la struttura portante è costituita da cosciali, mentre quello tra gradino e gradino è costituito da spinotti metallici. Le pedate avranno uno spessore di cm 4-6; lo spigolo anteriore può essere fornito di un profilo curvilineo, sporgente da 4 a 6 cm dalle alzate. È preferibile che lo spigolo posteriore delle pedate si trovi nello stesso piano con la faccia posteriore delle alzate, piuttosto che finire contro la faccia anteriore delle alzate, poiché dà luogo ad una giuntura esteticamente poco accettabile. Le alzate saranno costituite da tavole spesse cm 2 ed incastrate nei fianchi come le pedate. I fianchi saranno costituiti da tavoloni spessi da cm 6 a cm 9, la cui larghezza si potrà definire solo dopo aver fissato l'inclinazione della scala poiché il fianco, nel senso verticale, dovrà misurare ancora da cm 5 a cm 6 sopra lo spigolo anteriore di ogni gradino, ed altrettanti sotto lo spigolo posteriore del gradino sottostante.

In base alla posizione dei fianchi si avranno:

- scale con fianchi esterni, che corrono lungo i muri, e saranno assicurati e sostenuti mediante zanche, anche di spessore sottile, fissate nelle connessioni del muro;
- scale con fianchi interni alle murature, che saranno sorretti solo agli estremi;
- scale con gradini sovrapposti ai fianchi. I fianchi saranno disposti a gradinata, e ciascun gradino è fissato con chiodi, o meglio con viti, quindi le teste dei gradini stessi sporgono dai fianchi con lo stesso profilo che hanno sulla fronte. I fianchi avranno uno spessore di cm 10-15; dovranno essere alti, affinché il lato inferiore coincida con il piano del soffitto compiuto, coprendo la giuntura con un listello levigato; oppure si potranno lasciare sporgere dall'intonaco, applicandovi un piccolo listello di coprigiunto.

Le alzate si collegheranno con i gradini a scanalatura, come nelle scale comuni, e si fisseranno con chiodi alle facce verticali dei fianchi. Per evitare poi la giuntura laterale, i fianchi ed i frontalini si

collegheranno con giuntura angolare. Gli elementi verticali che costituiscono il parapetto, saranno incastrati nei gradini, a meno che non debbano essere fissati esternamente ai fianchi stessi.

Il parapetto, costituito dal corrimano e da elementi di protezione potrà essere realizzato in legno oppure in metallo (acciaio) o in altro materiale trasparente, con pannelli o lastre di materiali vari e sarà fissato nella faccia superiore dei fianchi e nella faccia inferiore del corrimano in incavature profonde da due a tre centimetri, e con un incastro a tutto spessore. Qualora il parapetto fosse formato da elementi verticali, allora questi, qualunque sezione abbiano, sono assicurati in fori profondi da due a tre centimetri, incavati nel fianco del corrimano. All'inizio ed alla fine della scala e negli angoli dei ripiani, i parapetti saranno spesso rinforzati con elementi più consistenti (ad esempio colonnine o pilastrini).

L'altezza del parapetto, misurata verticalmente dai gradini alla faccia superiore del corrimano, dovrà essere di cm 90.

Se il corrimano richiede molto impiego di legno, ma non garantisce il giusto grado di resistenza, il parapetto si potrà rinforzare inferiormente con una sottile guida metallica.

Il legno da preferire per i parapetti è quello delle conifere, o di altre essenze che crescano con fusti diritti per cui si potranno ottenere, senza molti scarti, elementi sottili ma robusti. Se la sezione è rotonda o ritorta, allora si dovrà usare un legno forte, e quindi resistente. Il corrimano dovrà essere levigato e quindi sarà di legno forte e compatto, ed avrà una forma tondeggiante per facilitarne la presa con la mano.

La sottofaccia della scala si potrà trattare in diversi modi. Potrà essere lasciata scoperta, e quindi visibile per tutta la scala, levigando la faccia inferiore con la stessa cura usata per quella superiore; oppure si potrà foderare la faccia inferiore con tavole levigate e con listelli. Il legname da adoperare dovrà essere ben secco e stagionato per evitare torsioni o deformazioni.

Le tavole devono essere ricavate dal libro e non dall'alburno, e devono essere il più possibile senza nodi per evitare differenze di usura nelle pedate, che rendono scomoda e pericolosa la scala.

Scale in ferro

Queste scale dovranno sottostare alla normativa antincendio. La struttura portante delle rampe e dei pianerottoli è costituita da travi (longarine) a C o a doppio T, collegate tra loro con saldature e bulloni.

La costruzione richiede l'uso combinato di travi rettilinee e travi sagomate a Z (travi a ginocchio), che si sviluppano attorno a pilastri in profilato di ferro del tipo ad ala larga (HE) posti agli angoli del pozzo e ancorati alla base in basamenti di calcestruzzo armato. La struttura così composta verrà vincolata ai pilastri per mezzo di bulloni, su piastre preventivamente saldate alle estremità delle ali dei pilastri e delle longarine, in corrispondenza dei punti di unione.

Per piegare le travi a ginocchio occorre prima asportare un triangolo di materiale avente base b = 2h tg /2 (dove tg è il rapporto alzata/pedata del gradino ed h è l'altezza del profilato meno lo spessore dell'ala), poi accostare i margini risultanti dal taglio, e infine saldarli.

I ripiani dei gradini e dei pianerottoli sono generalmente realizzati con grigliati o lamiere stampate, fissati entro telai in ferro angolare, a loro volta bullonati alle travi perimetrali.

Scale con soluzione mista

L'ossatura portante delle rampe e dei pianerottoli è costituita da travi in ferro a C, o a doppio T; tra una trave e l'altra si realizza una solettina in calcestruzzo armato, oppure si possono inserire dei tavelloni in laterizio, sui quali viene steso uno strato di conglomerato cementizio dello spessore di 4 cm circa con interposizione della rete d'acciaio elettrosaldata di diametro di mm 4 per la ripartizione dei carichi.

Sopra la struttura della rampa vengono costruiti i gradini al rustico, formati con mattoni forati o altri materiali leggeri. In un secondo tempo si eseguono le operazioni di finitura: rivestimento degli scalini e dei pianerottoli, intonacature delle superfici in vista, posa dello zoccolino e delle ringhiere. Allo scopo di evitare che in prossimità delle putrelle l'intonaco possa essere soggetto a screpolature è opportuno ricoprire le ali con gli appositi copriferri in cotto, ovvero con della rete metallica zincata.

Rampe interne

II D.M. 14 giugno 1989, n. 236, "Regolamento di attuazione dell'art. 1 della legge 9 gennaio 1989, n. 13 - Prescrizioni tecniche necessarie a garantire l'accessibilità, l'adattabilità e la visitabilità degli edifici privati e di edilizia residenziale pubblica sovvenzionata e agevolata", prescrive che la pendenza di una rampa va definita in rapporto alla capacità di una persona su sedia a ruote di superarla e di percorrerla senza affaticamento anche in relazione alla lunghezza della stessa. Si devono interporre ripiani orizzontali di riposo per rampe particolarmente lunghe. Valgono in generale per le rampe accorgimenti analoghi a quelli definiti per le scale.

Non viene considerato accessibile il superamento di un dislivello superiore a 3,20 m ottenuto esclusivamente mediante rampe inclinate poste in successione.

La larghezza minima di una rampa deve essere:

- di 0,90 m per consentire il transito di una persona su sedia a ruote;
- di 1,50 m per consentire l'incrocio di due persone. Ogni 10 m di lunghezza ed in presenza di interruzioni mediante porte, la rampa deve prevedere un ripiano orizzontale di dimensioni minime pari a 1,50 x 1,50 m, ovvero 1,40 x 1,70 m in senso trasversale e 1,70 m in senso longitudinale al verso di marcia, oltre l'ingombro di apertura di eventuali porte.

Qualora al lato della rampa sia presente un parapetto non pieno, la rampa deve avere un cordolo di almeno 10 cm di altezza.

La pendenza delle rampe non deve superare l'8 %. Sono ammesse pendenze superiori, nei casi di adeguamento, rapportate allo sviluppo lineare effettivo della rampa.

Art. XVIII Partizioni esterne

a) Partizione esterna verticale

Per quanto riguarda le partizioni esterne verticali valgono le medesime prescrizioni ed i regolamenti validi per le chiusure verticali e per le partizioni interne verticali.

b) Partizione esterna orizzontale

Balconi e logge

Il D.M. 14 giugno 1989, n. 236, "Regolamento di attuazione dell'art. 1 della legge 9 gennaio 1989, n. 13 - Prescrizioni tecniche necessarie a garantire l'accessibilità, l'adattabilità e la visitabilità degli edifici privati e di edilizia residenziale pubblica sovvenzionata e agevolata", prevede che la soglia interposta tra balcone o terrazza e ambiente interno non deve presentare un dislivello tale da costituire ostacolo al transito di una persona su sedia a ruote.

È vietato l'uso di porte-finestre con traversa orizzontale a pavimento di altezza tale da costituire ostacolo al moto della sedia a ruote. Almeno una porzione di balcone o terrazza, prossima alla porta-finestra, deve avere una profondità tale da consentire la manovra di rotazione della sedia a ruote.

Ove possibile si deve dare preferenza a parapetti che consentano la visuale anche alla persona seduta, garantendo contemporaneamente i requisiti di sicurezza e protezione dalle cadute verso

l'esterno. Il parapetto deve avere una altezza minima di 100 cm ed essere inattraversabile da una sfera di 10 cm di diametro.

Per permettere il cambiamento di direzione, balconi e terrazze dovranno avere almeno uno spazio entro il quale sia inscrivibile una circonferenza di diametro 140 cm.

Passerelle

In base al D.M. 14 giugno 1989, n. 236, "Regolamento di attuazione dell'art. 1 della legge 9 gennaio 1989, n. 13 - Prescrizioni tecniche necessarie a garantire l'accessibilità, l'adattabilità e la visitabilità degli edifici privati e di edilizia residenziale pubblica sovvenzionata e agevolata", i corridoi ed i passaggi devono presentare andamento quanto più possibile continuo e con variazioni di direzione ben evidenziate.

I corridoi non devono presentare variazioni di livello; in caso contrario queste devono essere superate mediante rampe. La larghezza del corridoio e del passaggio deve essere tale da garantire il facile accesso alle unità ambientali da esso servite e in punti non eccessivamente distanti tra loro essere tale da consentire l'inversione di direzione ad una persona su sedia a ruote.

Il corridoio comune posto in corrispondenza di un percorso verticale (quale scala, rampa, ascensore, servoscala, piattaforma elevatrice) deve prevedere una piattaforma di distribuzione come vano di ingresso o piano di arrivo dei collegamenti verticali, dalla quale sia possibile accedere ai vari ambienti, esclusi i locali tecnici, solo tramite percorsi orizzontali.

I corridoi o i percorsi devono avere una larghezza minima di 100 cm, ed avere allargamenti atti a consentire l'inversione di marcia da parte di persona su sedia a ruote. Questi allargamenti devono di preferenza essere posti nelle parti terminali dei corridoi e previsti comunque ogni 10 m di sviluppo lineare degli stessi.

c) Partizione esterna inclinata

Scale in pietra da taglio

Le specie di pietra da usare saranno soprattutto del tipo duro (arenarie, basalto, granito, gneiss, sienite, marmo, calcari, tufo). I gradini dovranno essere massicci, avranno le facce piane lavorate a martellina e se non si tratta di pietre troppo compatte potranno essere levigate. Se la scala dovrà essere vista anche dal di sotto, occorrerà levigare tutte e quattro le facce del gradino, altrimenti ci si limiterà a levigare solo le due a vista.

Soprattutto nel caso di scale all'aperto, occorrerà sigillare bene i giunti perché non possa penetrare l'acqua, che con il gelo può poi smuovere i gradini. È preferibile, inoltre, dotare la pedata di un'inclinazione verso fronte di 1/100 della sua larghezza.

Rampe esterne

Per le rampe esterne valgono le prescrizioni indicate per le rampe interne.

TITOLO VI - PRESCRIZIONI PER IL RIPRISTINO DI STRUTTURE ESISTENTI

Art. XIX Demolizioni

Puntelli ed opere di presidio

Nel caso di demolizioni, rimozioni, consolidamenti in opera, nonché per evitare crolli improvvisi ed assicurare l'integrità fisica degli addetti, devono essere eseguiti puntellamenti, rafforzamenti ed opere simili. Gli organi strutturali provvisori vengono di solito realizzati in legname o in tubi di ferro e più raramente in muratura o c.a. Essi constano di una estremità che deve essere vincolata alla struttura da presidiare, denominata testa, e di un'altra, detta piede, ancorata ad una base d'appoggio interna o esterna alla struttura. I vincoli della testa dipendono dall'azione localizzata che hanno sulla struttura: una superficie poco compatta ed affidabile o la presenza di parti pregiate costringono a trovare artifizi o soluzioni alternative.

La base su cui poggia il piede può essere costituita da elementi dello stesso materiale dei puntelli o, se collocata sul terreno, da plinti fondali, o pali di fondazione. Le strutture di presidio, se devono svolgere un'azione di sostegno (strutture orizzontali), sono costituite da ritti verticali posti a contrasto con la struttura singolarmente, in coppia o in gruppo e da traversi che contrastano l'eventuale slittamento dei ritti. Se invece devono presidiare la struttura contro movimenti di rotazione o traslazione (strutture verticali), sono costituiti da assi inclinati. In questo caso si può operare una distinzione fra:

- puntellatura di contenimento: si tratta di puntelli (di solito lignei) incassati nella muratura,
 messi in opera con cunei e poggianti a terra su una platea di tavolati normali fra loro;
- puntellatura di contenimento e sostegno: si tratta di coppie di travi lignee e collegate fra loro ad intervalli per eliminare tensioni da carico di punta.

I sistemi di puntellamento delle volte e degli archi variano secondo il tipo di struttura e di dissesto; il sistema generalmente utilizzato è quello delle centine. Gli elementi costituenti la puntellazione e/o opere provvisionali devono essere in ragione dei carichi gravanti e degli schemi statici dell'opera.

Art. XX Trattamento di pulitura dei materiali

Preliminare all'intervento conservativo sarà sempre la rimozione delle cause che hanno comportato l'alterazione della materia ponendo particolare attenzione all'eventuale presenza d'acqua.

Tecniche di pulizia

Pulire i materiali significa scegliere quella tecnica la cui azione, calibrata alla reattività ed alla consistenza del litotipo, non comporti alcuno stress chimico-meccanico su materiali già degradati e, quindi, facili a deperirsi maggiormente.

L'intervento di pulitura dovrà eseguirsi dall'alto verso il basso, dopo aver protetto le zone circostanti non interessate e deve poter essere interrotto in qualsiasi momento.

Le tecniche più utilizzate sono:

- a) Pulizia manuale. Viene eseguita con spazzole di saggina o di nylon; le spatole, i raschietti, le carte abrasive ed i trapani dotati di particolari frese in nylon o setola, invece, possono essere utilizzati per la rimozione di consistenti depositi situati in zone poco accessibili.
- b) Pulizia con acqua. La pulizia con acqua può produrre sulle croste:
 - un'azione solvente se i leganti delle incrostazioni sono costituiti da leganti in esse solubili;

- un'azione d'idrolisi se, nebulizzata con appositi atomizzatori, viene lasciata ricadere sulle superfici da pulire. La nebulizzazione avviene attraverso appositi ugelli che dovranno essere posizionati in modo che le goccioline colpiscano la superficie in ricaduta;
- un'azione meccanica se pompata a pressione (2-4 bar). L'acqua scioglie il gesso e la calcite secondaria di ridepositazione, elementi leganti delle croste nere, ed una blanda azione nei confronti della silice, legante delle croste nere sulle rocce silicatiche.

L'acqua deve essere deionizzata in modo da non introdurre eventuali sali nocivi e permettere un controllo sulla desalinizzazione del materiale tramite prove di conducibilità.

Il getto non deve mai raggiungere perpendicolarmente il materiale, ponendo inoltre attenzione alla protezione delle zone circostanti e ad un perfetto drenaggio delle acque di scolo; si userà la minor quantità di acqua possibile onde evitare un imbibimento delle strutture o una fuoriuscita di macchie e di umidità sulle superfici interne.

Questa operazione non deve essere compiuta in inverno o in periodi climatici tali da provocare il congelamento dell'acqua o una bassa velocità di evaporazione.

A questo metodo può essere affiancata una blanda azione meccanica mediante l'utilizzo di spazzole di nylon o di saggina.

- c) Apparecchiature ad ultrasuoni. Una volta eseguito il trattamento con acqua nebulizzata, per asportare le croste, vengono impiegati apparecchi che, mediante leggere vibrazioni prodotte da una piccola spatola e da una pellicola d'acqua, rimuovono le incrostazioni, semplicemente sfiorando con l'emettitore senza toccare la crosta che in questo modo si distacca.
- d) Microsabbiatura di precisione. La microsabbiatura si serve di macchine che, sfruttando l'azione altamente abrasiva di microsfere di vetro o di allumina del diametro di 40 micron, puliscono solo le zone ricoperte da incrostazioni non molto spesse e di limitata dimensione. Tali strumenti alimentati ad aria o ad azoto compresso sono muniti di ugelli direzionabili.
- e) Microsabbiatura umida controllata. Prima di procedere alla microsabbiatura occorre ammorbidire la crosta con acqua nebulizzata a bassa pressione. Lo strumento è composto da un compressore e un contenitore in cui l'abrasivo deve essere costantemente tenuto sospeso da un agitatore. L'abrasivo deve avere granulometrie piccole e non a spigolo vivo. La pressione dovrà essere contenuta tra 0,1-1-5 atm.
- f) Pulizia chimica. I detergenti chimici, che devono avere un pH compreso tra 5,5-8, vanno applicati esclusivamente sulle croste e mai a diretto contatto con i materiali lapidei, per prevenirne l'azione corrosiva. Tale pulizia deve essere sempre accompagnata da un lavaggio con acqua ed appositi neutralizzatori, onde evitare che i residui di detergente intacchino i materiali e ritornare quindi ad un pH neutro. Per attenuare l'azione corrosiva si possono interporre tra pasta chimica e pietra, dei fogli di carta assorbente da staccare successivamente soffiando con aria compressa. La pasta applicata sulla superficie dovrà essere ricoperta con del polietilene leggero per evitarne l'essiccazione, altrimenti potranno essere utilizzate emulsioni acqua/olio, gel o soluzioni da spruzzare.
- g) Impacchi con argille assorbenti. Le argille hanno la proprietà di assorbire oli e grassi senza operare azioni aggressive anche sui materiali deteriorati. Le argille da utilizzare sono la sepiolite e l'attapulgite con granulometria compresa tra 100-200 mesh. La pasta dovrà avere uno spessore di 2-3 cm e dovrà rimanere in opera, previe prove preliminari, per un periodo compreso tra le 24-48 ore. Prima di applicare l'impasto sarà necessario sgrassare la superficie o eliminare cere tramite solventi. Ove le argille non riuscissero a sciogliere incrostazioni di consistente spessore, è possibile additivarle con piccole quantità di agenti chimici. Dopo il trattamento lavare abbondantemente con acqua deionizzata.

h) Impacchi mediante impacco biologico. L'intervento, capace di pulire croste molto spesse grazie all'azione solvente esercitata dai nitrobatteri, consiste in impacchi a base argillosa di una soluzione composta da: acqua, urea e glicerina. L'impasto deve avere uno spessore di almeno 2 cm e deve agire per circa un mese; necessita quindi di una protezione con polietilene leggero ben sigillato ai bordi. Dopo l'applicazione si dovrà procedere ad un lavaggio accurato con acqua addizionata con un fungicida per disinfettare il materiale.

Dopo l'intervento di pulitura si dovranno eseguire nuovamente tutte le analisi volte ad individuare la struttura del materiale in oggetto, del quale non dovranno risultare variate le caratteristiche fisiche, chimiche, meccaniche ed estetiche.

Pulitura del legno

Nel trattamento di risanamento dall'attacco di funghi è necessario pulire a fondo i legni, gli intonaci, le murature infestate, e sterilizzarle con fiaccola da saldatura, con intonaco fungicida o con irrigazione del muro stesso. Per il risanamento dall'attacco di insetti esistono trattamenti specifici, quali la scattivatura del legno, le iniezioni di antisettico, la sterilizzazione con il calore o la fumigazione con gas tossici, che deve essere eseguita da ditte specializzate. Le operazioni preventive nei confronti degli attacchi da parte di funghi e di insetti prendono inizio da un contenimento del livello di umidità, ottenuto con una buona ventilazione degli appoggi delle travi, che non devono essere sigillate nel muro né coperte di intonaco. Le sostanze protettive possono essere applicate a pennello o a spruzzo, ed è buona norma che l'operatore si munisca di guanti, occhiali protettivi, tuta, ecc.

Pulitura dei metalli

Nel recupero di metalli (se la struttura non è attaccata) è necessario pulire il materiale con metodi meccanici, quali la sabbiatura con sabbiatrici ad uso industriale, la smerigliatura o la discatura con disco abrasivo, decapaggi, mediante l'immersione in soluzioni acide, condizionamento chimico, mediante l'applicazione di agenti chimici che fissano la ruggine e la calamina, deossidazione, per i metalli non ferrosi, fosfatazione che provoca la passivazione di una superficie metallica con soluzioni di fosfati inorganici o acidi fosforici. Alcuni prodotti, però, come i convertitori di ruggine a base di acidi, i fosfatanti e le vernici reattive a base acida, possono nuocere al sistema di ripristino, così come le pitture antiruggine nuocciono all'adesione del riporto di malta. I migliori trattamenti anticorrosivi sono quelli a stesura di formulati cementizi o epossidici, potendo questi ultimi svolgere anche un'eventuale funzione di ponte d'aggancio nell'intervento di ripristino.

La protezione avviene, nel caso di metalli esposti, per verniciatura, con due mani preliminari di antiruggine a base di minio oleofonolico e due mani di vernice a base di resine viniliche ed acriliche resistenti agli agenti atmosferici, o, nel caso di ferri di armatura, per stesura di formulati cementizi o epossidici.

Pulitura delle rocce sedimentarie

- Arenaria e tufo A seconda delle condizioni del materiale, la pulitura va preceduta da un preconsolidamento, effettuato con veline di carta giapponese ed impregnazione di silicato d'etile. La pulitura può essere effettuata a secco, con impacchi di argilla assorbente o di polpa di carta oppure con un blando lavaggio con acqua nebulizzata.
- Travertino La pulizia deve essere effettuata con acqua nebulizzata, con impacchi o con trattamenti a secco. Per le fessure sulle stuccature è consigliata una malta composta da un legante idraulico unito a polvere di marmo.
- Pietra d'Angera, Pietra di Verona e pietra tenera dei Colli Berici La pulizia che deve essere preceduta, quando necessario, dal preconsolidamento, si effettua con acqua nebulizzata o con impacchi di materiale assorbente.

Pulitura delle rocce metamorfiche (marmi, serpentini, miscoscisti, calciscisto)

È consigliato il trattamento ad acqua nebulizzata o leggera spazzolatura, oppure impacchi assorbenti. Nel caso di marmo decoesionato e zuccherino, la pulizia è preceduta da un trattamento di preconsolidamento con silicato di etile iniettato sulla superficie preparata con veline di carta giapponese.

Pulitura di cotto e laterizi

I metodi consigliati sono:

- spray d'acqua e/o acqua nebulizzata per tempi brevi e controllati, al fine di evitare l'eccessiva imbibizione del materiale;
- metodi chimici o impacchi con argille assorbenti, in cicli successivi per verificare la completa desalinizzazione. Tra una fase e la seguente la superficie dovrà risultare completamente asciutta.

Pulitura del calcestruzzo

È indicato il lavaggio. È necessario sabbiare l'armatura e proteggerla con sostanze antiruggine e sostanze passivanti.

Pulitura degli intonaci

La pulitura delle superfici intonacate dovrà essere effettuata con spray d'acqua a bassa pressione o acqua nebulizzata accompagnata eventualmente da una leggera spazzolatura. In presenza di croste nere di notevole spessore si potranno utilizzare impacchi biologici o argillosi.

Pulitura degli stucchi

Le polveri ed i sali cristallizzati in superficie andranno rimossi mediante l'uso di pennelli morbidi. Qualora si accerti la presenza di croste nere e/o criptoefflorescenze saline, si potrà procedere alla loro eliminazione mediante nebulizzazioni a durata controllata o tamponi imbevuti con acqua distillata. Eventuali residui organici (fumo di candele, cere, vernici oleose) potranno essere rimossi con solventi organici (per esempio alcool etilico diluito in acqua) applicati a tampone.

Art. XXI Trattamento di consolidamento dei materiali

I requisiti di un buon consolidamento sono:

- penetrazione in profondità fino a raggiungere il materiale sano;
- buon potere consolidante;
- diminuzione della porosità;
- assenza di danni indotti (diretti o indiretti);
- reversibilità:
- ripristino della continuità materica delle fratture;
- mantenimento della cromia originaria evitando colorazioni e brillantezze.

I consolidanti devono avere i seguenti requisiti:

- non formare prodotti secondari dannosi;
- essere assorbiti uniformemente dalla pietra fino a raggiungere il materiale sano;
- possedere un coefficiente di dilatazione termica non molto dissimile dal materiale consolidato;

- non alterarsi nel tempo per invecchiamento;
- assicurare una buona traspirabilità;
- possedere buona reversibilità;
- possedere buona permeabilità.

Tecniche di consolidamento

I metodi consentiti per l'applicazione del consolidante sono:

- Applicazione a pennello. Dopo aver accuratamente pulito e neutralizzato la superficie da trattare, si applica la soluzione a pennello morbido fino a rifiuto. Il trattamento deve essere iniziato con resina in soluzione particolarmente diluita, aumentando via via la concentrazione superiore allo standard per le ultime passate.
 - Nella fase finale dell'applicazione è necessario alternare mani di soluzioni di resina a mani di solo solvente, per ridurre al minimo l'effetto di bagnato.
- Applicazione a spruzzo. Dopo aver accuratamente pulito e neutralizzato la superficie, si applica la soluzione a spruzzo fino a rifiuto. Il trattamento deve essere iniziato con resina in soluzione particolarmente diluita, aumentando la concentrazione fino a giungere ad un valore superiore allo standard per le ultime passate. È possibile chiudere lo spazio da trattare mediante fogli di polietilene resistente ai solventi, continuando la nebulizzazione anche per giorni; la soluzione in eccesso, che non penetra entro il materiale, viene recuperata e riciclata.
- Applicazione a tasca. Nella parte inferiore della zona da impregnare, si colloca una specie di grondaia impermeabilizzata con lo scopo di recuperare il prodotto consolidante in eccesso. La zona da consolidare viene invece ricoperta con uno strato di cotone idrofilo e chiusa da polietilene. Nella parte alta un tubo con tanti piccoli fori funge da distributore di resina. La resina viene spinta da una pompa nel distributore e di qui, attraverso il cotone idrofilo, penetra nella zona da consolidare; l'eccesso si raccoglie nella grondaia da dove, attraverso un foro, passa alla tanica di raccolta e da qui ritorna in ciclo. È necessario che il cotone idrofilo sia a contatto con il materiale, per questo deve essere premutogli contro. La soluzione di resina da utilizzare dev'essere nella sua concentrazione standard.
- Applicazione per colazione. Un distributore di resina viene collocato nella parte superiore della superficie da trattare; questa scende lungo la superficie e penetra nel materiale per assorbimento capillare. La quantità di resina che esce dal distributore dev'essere calibrata in modo da garantire la continuità del ruscellamento. Il distributore è costituito da un tubo forato, ovvero da un canaletto forato dotato nella parte inferiore di un pettine o spazzola posti in adiacenza alla muratura, aventi funzione di distributori superficiali di resina.
- Applicazione sottovuoto. Tale trattamento può essere applicato anche in situ: consiste nel realizzare un rivestimento impermeabile all'aria intorno alla parete da trattare, lasciando un'intercapedine tra tale rivestimento e l'oggetto, ed aspirandone l'aria. Il materiale impiegato per il rivestimento impermeabile è un film pesante di polietilene. La differenza di pressione che si stabilisce per effetto dell'aspirazione dell'aria tra le due superfici del polietilene è tale da schiacciare il film sulla parte da trattare, e da risucchiare la soluzione impregnante.

Terminata l'operazione di consolidamento, potrebbe essere necessaria un'operazione di ritocco finale per eliminare gli eccessi di resina con appropriato solvente; questa operazione deve essere eseguita non oltre le 24 ore dal termine dell'impregnazione con materiale consolidante. Inoltre, potrebbe essere necessario intervenire a completamento dell'impregnazione in quelle zone dove, per vari motivi, la resina non avesse operato un corretto consolidamento. Potrà anche essere

aggiunto all'idrorepellente un opacizzante come la silice micronizzata o le cere polipropileniche microcristalline.

In caso di pioggia o pulizia con acqua sarà necessario attendere prima di procedere alla completa asciugatura del supporto e comunque bisognerà proteggere il manufatto dalla pioggia per almeno 15 giorni dopo l'intervento.

Il prodotto dovrà essere applicato almeno in due mani facendo attenzione che la seconda venga posta ad essiccamento avvenuto della prima.

Il trattamento non dovrà essere effettuato con temperature superiori ai 25° C ed inferiori a 5° C, e si eviterà comunque l'intervento su superfici soleggiate.

Consolidamento delle rocce sedimentarie

- Arenaria e tufo È consigliato l'uso degli esteri dell'acido silicico applicati col sistema a tasca (possibile anche l'utilizzo del silicato di etile). Le sigillature si effettuano con una miscela di pietra macinata, grassello e resina acrilica.
- Travertino Come consolidante può essere utilizzata una miscela di silicati ed alchil-alcossi-silani o alchil-alcossi-polisilani e miscele di resine acriliche e siliconiche.
- Pietra d'Angera, pietra di Verona e pietra tenera dei Colli Berici Si utilizza silicato di etile o esteri dell'acido silicico. Le stuccature vanno realizzate con grassello di calce e polvere della pietra stessa.

Consolidamento delle rocce metamorfiche (marmi, serpentini, miscoscisti, calciscisto)

Le fessurazioni saranno sigillate con impasto costituito da grassello di calce, polvere di marmo e sabbia. È consigliato l'utilizzo di resine siliconiche di tipo metil-fenil-polisilossano per assorbimento sottovuoto o capillare, di miscele di silicati ed alchil-alcossi-silani, di alchil-alcossi-polisilani, di resine acriliche, di resine acriliche e di miscele di resine acriliche e siliconiche. Il consolidamento statico e l'incollaggio delle parti deve essere effettuato con perni in materiale non alterabile: alluminio, acciai speciali, resine epossidiche.

Consolidamento di cotto e laterizi

I laterizi possono essere consolidati con silicati di etile, alchil-alcossi-silani o miscele dei due.

Consolidamento del calcestruzzo

Il riempimento delle lacune deve essere effettuato con una malta che non presenti né ritiro né carbonatazione. Si devono utilizzare cementi espansivi o a ritiro controllato che presentino una buona deformabilità. Per tali qualità è necessaria la presenza di additivi idonei nella malta. La superficie sulla quale si interviene deve essere ruvida e umida. La malta va gettata con forza sulla superficie in modo da non far rimanere residui d'aria. Sulla superficie deve poi essere applicato un additivo di cura per evitare la carbonatazione troppo rapida, consistente in una vernice che, dopo un certo periodo di tempo, si spellicola automaticamente.

Per un calcestruzzo a vista è consigliato l'impiego di un cemento Portland molto compatto oppure di cemento pozzolanico. Nel caso d'interventi in zone ricche di solfati ci si deve servire di cemento ferrico che non contiene alluminato tricalcico. In ambienti ricchi d'acqua a quest'ultimo va aggiunta pozzolana.

Consolidamento degli intonaci

Nel caso in cui il materiale si presenti decoesionato si consiglia l'uso degli esteri etilici dell'acido silicico.

La riadesione degli strati d'intonaco al supporto murario dovrà avvenire mediante iniezioni di miscela a base di calce pozzolanica additivata con riduttori d'acqua organici (ma non resine) all'1% del legante allo stato secco. La miscela dovrà avere caratteristiche analoghe a quelle della malta costituente l'intonaco, la medesima porosità, non contenere sali solubili e presentare una buona iniettabilità in fessure sottili. Inoltre non dovrà avere resistenza meccanica superiore al supporto.

Si dovrà procedere all'eliminazione di polveri e detriti interni mediante apposite attrezzature di aspirazione. Verranno in seguito effettuate iniezioni di lavaggio con acqua ed alcool. Si procederà quindi all'imbibizione abbondante del supporto, mediante iniezioni, al fine di facilitare la fuoriuscita di eventuali sali ed evitare bruciature della nuova malta.

Sarà poi necessario far riaderire al supporto l'intonaco distaccato, ponendo sulla superficie del cotone bagnato ed esercitando una lieve pressione tramite un'assicella.

Le iniezioni dovranno essere effettuate, fino a rifiuto, dal basso verso l'alto per permettere la fuoriuscita dell'aria; durante tutta l'operazione si continuerà ad esercitare una leggera pressione. Si procederà sigillando le parti iniettate.

Consolidamento degli stucchi

Nel caso si siano verificati distacchi di lamine decorative o il materiale si presenti decoesionato, potranno essere utilizzate resine in emulsione acquosa, applicate a pennello su carta giapponese. Qualora l'elemento presenti distacchi dal supporto murario, il riancoraggio potrà avvenire mediante l'iniezione di miscele idrauliche a base di calce idrata e cocciopesto o pozzolana, eventualmente addizionate con fluidificante e miscele adesive. Le eventuali nuove armature devono essere in acciaio inossidabile o vetroresina.

Consolidamento dei materiali lapidei

È adatto un consolidante composto da esteri etilici dell'acido silicico. Una dispersione acquosa pronta all'uso di un metacrilato, è adatta al trattamento di calcari e di materiali porosi.

Consolidamento di particolari architettonici

Le superfici si consolidano e si proteggono solo dopo un'accurata ed approfondita pulizia.

Le tecniche di consolidamento più usate sono:

- la tecnica del vuoto, adatta per il consolidamento di particolari architettonici di piccole e medie dimensioni. Il manufatto, tenuto sotto l'azione del vuoto, ha la possibilità di assorbire notevoli quantitativi di sostanza impregnante; l'azione del vuoto, inoltre, è efficace, anche, per eliminare l'umidità e le polveri presenti all'interno dei pori;
- la tecnica delle tasche: ricoperti i manufatti deteriorati con uno strato di cotone idrofilo, si applica una gronda di cartone impermeabile e si avvolge il tutto con fogli di polietilene raccordato nella parte superiore con dei tubetti adduttori.

L'impregnante, spinto da una pompa a bassa pressione, satura tramite i tubetti adduttori il cotone che, aderendo alla superficie del manufatto, gli trasmette la sostanza consolidante. L'eccesso di impregnazione percola nella gronda e rientra in circolo mediante un recipiente di raccolta collegato alla pompa. In questo modo, la resina bagna la struttura per tutto il tempo occorrente all'ottenimento del grado d'impregnazione voluto.

È necessario adattare le modalità operative e le quantità d'impregnazione al livello di degrado del manufatto che si potrà presentare costituito da:

 materiali fortemente alterati: in questo caso è necessaria una maggiore quantità di sostanza consolidante; materiali poco alterati: in questo caso, essendo poco porosi e compatti, occorre una quantità minima di sostanza impregnante.

Art. XXII Trattamento di protezione dei materiali

Protezione delle rocce sedimentarie

- Arenaria e tufo La protezione va effettuata con alchil-alcossi-silani o poli-metil-silossani applicati a spruzzo o a pennello.
- Travertino, pietra d'Angera, pietra di Verona e pietra tenera dei Colli Berici Prevede l'applicazione di alchil-aril-polisilossani e miscele di resine acriliche e siliconiche.

Protezione delle rocce metamorfiche (marmi, serpentini, miscoscisti, calciscisto)

Può essere effettuata con miscele di resine acriliche e siliconiche e di alchil-aril polisilossani.

Protezione di cotto e laterizi

Si possono usare come protettivi alchil-aril-polisilossani (resine siliconiche) o miscele di resine acriliche e siliconiche. I pavimenti in cotto potranno essere protetti con olio di lino crudo in ragia vegetale al 5%.

Protezione del calcestruzzo

È possibile applicare una resina che presenti le seguenti caratteristiche: deformabilità elevata, resistenza ai raggi UV, strato di piccolo spessore, trasparenza e elasticità nel tempo.

Protezione degli stucchi

Si suggerisce l'utilizzo di resine acril-siliconiche.

Art. XXIII Conservazione del legno

I prodotti da usare per la prevenzione del legname da parte di organismi vegetali e/o animali devono soddisfare i seguenti requisiti:

- tossicità per funghi ed insetti, ma estremamente limitata o nulla per l'uomo;
- possedere una viscosità sufficientemente bassa in modo da ottenere una buona capacità di penetrazione anche in profondità;
- stabilità chimica nel tempo;
- resistenza agli agenti chimico-meccanici;
- non alterare le caratteristiche intrinseche dell'essenza quali odore, colore, tenacità, caratteristiche meccaniche;
- possedere proprietà ignifughe.

Gli antisettici utilizzabili per trattamenti di preservazione potranno essere di natura organica o di natura inorganica. Saranno comunque da preferirsi i primi in quanto gli inorganici, generalmente idrosolubili, presentano l'inconveniente di essere dilavabili.

L'applicazione sarà effettuata:

a pennello. Dopo aver pulito e/o neutralizzato la superficie da trattare (con applicazione di solvente) si applicherà la soluzione di resina a pennello morbido fino al rifiuto. Il trattamento di impregnazione andrà iniziato con resina in soluzione particolarmente diluita e si aumenterà via via la concentrazione fino ad effettuare le ultime passate con una concentrazione superiore allo standard;

- a spruzzo. Dopo aver pulito e/o neutralizzato con solvente la superficie da impregnare si applicherà la soluzione a spruzzo fino al rifiuto. Il trattamento andrà iniziato con resina in soluzione particolarmente diluita e si aumenterà via via la concentrazione fino ad effettuare le ultime passate con una concentrazione superiore allo standard;
- per iniezione. Si introdurranno nel legno da impregnare appositi iniettori con orifizio variabile (2/4,5 mm). L'iniettore conficcato in profondità nel legno permetterà la diffusione del prodotto impregnante nelle zone più profonde.

Per arrestare il deterioramento e comunque per impostare una efficace azione di consolidamento potranno essere utilizzate varie resine:

- resine naturali. Prima di essere applicate dovranno sciogliersi in solvente che, evaporando determina il deposito della resina nei pori e nelle fessure del legno. A causa del rapido deterioramento e/o invecchiamento, le resine naturali potranno essere utilizzate solo in casi particolari. Risultati analoghi si possono ottenere usando cere naturali fuse o sciolte in solvente oppure olio di lino cotto;
- oli siccativi e resine alchidiche siccative. Il procedimento consiste nel fare assorbire dal legno materiali termoplastici sciolti in adatto solvente che tende col tempo a trasformare i polimeri solidi reticolati per effetto dell'ossigeno dell'aria. Tale impregnazione ha più uno scopo protettivo che di miglioramento delle caratteristiche meccaniche;
- resine termoplastiche in soluzione. Il solvente, usato per sciogliere tali resine, deposita la resina nei pori e nelle fessure del legno col risultato di migliorare le caratteristiche meccaniche e la resistenza agli agenti atmosferici, nonché l'aggressione biologica e chimica;
- resine poliesteri insature. Queste resine polimerizzano a freddo previa aggiunta di un catalizzatore e di un accelerante. Presentano buona resistenza agli aggressivi chimici (ad eccezione degli alcali). L'uso di tali resine è limitato nel caso in cui si voglia ottenere una buona resistenza agli aggressivi chimici;
- resine poliuretaniche;
- resine epossidiche.

Le resine dovranno in ogni caso presentare una elevata idrofilia per permettere la penetrazione per capillarità dovendo operare su legni anche particolarmente umidi. Dovranno essere sciolte in solvente organico polare fino a garantire una viscosità non superiore a 10 cPs a 25° e un residuo secco superiore al 10% per resine a due componenti (poliuretaniche, epossidiche) e al 7% per le rimanenti. I sistemi di resine da utilizzare dovranno essere atossici e non irritanti secondo la classificazione Cee e presentare le seguenti proprietà:

- nessun ingiallimento nel tempo;
- elevata resistenza agli agenti atmosferici e ai raggi UV;
- indurimento e/o evaporazione del solvente, graduale ed estremamente lento, tale da consentire la diffusione completa del prodotto per garantire una impregnazione profonda;
- possibilità di asporto di eventuali eccessi di resina dopo 24 ore dalla applicazione, mediante l'uso di adatti solventi;
- elevata resistenza chimica, all'acqua, all'attacco biologico.

Art. XXIV Consolidamento delle strutture

a) Strutture di fondazione

Prima di dare inizio ai lavori è bene accertare la consistenza delle strutture di fondazione e la natura del terreno su cui esse gravano. Si dovranno quindi eseguire scavi a pozzo di dimensioni tali da consentire lo scavo a mano e l'estrazione del materiale di risulta, in condizioni da non pregiudicare la stabilità dell'edificio (cantieri di larghezza 1,2-1,5 m).

Deve essere, inoltre, attentamente valutata la resistenza delle strutture interrate, in vista anche di eventuali variazioni di carico.

Gli scavi devono essere eseguiti fino al piano di posa della fondazione e, in relazione alla natura del terreno ed alla profondità raggiunta, è opportuno siano sbadacchiati secondo la natura del terreno.

Interventi su fondazioni dirette in muratura o pietrame

Le operazioni preliminari di ogni intervento sulle fondazioni consistono in:

- a) esecuzione dello scavo su uno o ambo i lati della fondazione fino al piano di progetto;
- b) puntellatura della struttura che può essere effettuato in tre modi:
 - puntellatura lignea di contenimento: realizzazione di un incasso nella muratura, preparazione della platea con tavolati, messa in opera di puntelli con incassatura a mezzo di cunei;
 - puntellatura lignea di contenimento e sostegno: apposizione di travi in legno sui tavolati aderenti alla muratura, messa in opera di puntelli fra trave e platea;
 - puntellatura provvisoria per opere di sottofondazione: predisposizione degli appoggi per i sostegni, esecuzione di fori per il passaggio dei traversi, zeppatura dei traversi con cunei di legno.

Sulla base delle informazioni riguardanti i dissesti e le loro cause scaturite da approfondite analisi geologiche e prove in loco, si definiscono i lavori di consolidamento in:

- interventi sulla costruzione e sul suolo al fine di ridurre le tensioni nelle zone maggiormente colpite della struttura;
- interventi sul terreno volti a migliorare le caratteristiche, contenerne i movimenti, ridurne le spinte.

Per contrastare un cedimento intermedio e terminale dovranno essere eseguite travi cordolo in c.a. collegate mediante traversi. Le modalità operative saranno:

- getto di spianamento in magrone di calcestruzzo;
- esecuzione di varchi nella muratura;
- posa in opera di armature di collegamento e di cordoli in c.a.;
- casseratura;
- getto in conglomerato;
- foratura della muratura dopo l'indurimento;
- predisposizione delle armature dei traversi;
- getto con cemento espansivo.

Nel caso in cui la sezione sia insufficiente, dovranno essere usate travi cordolo in c.a. con precompressione del terreno. Tale precompressione sarà realizzata mediante martinetti idraulici che, in presenza di terreni cedevoli, comprimono e compattano gli strati sottostanti ma che, se utilizzati al contrario, mettono in carico la muratura soprastante. Alla fine sarà effettuato un getto di completamento.

Per attenuare i fenomeni di ritiro del calcestruzzo, soprattutto nel getto dei traversi, è necessario inumidire con getti periodici d'acqua, applicazione di teli umidi, segatura, terra o speciali pellicole o vernici protettive. La stagionatura umida è consigliata anche in caso di conglomerato additivato o a ritiro compensato.

La costruzione muraria, o sottomurazione con muratura di mattoni e malta di cemento, viene eseguita in presenza di uno strato di terreno compatto non molto profondo. Essa aumenta la capacità portante della fondazione poiché allarga, mediante una gradonatura con materiale nuovo, la base di carico. Dopo aver asportato terreno al di sotto delle fondazioni esistenti, verrà effettuato un getto di calcestruzzo per nuove fondazioni sul quale sarà eseguita la costruzione della muratura in mattoni pieni e malta di cemento. Durante la costruzione bisogna avere cura di mantenere la continuità tra sottofondazioni e struttura esistente mediante cunei in legno duro di contrasto e usando leganti a stabilità volumetrica. I giunti dovranno essere sigillati con malta.

Anche la soletta in c.a. viene realizzata per cantieri di lunghezza variabile secondo la consistenza muraria. Il collegamento delle armature longitudinali dei vari cantieri deve essere curato al fine di non scomporre la soletta in tanti tronchi. Dopo aver asportato terreno al di sotto delle fondazioni esistenti, verrà effettuato un getto di spianamento in magrone di calcestruzzo, sul quale verranno pose in opera le armature con funi di collegamento.

Sottofondazioni

I lavori di sottofondazione non devono turbare né la stabilità del sistema murario da consolidare né quella degli edifici adiacenti.

Dovranno essere adottati tutti gli accorgimenti e le precauzioni necessari al rispetto di tale requisito. Nel caso di un muro continuo di spina la sottofondazione dovrà essere simmetrica. Inoltre, una volta eseguite le puntellature delle strutture in elevazione e individuati i cantieri di lavoro, si pratica uno scavo a fianco della muratura di fondazione fino a raggiungere il piano su cui si intende impostare la sottofondazione. A seconda dello spessore della muratura lo scavo verrà eseguito da un lato e le pareti dello scavo dovranno essere opportunamente sbadacchiate, mano a mano che lo scavo si approfondisce.

In seguito si scava al di sotto della vecchia fondazione, interponendo puntelli tra l'intradosso della muratura ed il fondo dello scavo e si esegue la muratura di sottofondazione.

- Sottofondazioni in muratura di mattoni. Si deve costruire una muratura di mattoni e malta pozzolanica o al più cementizia, ma priva di sali per evitare il fenomeno di risalita di sali nella muratura soprastante, lasciando fra vecchia e nuova muratura lo spazio equivalente ad un filare di mattoni e all'interno del quale si dovranno inserire dei cunei di legno duro che, dopo 3-4 giorni si provvederà a sostituire con cunei più grossi per compensare l'abbassamento della nuova muratura. Ad abbassamento avvenuto si provvederà a fare estrarre i cunei e a collocare l'ultimo filare di mattoni, riempiendo in forza l'intercapedine.
- Sottofondazioni in conglomerato cementizio gettato a piè d'opera. È richiesto un lungo tempo prima di poterle incassare sotto la muratura. Infatti prima di poterle utilizzare dovranno attendersi i 28 giorni necessari affinché il conglomerato cementizio raggiunga le sue caratteristiche di portanza e di resistenza meccanica. Trascorso tale tempo si possono inserire sotto la fondazione da consolidare.
- Sottofondazioni con cordoli o travi di cemento armato. Occorre eseguire gli scavi da ambedue i lati del tratto di muratura interessata fino a raggiungere il piano di posa della fondazione. Una volta rimossa la terra di scavo si effettuerà un getto di spianamento in magrone di calcestruzzo e si procederà poi alla predisposizione dei casseri, delle armature e

al successivo getto dei cordoli. Dopo l'indurimento del getto per mettere in forza l'intercapedine si consiglia di usare cemento espansivo.

Allargamenti fondazionali

- Allargamento mediante lastra in c.a. Si raggiunge con lo scavo il piano della fondazione esistente operando per campioni e si costruisce una lastra in c.a. opportunamente svincolata dalla muratura; successivamente si esegue al di sopra e ad opportuna distanza una soletta in c.a. adeguatamente collegata alla muratura mediante cavalletti in acciaio, barre passanti di adeguata rigidezza, elementi in c.a.; si pongono nell'intercapedine tra lastra e soletta dei martinetti che, messi in pressione, trasmettono al terreno un carico di intensità nota; si pongono elementi distanziatori nell'intercapedine, si asportano i martinetti e infine si riempie l'intercapedine con calcestruzzo a ritiro controllato.
- Procedimento Schultze. Vengono ammorsati elementi in c.a. a sezione triangolare di 2,00 m di altezza e 0,65 di profondità posti a 1,65 m d'interasse e che vengono incastrati ai due lati della muratura, mediante dentellatura intagliata in questa e solidarizzata alla stessa con tiranti in acciaio passanti. Al di sotto di questi elementi sul fondo dello scavo praticato ai lati della muratura per campioni vengono realizzate due travi in c.a. che verranno caricate tramite martinetti posti tra travi ed elementi triangolari.

Pali di fondazione

I pali impiegati nel consolidamento sono quelli preforati, per i quali il foro viene eseguito perforando il terreno con un tubo-forma, e asportando il materiale attraversato. La perforazione si esegue con la sonda che può avanzare mediante percussione oppure mediante rotazione, che risulta essere più adatta poiché arreca poco disturbo dinamico alla costruzione.

I fori vengono intubati, cioè protetti da un tubo forma in lamiera che avanza durante la perforazione. Solo in presenza di terreni coerenti si può effettuare la perforazione mediante la sola trivellazione. I fori, praticati con le diverse tecniche, vengono riempiti con calcestruzzo, che viene man mano pistolato mediante l'immissione di un vibratore. I pali possono essere armati in parte o per tutta la loro lunghezza.

In presenza di terreni in cui è presente una falda affiorante, l'esecuzione del foro si effettuerà immettendo fanghi bentonitici per evitare lo smottamento delle pareti del foro.

- Pali Strauss. Nel palo Strauss originario, un procedimento di battitura pone in contatto forzato il calcestruzzo con il terreno laterale, favorendo la resistenza ad attrito lungo la superficie di contatto. Prima del getto di ogni strato, la mazza deve essere ritirata.
- Pali Wolfsholz. Per eseguire questi pali si affonda il tubo di forma (che funge da cassero) durante la trivellazione e, man mano che il tubo scende, si riempirà spontaneamente dell'acqua di falda. Quando la forma ha raggiunto la profondità prestabilita, si arma il palo e si chiude l'estremità superiore con un robusto tappo a tenuta d'aria, munito di tre fori, uno per l'aria a bassa pressione, uno per l'aria ad alta pressione, ed uno per la malta di cemento pure sotto pressione. Il foro per la malta è collegato ad un tubo che scende fino alla base del palo ed è collegato esternamente a una miscelatrice a tenuta d'aria. Un compressore, mediante un tubo, fornisce aria compressa alla miscelatrice, e ai due fori. Si immette dapprima la bassa pressione, in modo da espellere l'acqua dal tubo di forma, in seguito si apre il rubinetto adduttore della malta, effettuando il getto. Una volta riempito il tubo di forma, si apre l'alta pressione. Il tubo, chiuso ermeticamente, viene spinto verso l'alto, e la malta, sotto pressione, si insinua nelle pareti terrose, liberate dal tubo, tanto più quanto più il terreno è ghiaioso e sciolto. Con questa manovra la superficie superiore della malta nel tubo subisce una depressione dovuta alla parte di essa che è andata a riempire la parete cilindrica terrosa.

Per aggiungere altra malta nel tubo, si chiude l'alta pressione, immettendo poi un nuovo getto. Si prosegue fino alla completa costruzione del palo e al totale recupero del tubo di forma.

- Pali a tronchi prefabbricati o conci (pali Mega). Si interviene al di sotto della fondazione esistente infiggendo nel terreno i tronchi, di cui il primo a punta conica, mediante martinetti idraulici, fino a raggiungere un terreno solido. Tra tronco e tronco si getta uno strato di malta, e alla fine si collega la sommità dell'ultimo tronco con la fondazione esistente, tramite elemento distanziatore metallico nel quale viene eseguito il getto di conglomerato.

Micropali

I micropali hanno dimensioni diametrali ridotte, che vanno da 50 ai 300 mm. La perforazione viene eseguita utilizzando una trivella munita di corona tagliente. L'apparecchiatura deve consentire di orientare la trivellazione in qualsiasi direzione. Eseguito il foro si infila in questo un tubo, con all'interno un'armatura costituita da una o più barre d'acciaio nervato di grosso diametro, oppure da una gabbia costituita da barre longitudinali collegate da una spirale, oppure da un profilato d'acciaio. Si esegue quindi il betonaggio sotto pressione, impiegando un microconglomerato dosato a 500/600 kg di cemento al mc. Il microconglomerato è premuto ad aria compressa, durante il contemporaneo sfilaggio del tubo, e penetra nel terreno circostante in quantità proporzionale alla densità dello stesso.

b) Strutture di elevazione e delle partizioni verticali

Interventi su murature in mattoni o pietrame

Prima di qualsiasi intervento dovranno predisporsi opere provvisionali e di sostegno. La struttura deve essere puntellata e, a tal fine, potrà aversi una puntellatura:

- di contenimento, le cui modalità operative sono: realizzazione di un incasso nella muratura, preparazione della platea con tavolati in laterizio, messa in opera dei puntelli con incassatura a mezzo di cunei;
- di contenimento e sostegno, le cui fasi sono: disposizione sulla muratura di tavolati lignei, preparazione della platea con tavolati in laterizio, apposizione di travi in legno su tavolati aderenti alla muratura, messa in opera di puntelli fra travi e platea.

Inoltre si dovrà, preliminarmente ad ogni altra opera, asportare l'intonaco scrostato se privo di interesse artistico, mediante spicconatura.

Se la malta ha perso le sue proprietà leganti, si eseguirà la stilatura dei giunti con malta non troppo porosa, dopo aver effettuato la scarnitura profonda dei giunti ed il lavaggio con acqua.

Nel caso di piccole lesioni e fessurazioni, queste potranno essere risanate in due modi:

- riprendendole con malta speciale. È necessario eliminare dalle fessure e dai giunti delle parti deboli e distaccate fino alla parte sana, pulendo le parti con aria compressa e bagnando con acqua di lavaggio. Alla fine sarà effettuata la stuccatura sulla superficie così preparata;
- cementandole con colaggio di boiacca di cemento. La muratura dovrà essere perforata ed i fori dovranno essere otturati da un solo lato con malta di gesso. Si procederà quindi alla stuccatura dei giunti ed al lavaggio interno dei muri. Nei fori verranno quindi inseriti degli imbuti collegati a boccagli per il colaggio del cemento.

Nel caso di vuoti e lesioni saranno effettuate iniezioni a base di malte cementizie o di resine dopo aver praticato una scarnitura profonda dei giunti murari e dopo aver effettuato lavaggio con acqua a pressione fino a rifiuto. I giunti dovranno essere stilati con malta di cemento e sabbia a grana grossa.

A questo punto saranno eseguiti dei fori nei quali si inseriranno e si fisseranno dei tubi di iniezione tramite i quali sarà immessa la miscela.

L'intervento di cuci-scuci si applicherà solo quando non potranno essere applicate altre tecniche. L'intervento consiste nell'inserire a contrasto ed opportunamente ammorsata una muratura di mattoni pieni o di blocchi. Si opera a tratti alternati al fine di non interrompere la continuità statica della muratura ricostruendo una muratura in blocchi e malta di cemento magra. I cunei di contrasto in legno, una volta tolti, vengono sostituiti con mattoni allettati e malta fluida fino a rifiuto.

Nel caso in cui sia diminuita la resistenza della muratura, si ricorrerà all'uso di tiranti che possono essere realizzati con barre o con trefoli di acciaio armonico. Per porre in opera tali tiranti, dovranno eseguirsi dei fori nella muratura eseguendo uno scasso per l'inserimento delle piastre di ancoraggio.

Il piano di posa sarà preparato con malta a ritiro compensato. A questo punto saranno messe in opera in apposite scanalature lungo la muratura sia le barre filettate agli estremi, già preparate e tagliate, sia le piastre. Dopo aver messo in tensione i tiranti dovranno sigillarsi le scanalature con malta a ritiro compensato.

Le iniezioni armate hanno lo scopo di aumentare la resistenza a trazione della muratura e di impedire la dilatazione trasversale in caso di schiacciamento. Le barre ad aderenza migliorata, devono essere posizionate inclinate in appositi fori eseguiti nella muratura ed accuratamente lavati con acqua a bassa pressione fino a saturazione. Le imperniature saranno poi sigillate con iniezioni a bassa pressione di legante e, a presa avvenuta, le barre saranno tagliate a filo del muro.

La tecnica delle lastre armate consiste nell'asportazione delle parti di muratura incoerenti o già distaccate e nella spolverizzazione delle lesioni con aria compressa. A queste operazioni preliminari seguono: l'esecuzione di fori obliqui nella muratura, la stuccatura delle lesioni e delle fessure ed il fissaggio su ambo i lati del muro di una rete elettrosaldata, applicando sulle pareti betoncino di malta.

Interventi su colonne e pilastri in muratura

Per quanto riguarda i pilastri o le colonne le manifestazioni di dissesto sono analoghe a quelle delle murature, mentre differiscono le metodologie d'intervento.

La cerchiatura è un intervento atto a contrastare il fenomeno dello schiacciamento. Le barre d'acciaio sono messe in opera a caldo per cui, contraendosi, durante il loro raffreddamento, imprimono al pilastro una compressione radiale. Le cerchiature possono anche essere fatte a freddo con messa in carico dei cerchi mediante chiave dinamometrica. L'applicazione della cerchiatura inizia nella zona più deformata per proseguire verso le estremità.

La cerchiatura viene spesso sostituita dai frettaggi con microbarre in acciaio inserite all'interno della colonna ed invisibili ad intervento ultimato. Le staffature in ottone o acciaio inossidabile vengono messe in opera inclinate a 45°e solidarizzate alle colonne con iniezioni di resina.

L'inserimento di barre verticali e staffe metalliche diventa necessario per migliorare le caratteristiche di resistenza a pressoflessione di un pilastro o colonna. Le barre e le staffe vengono inserite in perfori realizzati in corrispondenza dei ricorsi di mattoni, saldate fra di loro e sigillate con resine epossidiche.

Un consolidamento più completo può prevedere oltre alle staffature anche il rinforzo in caso di pilastri rettangolari con profilati metallici, colatura di boiacca e betoncino armato. Dopo la posa delle barre ad aderenza migliorata, si provvede, entro fori predisposti, alla colatura di boiacca cementizia dal basso verso l'alto. Gli angolari metallici, la rete metallica e le barre vengono saldati fra di loro prima dell'esecuzione delle lastre di betoncino.

Interventi su murature a sacco con laterizio esterno

Il ripristino di una muratura a sacco con paramenti esterni in laterizio si esegue solo se lo stato dei paramenti è in buone condizioni senza eccessivi rigonfiamenti e lesioni diffuse.

Partendo dal basso si asporta un elemento laterizio ogni due per file parallele sul lato interno, si applica sulla parete opposta di un foglio di polietilene puntellato a terra e si sigillano lesioni e fessure sulla parete interna. Nei vani creati vengono inseriti tronconi di tubi di ferro e si sigillano con malta di cemento. Si inserisce entro questi vani acqua di lavaggio e si cola una boiacca di cemento fino a rifiuto, ripetendo l'operazione a presa avvenuta e per le successive file superiori.

Interventi su superfici esterne verticali di mattoni o pietre

Se sono state messe in evidenza fessurazioni, scheggiature, rotture, si deve intervenire mediante sigillature ed iniezioni con stucchi epossidici o malte a base di resine al fine di rendere la superficie più omogenea e meno deteriorabile dall'acqua, dagli agenti chimici e da quelli inquinanti.

A volte la pulizia, se realizzata con prodotti adatti ed in modo adeguato, liberando l'involucro dalle pericolose croste nere comporta un sufficiente risanamento. Generalmente lo scopo della pulizia, preceduta da un consolidamento superficiale, è quello di preparare le superfici all'intervento di protezione.

Nel caso di rotture o frammenti con scagliature dovute a gelività o a piccole lesioni si ricorre alle già descritte tecniche della stilatura profonda dei giunti o alla ripresa delle piccole lesioni con malta speciale.

I metodi di protezione delle superfici, nel caso di perdita di resistenza dell'involucro superficiale, sono:

- impregnazione, che consiste nell'aspersione di materiale consolidante a penetrazione strutturale
- impregnazione sottovuoto, che consiste nell'immissione controllata di resine sintetiche dopo aver avvolto il manufatto con fogli di polietilene sostenuti da rete metallica e nell'aspirazione dell'aria, gas residui, umidità. I fogli saranno rimossi a fine operazione.

Interventi su superfici esterne verticali in calcestruzzo

Nel caso di degrado iniziale che non ha ancora compromesso l'armatura, una volta distaccate le parti incoerenti e pulite le fessurazioni fino alla parte sana, si può ripristinare la superficie originaria con la

tecnica del ponte d'aggancio previa predisposizione di casseri per il getto. In caso di riporti di elevato spessore, si può applicare una rete elettrosaldata. Le malte epossidiche a base di resina possono essere applicate a più strati con cazzuola o gettate entro casseri previo ponte d'aggancio.

Dopo aver applicato il ponte d'aggancio le superfici possono essere rasate a zero per eliminare fori di evaporazione.

La pulizia delle superfici in calcestruzzo è di tipo meccanico mediante sabbiatura o pulizia a vapore con rimozione delle croste, cere e olio, mediante spazzola metallica, mola o flessibile con sistema di polverizzazione. La pulizia, intesa come preparazione, prevede anche la regolarizzazione delle fessurazioni e l'asportazione delle schegge con particolari strumenti, quali windsor router, martello scalpellatore, ecc.

Gli interventi di protezione esterna del calcestruzzo si suddividono in interventi con funzione idrorepellente e interventi con funzione di anticarbonatazione. I primi sono simili a quelli presi in esame nel caso delle murature. La protezione superficiale contro il fenomeno della carbonatazione si esegue applicando un primer ed uno strato di protezione.

Interventi su strutture in c.a.

Gli interventi localizzati non possono prescindere da una verifica del complessivo.

Nel caso di integrazione dell'inerte, vengono ampliate le fessure fino al materiale sano, pulite dalla polvere le superfici, realizzato anche un eventuale ponte d'aggancio e ripristinata la superficie con un getto di calcestruzzo, spruzzo di betoncino o rifacimento a cazzuola con malta.

Se le fessure non superano i 3-4 mm, si impiegano iniezioni a base di resine organiche.

Se è necessario integrare le armature a causa del distacco del copriferro, bisogna avere cura di pulire i ferri esistenti dalla ruggine, collegare ad essi le nuove armature (rete elettrosaldata, profili in acciaio, barre) mediante legatura a mano o saldatura ed eseguire il getto di calcestruzzo previo eventuale ponte d'aggancio con adesivo epossidico.

Nel caso di perdita delle caratteristiche meccaniche si ricorrerà alla tecnica dell'impregnazione sottovuoto

Interventi su colonne in c.a.

Nel caso di colonne, per contrastare gli sforzi di compressione assiale, si aumenta la sezione resistente dell'elemento disponendo le armature di progetto posizionando una casseratura cilindrica e, dopo aver predisposto dei fori di inumidimento, eseguendo il getto del calcestruzzo entro i casseri.

Interventi su pilastri in c.a.

Per i pilastri a sezione rettangolare molto lesionati e dove non sia possibile aumentare la sezione, si applicano agli spigoli dei profilati metallici previa applicazione di una miscela di adesivo epossidico e sabbia silicea finissima in parti uguali. Per garantire l'aderenza immediata i profilati vengono fissati con chiodi sparati o con puntelli di sostegno.

Se è possibile aumentare la sezione dovrà prevedersi un'incamiciatura con betoncino armato con tondino o rete metallica, saldati a loro volta ai profilati.

Per aumentare le prestazioni dell'elemento in presenza di nuovi stati di sollecitazione e di sforzi di taglio, si possono applicare degli angolari sugli spigoli e delle piastre di collegamento sulle facce del pilastro incollandole con resine epossidiche e puntellandole fino a presa avvenuta. Poi si salda a punti con una rete metallica e si spruzza il betoncino per uno spessore di 3-4 cm.

c) Strutture portanti e delle partizioni orizzontali

Interventi su solai lignei

Prima di effettuare qualsiasi intervento occorrerà eseguire l'eventuale:

- asportazione del pavimento e sottofondo;
- rimozione dell'intonaco sui muri perimetrali in corrispondenza del solaio;
- asportazione del tavolato o di parte dell'orditura secondaria;
- disinfestazione e protezione del legno.

Nel caso in cui sia diminuita la rigidezza del solaio con piano in tavolato, si sovrapporrà un nuovo tavolato a quello originario, chiodando il nuovo sul vecchio tavolato mediante chiodatura e mettendo in opera cunei in legno tra il nuovo tavolato ed i muri perimetrali. A fine operazione di procederà alla levigatura del nuovo tavolato.

Se il vecchio tavolato non è più in buone condizioni occorre sostituire il tavolato o piano laterizio esistente con nuovo tavolato in legno. Dopo aver rimosso il piano esistente, il nuovo tavolato deve essere trattato con sostanze antifungo, antitermiti, antincendio. La posa avverrà mediante chiodatura.

La soletta indipendente apporta un miglioramento della rigidezza del solaio, ma rappresenta un un carico aggiuntivo alla struttura originale. Si procede riempiendo eventuali vuoti o discontinuità del solaio e proteggendo l'intradosso con posa di fogli di nylon. La rete elettrosaldata viene a sua volta collegata al solaio rendendola solidale con questo mediante un getto in conglomerato cementizio. Qualora si installano dei connettori metallici tra la struttura originale e il nuovo getto di calcestruzzo si ottiene un incremento delle prestazione della struttura finale.

L'uso di tiranti e cravatte è consigliabile per aumentare la rigidezza del solaio soprattutto in caso di zone sismiche. Si praticano dei fori nelle murature nei quali vengono poste in opera le piastre di ancoraggio dei tiranti e successivamente i tiranti, che devono essere ancorati a questi ed al solaio per mezzo di cravatte.

L'inserimento di tirante preteso aderente alla trave consegue sia un irrigidimento della trave sia una connessione ai muri perimetrali. Il tirante infatti viene introdotto in fori predisposti e sigillato con resine epossidiche previa pretensione con chiave dinamometrica. L'ancoraggio alle murature avviene mediante piastre con cunei o dadi filettati.

Nel caso di connessione solaio-muro, i tiranti sono collegati al tavolato di legno per una lunghezza non inferiore a 1 m; ogni collegamento viene effettuato ogni 1,5-3 m e da ogni punto di collegamento, mediante chiodatura o bullonatura, si dipartono due tiranti formanti un angolo di 45°-60°. Nel caso di piastra di ancoraggio si prati cano due fori a partire dalla faccia esterna del muro ricavando due sedi per le piastre metalliche, contigue e ortogonali all'asse di perforazione. L'estremità del tirante può essere ad asola per i cunei o filettata per i dadi. Se il collegamento avviene con apparecchi a coda di rondine, il tirante è chiodato o bullonato sul tavolato e saldato alla gabbia metallica già predisposta nella muratura e sigillata con calcestruzzo.

Nel caso di connessione trave-muro valgono le stesse considerazioni fatte per l'intervento precedente.

L'inserimento di un'anima di rinforzo o piastra di sostegno consente di risolvere molti problemi come fratture, lesioni da schiacciamento, deterioramento dovuto ad agenti patogeni, ecc. l'intervento consiste nell'incidere sul materiale risanato una scanalatura dove si esegue un getto di malta epossidica, si inserisce una piastra d'acciaio, e si realizza un secondo getto.

La trave può essere riparata mediante elementi metallici, eseguendo dei fori inclinati, ponendo in opera il ferro piatto e collegando il ferro con la trave con chiavarde o bulloni.

Lo stesso risultato si può ottenere con barre in vetroresina lungo il piano orizzontale e verticale, fissando le travi con miscele epossidiche.

I profili metallici possono essere posti sia all'estradosso, creando un collegamento tra trave e putrella mediante cravatte metalliche tirate, sia all'intradosso, realizzando nella muratura degli alloggi per le teste delle putrelle e ponendo quindi due putrelle ai lati della trave.

Nel caso in cui la testata della trave sia ammalorata possono inserirsi barre in vetroresina dopo aver rimosso le parti ammalorate e dopo aver eseguito dei fori nella trave; oppure si possono realizzare nuovi appoggi senza sostituzione delle estremità, fissando una mensola metallica al muro ed creando una connessione tra trave e mensola. Una volta creato il nuovo supporto si asporta la parte deteriorata, ripristinandola con materiale sano.

Se la vecchia trave è ormai inaffidabile occorre sostituirla liberando e sfilando la trave dalla muratura, mettendo in opera la nuova trave e realizzando il contrasto con i travetti mediante biette in legno.

Interventi su solai in ferro e laterizio

Nel caso di solai in ferro e laterizio è opportuno precisare che tutti gli interventi devono essere preceduti da pulizia dei ferri con smerigliature ed eventuali trattamenti antiruggine, antincendio e protettivi.

Se il laterizio è danneggiato o inaffidabile, occorre sostituire gli elementi deteriorati. Le fasi operative consistono in:

- demolizione del laterizio;
- posa del tavellonato appoggiato all'ala inferiore dei travetti e del materiale d'alleggerimento sopra il tavellonato;
- saldatura di tondino sagomato sull'ala superiore della putrella;
- posa di rete elettrosaldata;
- irrorazione con acqua;
- getto di calcestruzzo.

Nel caso in cui le travi abbiano perso rigidezza può eseguirsi un consolidamento all'estradosso mediante cappa armata.

Il collegamento tra solaio e muro perimetrale può essere migliorato in due modi:

- collegamento della singola trave: si esegue liberando la testata della trave, saldando un tondino all'anima della putrella ed una eventuale piastra alla faccia inferiore dell'ala di estradosso. Dopo aver bagnato con acqua si esegue il getto di calcestruzzo dentro la casseratura:
- collegamento continuo: si esegue perforando la muratura, inserendo barre in ferro ad aderenza migliorata e sigillando con boiacca di cemento o resine. Le barre sono poi saldate ad una sezione metallica ad L.

Se la sezione della trave in ferro è originariamente insufficiente si esegue il consolidamento all'intradosso con posa in opera di nuovo sistema di travi in ferro senza rimuovere pavimento e sottofondo. Si rimuove l'eventuale controsoffitto e, dopo aver posto in opera travi a sistema semplice (ortogonali alla struttura esistente) o doppio (parallele a quelle originarie), si crea il collegamento degli elementi metallici nelle zone di contatto, appoggiando le travi al muro mediante inserimento di ciascuna testa previa saldatura di tondini, oppure realizzando un cordolo in c.a. sul quale appoggiare le teste delle putrelle.

Il consolidamento può anche essere effettuato all'estradosso con intervento sulle travi in ferro. Le staffe vengono fissate alle travi e, dopo aver bagnato tutta la parte interessata dal getto, si esegue questo entro l'ala delle putrelle.

Interventi su solai in latero-cemento

Anche in questo caso prima di procedere con qualunque tipo di intervento, occorre puntellare il solaio e pulire le travi in c.a.

Il collegamento tra solaio e muri perimetrali può essere migliorato con:

- spezzoni di ferro, realizzando un cordolo armato e, dopo aver forato la muratura, inserendo spezzoni di ferro collegandoli con l'armatura del cordolo;
- apparecchi a coda di rondine, demolendo i tratti del cordolo in corrispondenza di ogni ancoraggio e, dopo aver collegato le armature della gabbia e quelle del cordolo, eseguendo un getto degli apparecchi a coda di rondine e reintegrazione del cordolo.

Se il solaio risulta essere inaffidabile si può sostituire il vecchio solaio dopo averlo demolito e dopo aver demolito anche una fascia di muro per realizzare un cordolo in c.a. Si procederà quindi all'eventuale posa di spezzoni di ferro o a coda di rondine. Dopo aver posto in opera i ferri di armatura delle travi entro casseri o di travi prefabbricate, si esegue il getto sul quale verranno posati i laterizi. L'intervento si conclude con la bagnatura ed un getto di completamento.

Se le travi in c.a. hanno perso resistenza si potrà procedere al rafforzamento per mezzo di piastre metalliche o di armature suppletive.

Interventi su pavimenti

Per la preparazione del supporto per la posa di malta si procede ad una pulizia e bagnatura dello stesso. La malta deve essere stesa con un "rigone" e spolverata, quando indurita, da polvere di cemento; le piastrelle vanno posate a giunto unito o aperto con appositi distanziatori (listelli di legno). I giunti fra le piastrelle, una volta posate, devono essere sigillati con boiacca, posata a spatola non metallica e tolta, se in eccesso, con tela di iuta. Le piastrelle non smaltate devono essere pulite con soluzione acida.

La posa del collante si realizza in caso di posa su supporto liscio sul quale vengono pressate fino a totale adesione le nuove piastrelle che devono venire stuccate nei giunti e pulite con spugna bagnata.

La posa dello strato legante per la posa di pavimentazione lapidea, consiste nella stesura di malta normale di cemento sulla quale viene applicata malta bastarda. Le lastre posate vengono stuccate con cemento bianco addizionato con pigmenti colorati e, dopo venti giorni circa, levigate e lucidate.

L'impermeabilizzazione dei pavimenti in cotto avviene con posa di olio di lino crudo dopo avere atteso due giorni dal lavaggio con acqua e acido muriatico al 20%. Dopo quattro ore dalla stesura dell'olio di lino si procede alla ceratura del pavimento.

d) Partizioni inclinate

Interventi su scale

Nel caso di scala in pietra con rottura parziale della parte anteriore della pedata di un gradino, si può provvedere alla ricostruzione del pezzo mancante, fuori cantiere, e al suo incollaggio con resine epossidiche o, al limite, boiacca di cemento.

Nel caso di gradini in pietra o c.a. con doppio incastro, sconnessi con la muratura o rotti, si provvede alla loro sostituzione con ricostituzione del vano d'incastro mediante malta di cemento, eventualmente ad indurimento avvenuto.

Quando i gradini in pietra o c.a. sono a sbalzo, è necessario predisporre un'impalcatura di sostegno.

Nel caso di sconnessione totale della scala a doppio incastro, si procede alla sua demolizione previa impalcatura di sostegno.

e) Chiusure orizzontali

Interventi su volte in muratura

Le operazioni preliminari nel caso di interventi su volte sono:

- predisposizione di ponti di servizio;
- puntellatura della volta;
- dismissioni di pavimenti, sottofondo e materiale di rivestimento;

- rimozioni a partire dalla zona di chiave, rimozione degli elementi delle volte a botte procedendo per tratti di uguale dimensione da ambedue i lati;
- rimozione dalla faccia estradossale mediante spazzole metalliche, raschietti, getti di aria compressa, delle malte leganti degradate e dei detriti di lavorazione.

In caso di legante inconsistente e presenza di soluzioni di continuità, si esegue il consolidamento della volta estradossale mediante colatura di boiacca di cemento o iniezioni a pressione (preliminare a molte altre operazioni).

I rinfianchi cellulari contrastano il cedimento intermedio. Le fasi operative sono:

- innalzamento dei frenelli con mattoni e malta cementizia;
- microchiodature con barre di acciaio per ancorare i frenelli alla volta;
- foratura dei frenelli;
- collocamento sui frenelli di tavelloni di laterizio o travetti in laterizio armati;
- getto di una soletta armata.

La controvolta in c.a. viene utilizzata nel caso di una ridotta sezione strutturale. Le fasi operative sono:

- pulitura della superficie estradossale;
- posa di rete elettrosaldata e dell'armatura;
- esecuzione di getto in calcestruzzo della controvolta e del cordolo perimetrale;
- ancoraggio del cordolo con imperniature ammorsate nella muratura.

In zone sottoposte al rischio sismico l'inserimento di travi metalliche e tiranti costituisce una riserva di sicurezza poiché il carico viene trasferito dalla volta alle travi soprastanti che entrano in carico solo in caso di spostamenti differenziati delle imposte e perdita di portanza della volta. La posa delle travi su un cordolo perimetrale in c.a. è preceduta da risarcitura delle lesioni e consolidamento con cappa armata.

Per ovviare al fenomeno della pressoflessione nelle strutture di sostegno dovranno essere inseriti dei cavi tesi di acciaio, seguendo le successive fasi operative:

- rigenerazione delle murature;
- perforo inclinato nella muratura e inserimento di una barra di acciaio;
- collegamento della barra a lastre di ancoraggio o a bulbi fondali;
- tesatura della barra;
- iniezioni di acqua nei fori;
- immissione a pressione di miscela a base cementizia o formulati epossidici.

Per eliminare le componenti di spinta orizzontale, saranno utilizzati i tiranti in sospensione. Le fasi operative dell'intervento sono:

- perforazioni all'interno della parte superiore della volta attraversanti la muratura;
- aspirazione dei detriti di perforazione;
- posizionamento dei cavi;
- colaggio di una malta epossidica adatta all'ancoraggio dei tiranti alla volta;

 a indurimento della malta avvenuto, tesatura dei cavi mediante giunti di tensione (a manicotto o a gabbia).

L'ancoraggio della volta ad un solaio preesistente deve seguire le sotto elencate fasi operative:

- dismissione di pavimento, sottofondo e riempimento;
- perforazioni sull'estradosso della volta;
- costruzione dei frenelli lasciando al loro interno i cavi per l'alloggiamento dei tiranti;
- posa dei laterizi e dei ferri d'armatura del solaio;
- inserimento dei tiranti lungo i fori praticati nei frenelli fino al raggiungimento di quelli praticati sulla volta;
- collegamento dei tiranti con l'armatura del solaio;
- iniezione di cemento e getto del calcestruzzo per la formazione del solaio.

L'uso di catene metalliche annulla le componenti di spinta orizzontale. Il procedimento è il seguente:

- rimozione dell'intonaco e del paramento esterno;
- segnalazione dei livelli e degli assi dei tiranti;
- preparazione della sede di posa mediante sonde rotative (diametro 25-30 mm);
- creazione di scanalature per la posa delle piastre;
- imperniature per il fissaggio delle piastre (lato di 20-30 cm);
- fissaggio provvisorio delle stesse;
- taglio e preparazione dei tiranti, aventi filettatura, per circa 10 cm da ogni lato della muratura;
- posizionamento della catena mediante dadi filettati;
- saldature della piastra alle imperniature e della catena alla piastra;
- a malta indurita, tensione dei tiranti con chiavi dinamometriche (max 50% della tensione ammissibile dell'acciaio);
- saldatura del dado filettato;
- riempimento della sede di posa con iniezioni di malta cementizia.

Anche la strallatura annulla le spinte orizzontali. La volta deve essere preventivamente consolidata con cappa in c.a.

Interventi su tetti a falda con orditura lignea

Gli interventi preliminari a qualsiasi operazione sono:

- puntellamento della struttura portante;
- eventuale rimozione del manto di copertura;
- disinfestazione e protezione del legno da funghi;
- disinfestazione e protezione da insetti o organismi marini.

Per consolidare ed irrigidire il legno della grossa orditura mediante posa in opera di nuovo tavolato in legno ortogonale alla pendenza di falda, occorre rimuovere il manto di copertura ed il suo piano d'appoggio; si pone poi in opera il tavolato in legno di abete o larice dello spessore variabile da 2,5 a 4 cm, rifilato e intestato a perfetto contatto e chiodato ai puntoni o travicelli partendo dalla linea di gronda e per corsi paralleli. Si pone infine il manto di copertura.

Nel caso in cui si voglia irrigidire le falde senza porre mano al manto di copertura, si può inserire fra puntoni o travicelli, nella parte mediana della falda, un travetto, di dimensioni 8x8 o 10x10 cm, collegato con quattro piastre di ancoraggio angolari per ogni travetto. Nella muratura del timpano si predispone la piastra di ancoraggio dello staffone, che può essere ancorato con cunei o dadi filettati e collegato dall'altra estremità con i travetti, i dormienti ed il colmo. La controventatura si effettua per ogni falda con due tavole da 25 mm disposte a croce di Sant'Andrea.

In relazione alle capriate i dissesti più comuni possono essere l'ammaloramento del nodo puntone-catena, della catena, la precarietà dei collegamenti.

Il nodo puntone-catena può essere rinforzato con l'inserimento di barre in vetroresina e con eventuale ricostruzione delle parti asportate, perché troppo ammalorate, con conglomerato epossidico.

Nel caso in cui si debba intervenire sulle testate ammalorate di una catena si provvede all'incuffiamento delle testate stesse con scatole metalliche, collegate fra loro con ferri piatti incollati lungo i lati della catena. Le parti asportate vengono ricostruite con malte epossidiche.

Nel caso di ammaloramento della testata di una trave si può provvedere alla realizzazione di nuovi appoggi senza sostituzione delle estremità fissando all'intradosso della trave una mensola metallica in acciaio inox. Eseguiti i collegamenti necessari, si asporta la parte deteriorata della trave e si ripristina con i metodi suddetti.

In caso di trave danneggiata in modo non grave, si ricostruisce la parte asportata o mancante e si rinforza la sezione con l'applicazione di piastre sulle facce laterali opposte della trave mediante chiavarde passanti, opportunamente tirate.

In caso di trave sottoposta ad azione flettente, si applica al suo estradosso o intradosso una piastra metallica in ferro o acciaio, connessa alla trave con tacche imbullonate o chiavardate.

Per eliminare le componenti di spinta e rafforzare i collegamenti, nel caso di capriate, si inseriscono tiranti metallici. Questo intervento può essere complementare a quelli di ripristino delle parti mancanti e di ricostruzione dei nodi con piatti metallici, e consiste nel porre in opera una catena metallica di rinforzo dopo aver restituito la geometria originaria della capriata con funi metalliche presollecitate. La zona lignea placcata con lamiera nervata deve essere preconsolidata con formulati poliuretanici.

Nel caso di struttura a puntoni, l'intervento si esegue con tavolame in legno posto come una catena, e ferri di collegamento della trave di colmo con i travicelli o i puntoni.

Per ripristinare il collegamento fra le falde ed i muri d'appoggio si realizzerà un cordolo in c.a. senza rimuovere il coperto. Il cordolo viene eseguito per un'altezza minima di 20 cm e per tutta la lunghezza della muratura. Il cordolo viene collegato al dormiente con barre d'acciaio filettate e imbullonate ad una estremità a passo ravvicinato, circa ogni 50 cm. I travicelli o i puntoni sono collegati al cordolo mediante chiodatura o fasce metalliche. Nel caso il dormiente non venga conservato si ricorre ad un cuneo di legno per l'appoggio dei travicelli collegati al cordolo con zanche in ferro piatto.

Nel caso di deterioramento della piccola orditura, se la si può sostituire, si procede con la rimozione del manto di copertura con annessi torrini, camini, canali di gronda, pluviali, del tavolato e dei tavelloni, dei correnti, degli arcarecci e delle nervature varie. Se il legno è ancora in buono stato o si può disinfestare e consolidare viene riutilizzato e rimontato in sito.

In caso di legno troppo deteriorato, si sostituisce anche la grossa orditura portante previa rimozione degli elementi suddetti, nella ricostruzione si può porre in opera una nuova struttura di copertura in legno, trattato e stagionato, putrella e tavelloni, oppure una struttura secondaria in lamiera (zincata, in fibrocemento, ecc.) o ancora strutture composite in acciaio, legno e calcestruzzo alleggerito.

Interventi su manti di copertura

Le tegole, se smosse, devono venire fissate o sostituite parzialmente o totalmente se danneggiate.

I coppi danneggiati vengono rimossi e sostituiti con la ricollocazione di coppi dello stesso tipo provenienti anche da altri cantieri di recupero. In caso di scarsa resistenza agli urti e a fessurazioni dovute a gelività, si può ricoprire gli elementi con una pellicola consolidante ed idrorepellente o sostituire il manto con prodotti resistenti al gelo.

Dopo aver rimosso le parti incoerenti e dopo aver pulito mediante spazzolatura si impregnano gli elementi con consolidanti a penetrazione strutturale e si spalmano di guaina liquida all'acqua. Poi vengono impregnati con idrorepellente ed eventualmente cosparsi di lattice acrilico come barriera al vapore.

Oltre alla sostituzione delle tegole o coppi con altri non sensibili al gelo, è opportuno realizzare una ventilazione sottotegola al fine di impedire condense e ristagni.

Le lastre in materia plastica danneggiate devono essere sostituite e gli sbalzi ridotti, mentre ancoraggi e giunti scorrevoli devono essere predisposti per rispondere meglio alle dilatazioni.

In caso di lastre e lamiere metalliche, agganci a viti e bulloni devono essere sostituiti con nuovi sistemi di fissaggio, mentre le lamiere, se poco danneggiate, devono essere protette con vernici antiruggine/passivanti o bituminose.

Nel caso in cui vengano sostituite bisogna avere cura che il protettivo rivesta le lastre in ogni parte prima della loro posa in opera. Tutte le parti sovrapposte devono essere sigillate.

Se troppo danneggiate le lastre in pietra devono essere sostituite riducendo le distanze fra i supporti e fra gli sbalzi.

In caso di lastre in metallo o pietra deteriorate o danneggiate, si procede alla sigillatura delle crepe con sigillante siliconico neutro previa pulitura meccanica e alla spalmatura di guaina liquida solvente trasparente.

f) Chiusure verticali

Interventi su infissi esterni

Nel caso di essenze poco pregiate è necessario nascondere i difetti con vernici coprenti a smalto o ad olio, previo trattamento con olio di lino lasciato assorbire in profondità.

Le essenze pregiate vengono impregnate con olio trasparente, riducendo al minimo le stuccature con pasta colorata con additivi e usando come fondo isolante la vernice finale diluita con solvente.

Il ripristino della verniciatura segue generalmente le operazioni di rimozione delle parti distaccate o degradate e di stesura di una mano di fondo isolante.

La manutenzione dell'infisso verniciato necessita di una totale pulitura del metallo fino al vivo e di una pulizia meccanica per eliminare lo strato bluastro di calamina in presenza del quale la vernice non dura e si sfalda.

La manutenzione degli infissi d'alluminio si limita al controllo delle guarnizioni di gomma che possono fuoriuscire dalla sede a causa della dilatazione termica.

g) Partizioni esterne orizzontali

Interventi su balconi in ferro e laterizio

Il consolidamento dei profilati a sbalzo degradati in modo non eccessivo si articola nelle seguenti modalità operative:

- messa in opera di un puntone inclinato a 45°,
- pulizia delle parti esposte dei profilati esistenti mediante spazzolatura e scartavetratura;
- preparazione dei cavi sottostanti il profilato per accogliere il puntone;
- allargamento della parte per il fissaggio del puntone anche mediante saldatura di spezzone di ferro;
- infissione e bloccaggio con malta di cemento;
- saldatura dell'altro estremo del puntone al vecchio profilato;
- verniciatura protettiva delle parti metalliche.

Nel caso in cui l'estradosso del solaio si presenti degradato occorrerà rimuovere il pavimento, il massetto ed il gretonato o caldana sottostante, ricostruire la caldana del massetto e porre in opera il nuovo pavimento.

<u>TITOLO VII - PRESCRIZIONI TECNICHE</u> PER ESECUZIONE DI OPERE COMPLEMENTARI

Art. XXV Opere in marmo e pietre naturali

Le opere in marmo, pietre naturali od artificiali dovranno in genere corrispondere esattamente alle forme e dimensioni risultanti dai disegni di progetto ed essere lavorate a seconda delle prescrizioni generali del presente Capitolato o di quelle particolari impartite dalla Direzione dei Lavori all'atto dell'esecuzione.

Tutti i materiali dovranno avere le caratteristiche esteriori (grana, coloritura e venatura) e quelle essenziali della specie prescelta.

Prima di cominciare i lavori, qualora non si sia provveduto in merito avanti l'appalto da parte dell'Amministrazione appaltante, l'Impresa dovrà preparare a sue spese i campioni dei vari marmi o pietre e delle loro lavorazioni, e sottoporli all'approvazione della Direzione dei Lavori, alla quale spetterà in maniera esclusiva di giudicare se essi corrispondono alle prescrizioni. Detti campioni, debitamente contrassegnati, resteranno depositati negli Uffici della Direzione dei Lavori, quali termini di confronto e di riferimento.

Per quanto ha riferimento con le dimensioni di ogni opera nelle sue parti componenti, la Direzione dei Lavori ha la facoltà di prescrivere le misure dei vari elementi di un'opera qualsiasi (rivestimento, copertina, cornice, pavimento, colonna, ecc.), la formazione e disposizione dei vari conci e lo spessore delle lastre, come pure di precisare gli spartiti, la posizione dei giunti, la suddivisione dei pezzi, l'andamento della venatura, ecc., secondo i particolari disegni costruttivi che la stessa Direzione dei Lavori potrà fornire all'Impresa all'atto dell'esecuzione; e quest'ultima avrà l'obbligo di uniformarsi a tali norme, come ad ogni altra disposizione circa la formazione di modanature, scorniciature, gocciolatoi, ecc.

Per le opere di una certa importanza, la Direzione dei Lavori potrà, prima che esse vengano iniziate, ordinare all'Impresa la costruzione di modelli in gesso, anche in scala al vero, il tutto a spese dell'Impresa stessa, sino ad ottenere l'approvazione, prima di procedere all'esecuzione della particolare finitura.

Per tutte le opere infine è fatto obbligo all'Impresa di rilevare e controllare, a propria cura e spese, la corrispondenza delle varie opere ordinate dalla Direzione dei Lavori alle strutture rustiche esistenti, e di segnalare tempestivamente a quest'ultima ogni divergenza od ostacolo, restando essa Impresa in caso contrario unica responsabile della perfetta rispondenza dei pezzi all'atto della posa in opera.

Essa avrà pure l'obbligo di apportare alle stesse, in corso di lavoro, tutte quel modifiche che potessero essere richieste dalla Direzione dei Lavori.

Art. XXVI Opere da cementista e stuccatore

Cementi decorativi

I cementi decorativi, gettati in opera ad imitazione di pietra naturale di qualsiasi tipo e colore, comportano la formazione di uno strato superficiale con impasto di sabbia normale, polvere di marmo, graniglia e scaglia con cemento, variamente lavorato (raspato, martellinato, spuntato).

L'opera del cementista comporta la rasatura a gesso del cassero predisposto dall'Imprenditore edile, la formazione della sagoma di ornato, il necessario getto dell'impasto di cemento e graniglia (con polvere di marmo, scaglia, coloranti, ingredienti) della stessa pietra naturale da imitare con uno spessore non inferiore a 10 mm, ed esteso a tutta la parte destinata a rimanere in vista.

Eseguito a cura dell'Imprenditore edile il getto di calcestruzzo a riempimento dell'eventuale spazio residuo fra il cemento decorativo e la struttura muraria portante ed il disfacimento del cassero, il

cementista provvede alla pulizia del cemento decorativo, alla ripassatura, profilatura degli spigoli, rettifica di imperfezioni, sigillature e finitura della superficie vista come prescritta.

I cementi decorativi gettati in opera comportano la fornitura dei materiali occorrenti, gesso, sabbia normale, polvere di marmo, graniglia, scaglie, cemento e le prestazioni di mano d'opera da specialista: sono escluse le prestazioni di competenza dell'Imprenditore edile (cassero, calcestruzzo, ferro di armatura, disarmo del cassero), i ponteggi, le impalcature e le opere provvisionali.

I cementi decorativi si computano a metro quadrato.

Intonachi speciali

Gli intonachi speciali, eseguiti dallo specialista (intonaco di cemento decorativo, intonaco colorato pietrificato, intonaco con graniglia lavata a getto) comportano l'applicazione alle strutture murarie di uno strato di cemento e graniglia con aggiunta di coloranti ed ingredienti particolari e finiture delle superfici viste, diverso a seconda del tipo di intonaco.

La finitura della superficie vista dell'intonaco in cemento decorativo può essere raspata, martellinata o spuntata.

Per l'intonaco colorato pietrificante, esso comporta l'applicazione di uno strato di impasto a base di cementante neutro, idrofugo in polvere, colori minerali fini, granulati quarzosi e di diverse dimensioni e dosati in modo da assicurare la massima compattezza dell'impasto, la lamatura della superficie finita; tale intonaco può essere applicato mediante spruzzatura con idonea apparecchiatura; la spruzzatura non comporta ulteriore lavorazione della superficie vista.

Per intonaco con graniglia lavata a getto, esso comporta l'applicazione di uno strato di impasto a base di cemento, sabbia, granulato di pietra naturale di colori vari prestabiliti. Successivamente all'applicazione dell'impasto, si procede con lavatura a getto, all'asportazione dello strato superficiale, rimanendo in vista la superficie granulare.

Gli intonachi si misurano in base alla loro superficie effettiva in proiezione verticale (per le pareti) ed orizzontale (per soffitti e plafoni) senza tener conto di sporgenze, rientranze e riquadri inferiori a 5 cm.

La rasatura a gesso di pareti verticali, orizzontali, inclinate, piane e curve deve essere effettuata con una miscela di gesso da stuccatore e di calce adesiva in polvere nelle proporzioni di 60 parti di gesso e 40 di calce, in spessore non inferiore a 5 mm e non superiore a 10 mm, su preesistente intonaco rustico eseguito in piano con fasce; eventuali difetti dell'intonaco rustico devono essere corretti con malta a cura e spesa dell'esecutore dell'intonaco prima che venga applicata la rasatura a gesso. Questa deve essere eseguita in piano; la superficie di essa, sia in senso verticale che orizzontale non deve presentare ondulazioni, fuori quadro, strapiombi rilevabili ad occhio nudo o con normali sistemi di controllo; gli angoli e spigoli (rientranti e sporgenti) devono risultare assolutamente rettilinei in verticale, orizzontale ed in squadra; le superfici devono essere assolutamente prive di calcinaroli, graffi, tacche, grumi, rugosità ed altri difetti che compromettano la regolarità e la planarità delle pareti e plafoni.

Il rivestimento a soffitto con pannelli di gesso armato comprende, oltre alla fornitura del pannello e relativa mano d'opera dello specialista e suo aiutante, la fornitura dei tiranti in filo di ferro zincato ed il loro aggancio alla preesistente struttura portante; qualora sia necessaria l'esecuzione di una struttura in legno, cui fissare il rivestimento di gesso, questa viene compensata a parte.

Le rasature a gesso si computano a metro quadrato di superficie effettiva e comprendono la rasatura sulle pareti, la formazione di spigoli ed angoli, le riprese, i ripristini, i ritocchi, con un minimo contabilizzato a 1 m² per la rasatura ed il rivestimento in pannelli di gesso misurati in sviluppo di

superficie, escluso aggetti, rientranze e sporgenze inferiori a 5 cm e con un minimo di 1 m per le opere misurate a metro lineare.

Art. XXVII Opere in legno

Tutti i legnami da impiegarsi in opere permanenti da carpentiere (grossa armatura di tetto, travature per solai, impalcati, ecc.), devono essere lavorati con la massima cura e precisione, secondo ogni buona regola d'arte e in conformità alle prescrizioni date dalla Direzione dei Lavori.

Tutte le giunzioni dei legnami debbono avere la forma e le dimensioni prescritte, ed essere nette e precise in modo da ottenere un perfetto combaciamento dei pezzi che devono essere uniti.

Non è tollerato alcun taglio in falso, né zeppe o cunei, né qualsiasi altro mezzo di guarnitura o ripieno.

Qualora venga ordinato dalla Direzione dei Lavori, nelle facce di giunzione verranno interposte delle lamine di piombo o di zinco od anche del cartone incatramato.

Le diverse parti componenti un'opera in legname devono essere fra loro collegate solidamente in tutti i punti di contatto mediante caviglie, chiodi, squadre, staffe di ferro, chiavarde, fasciature di reggia od altro, in conformità alle prescrizioni che saranno date.

Dovendosi impiegare chiodi per collegamento dei legnami, è espressamente vietato farne l'applicazione senza apparecchiarne prima il conveniente foro con succhiello.

I legnami prima della loro posizione in opera e prima dell'esecuzione della spalmatura di catrame o della coloritura, se ordinata, debbono essere congiunti in prova nei cantieri, per essere esaminati ed accettati provvisoriamente dalla Direzione dei Lavori.

Tutte le parti dei legnami che rimangono incassate nella muratura devono, prima della posa in opera, essere convenientemente spalmate di catrame vegetale o di carbolineum e tenute, almeno lateralmente e posteriormente, isolate in modo da permettere la permanenza di uno strato di aria possibilmente ricambiabile.

Porte

In base al D.M. 14 giugno 1989, n. 236, "Regolamento di attuazione dell'art. 1 della legge 9 gennaio 1989, n. 13 - Prescrizioni tecniche necessarie a garantire l'accessibilità, l'adattabilità e la visitabilità degli edifici privati e di edilizia residenziale pubblica sovvenzionata e agevolata", le porte di accesso di ogni unità ambientale devono essere facilmente manovrabili, di tipo e luce netta tali da consentire un agevole transito anche da parte di persona su sedia a ruote; il vano della porta e gli spazi antistanti e retrostanti devono essere complanari.

Occorre dimensionare adeguatamente gli spazi antistanti e retrostanti, con riferimento alle manovre da effettuare con la sedia a ruote, anche in rapporto al tipo di apertura.

Sono ammessi dislivelli in corrispondenza del vano della porta di accesso di una unità immobiliare, ovvero negli interventi di ristrutturazione, purché questi siano contenuti e tali comunque da non ostacolare il transito di una persona su sedia a ruote.

Per dimensioni, posizionamento e manovrabilità la porta deve essere tale da consentire una agevole apertura della/e ante da entrambi i lati di utilizzo; sono consigliabili porte scorrevoli o con anta a libro, mentre devono essere evitate le porte girevoli, a ritorno automatico non ritardato e quelle vetrate se non fornite di accorgimenti per la sicurezza. Le porte vetrate devono essere facilmente individuabili mediante l'apposizione di opportuni segnali. Sono da preferire maniglie del tipo a leva opportunamente curvate ed arrotondate.

La luce netta della porta di accesso di ogni edificio e di ogni unità immobiliare deve essere di almeno 80 cm. La luce netta delle altre porte deve essere di almeno 75 cm.

Gli spazi antistanti e retrostanti la porta devono essere dimensionati nel rispetto dei minimi previsti negli schemi grafici di seguito riportati.

L'altezza delle maniglie deve essere compresa tra 85 e 95 cm (consigliata 90 cm). Devono inoltre, essere preferite soluzioni per le quali le singole ante delle porte non abbiano larghezza superiore ai 120 cm, e gli eventuali vetri siano collocati ad una altezza di almeno 40 cm dal piano del pavimento. L'anta mobile deve poter essere usata esercitando una pressione inferiore a 8 kg.

Art. XXVIII Opere da fabbro e serramentista

Nelle opere di ferro, questo deve essere lavorato diligentemente con maestria, regolarità di forme e precisione di dimensioni, secondo i disegni che fornirà la Direzione dei Lavori con particolare attenzione nelle saldature e ribaditure. I fori saranno tutti eseguiti con trapano; le chiodature, ribaditure, ecc. dovranno essere perfette, senza sbavature; i tagli essere limati. Saranno rigorosamente rifiutati tutti quei pezzi che presentino il più leggero indizio di imperfezione.

Ogni pezzo od opera completa in ferro dovrà essere fornita a piè d'opera con mano di antiruggine.

Per ogni opera in ferro a richiesta della Direzione dei Lavori, l'Appaltatore avrà l'obbligo di presentare il relativo modello alla preventiva approvazione. L'Impresa sarà in ogni caso obbligata a controllare gli ordinativi ed a rilevare sul posto le misure esatte delle diverse opere in ferro essendo responsabile degli inconvenienti che potessero verificarsi per l'omissione di tale controllo.

In particolare si prescrive:

- Inferriate, cancellate, ecc. Saranno costruite a perfetta regola d'arte, secondo i tipi che verranno indicati all'atto esecutivo. Esse dovranno presentare tutti i regoli ben dritti, spianati ed in perfetta composizione. I tagli delle connessioni per i ferri incrociati mezzo a mezzo dovranno essere della massima precisione ed esattezza, ed il vuoto di uno dovrà esattamente corrispondere al pieno dell'altro, senza la minima ineguaglianza o discontinuità. Le inferriate con regoli intrecciati ad occhio non presenteranno nei buchi, formati a fuoco, alcuna fessura. In ogni caso l'intreccio dei ferri dovrà essere diritto ed in parte dovrà essere munito di occhi, in modo che nessun elemento possa essere sfilato. I telai saranno fissati ai ferri di orditura e saranno muniti di forti grappe ed arpioni, ben chiodati ai regoli di telaio in numero, dimensioni e posizioni che verranno indicate.
- Infissi in ferro Gli infissi per finestre, vetrate ed altro, potranno essere richiesti con profilati ferro-finestra o con ferri comuni profilati. In tutti e due i casi dovranno essere simili al campione che potrà richiedere o fornire l'Amministrazione. Gli infissi potranno avere parte fissa od apribile, anche a vasistas, come sarà richiesto; le chiusure saranno eseguite a ricupero ad asta rigida, con corsa inversa ed avranno il ferro inferiore e superiore. Il sistema di chiusura potrà essere a leva od a manopola a seconda di come sarà richiesto. Le cerniere dovranno essere a quattro maschiettature in numero di due o tre parti per ciascuna partita dell'altezza non inferiore a 12 cm con ghiande terminali. Gli apparecchi di chiusura e di manovra in genere dovranno risultare bene equilibrati e non richiedere eccessivi sforzi per la chiusura. Le manopole e le cerniere, se richiesto, saranno cromate. Le ante apribili dovranno essere munite di gocciolatoio. Le ferramenta di ritegno dovranno essere proporzionate alla robustezza dell'infisso stesso.

Art. XXIX Opere da vetraio

Le lastre di vetro saranno di norma chiare, del tipo indicato nell'elenco prezzi; per le latrine si adotteranno vetri rigati o smerigliati, il tutto salvo più precise indicazioni che saranno impartite all'atto della fornitura dalla Direzione dei Lavori.

Per quanto riguarda la posa in opera, le lastre di vetro verranno normalmente assicurate negli appositi incavi dei vari infissi in legno con adatte puntine e mastice da vetraio (formato con gesso e olio di lino cotto), spalmando prima uno strato sottile di mastice sui margini verso l'esterno del battente nel quale deve collocarsi la lastra. Collocata queste in opera, saranno stuccati i margini verso l'interno col mastice ad orlo inclinato a 45°, ovvero si fisserà mediante regoletti di legno e viti.

Potrà inoltre esser richiesta la posa delle lastre entro intelaiature ad incastro, nel qual caso le lastre, che verranno infilate dall'apposita fessura praticata nella traversa superiore dell'infisso, dovranno essere accuratamente fissate con spessori invisibili, in modo che non vibrino.

Sugli infissi in ferro le lastre di vetro potranno essere montate o con stucco ad orlo inclinato, come sopra accennato, o mediante regoletti di metallo o di legno fissato con viti; in ogni caso si dovrà avere particolare cura nel formare un finissimo strato di stucco su tutto il perimetro della battuta dell'infisso contro cui dovrà appoggiarsi poi il vetro, e nel ristuccare accuratamente dall'esterno tale strato con altro stucco, in modo da impedire in maniera sicura il passaggio verso l'interno dell'acqua piovana battente a forza contro il vetro e far sì che il vetro riposi fra due strati di stucco (uno verso l'esterno e l'altro verso l'interno).

Potrà essere richiesta infine la fornitura di vetro isolante e diffusore, formato da due lastre di vetro chiaro dello spessore di 2,2 mm, racchiudenti uno strato uniforme (dello spessore da 3 mm) di feltro di fili e fibre di vetro trasparente, convenientemente disposti rispetto alla direzione dei raggi luminosi, racchiuso e protetto da ogni contatto con l'aria esterna mediante un bordo perimetrale di chiusura, largo da 10 a 15 mm, costituito da uno speciale composto adesivo resistente all'umidità.

Lo stucco da vetraio dovrà sempre essere protetto con una verniciatura a base di minio ed olio cotto; quello per la posa del vetro isolante e diffusore sarà del tipo speciale adatto.

Il collocamento in opera delle lastre di vetro, cristallo, ecc. potrà essere richiesto a qualunque altezza ed in qualsiasi posizione, e dovrà essere completato da una perfetta pulitura delle due facce delle lastre stesse, che dovranno risultare perfettamente lucide e trasparenti.

L'Impresa ha l'obbligo di controllare gli ordinativi dei vari tipi di vetri passatile dalla Direzione dei Lavori, rilevandone le esatte misure ed i quantitativi, e di segnalare a quest'ultima le eventuali discordanze, restando a suo completo carico gli inconvenienti di qualsiasi genere che potessero derivare dall'omissione di tale tempestivo controllo.

Essa ha anche l'obbligo della posa in opera di ogni specie di vetri o cristalli, anche se forniti da altre Ditte, a prezzi di tariffa.

Ogni rottura di vetri o cristalli, avvenuta prima della presa in consegna da parte della Direzione dei Lavori, sarà a carico dell'Impresa.

Art. XXX Opere da lattoniere

La chiodatura con ribattini di rame, ove occorrente, deve essere doppia con i ribattini alternati ed equidistanti uno dall'altro.

La saldatura con stagno deve essere uniforme e senza interruzioni; i bracci per l'affrancatura dei tubi pluviali devono essere a distanza non superiore ad 1,5 m; le cicogne per sostegno di canali di gronda, a distanza non superiore ad 1 m.

Le sovrapposizioni devono essere non inferiori a 5 cm per i pluviali, a 15 cm per canali e scossaline.

Per i materiali in plastica le connessioni devono essere effettuate con collante in modo da garantire una perfetta tenuta, gli accoppiamenti sia verticali che orizzontali devono essere effettuati in modo da assicurare l'assorbimento delle dilatazioni termiche; in particolare gli elementi per canali di gronda devono comprendere gli angolari normali e speciali, i raccordi, le testate esterne ed interne, con o senza scarico a seconda delle esigenze dell'opera da compiere.

I manufatti in latta, in lamiera di ferro nera o zincata, in ghisa, in zinco, in rame, in piombo, in ottone, in alluminio o in altri materiali dovranno essere delle dimensioni e forme richieste nonché lavorati a regola d'arte, con la maggiore precisione.

Detti lavori saranno dati in opera, salvo contraria precisazione contenuta nella tariffa dei prezzi, completi di ogni accessorio necessario al loro perfetto funzionamento, come raccordi di attacco, coperchio, viti di spurgo in ottone o bronzo, pezzi speciali e sostegni di ogni genere (braccetti, grappe, ecc.). Saranno inoltre verniciati con una mano di catrame liquido, ovvero di minio di piombo ed olio di lino cotto, od anche con due mani di vernice comune, a seconda delle disposizioni della Direzione dei Lavori.

Le giunzioni dei pezzi saranno fatte mediante chiodature, ribattiture, o saldature, secondo quanto prescritto dalla stessa Direzione ed in conformità ai campioni, che dovranno essere presentati per l'approvazione.

L'Impresa ha l'obbligo di presentare, a richiesta della Direzione dei lavori, i progetti delle varie opere, tubazioni, reti di distribuzione, di raccolta, ecc. completi dei relativi calcoli, disegni e relazioni, di apportarvi le modifiche che saranno richieste e di ottenere l'approvazione da parte della Direzione stessa prima dell'inizio delle opere stesse.

Art. XXXI Opere da pittore

Qualunque tinteggiatura, coloritura o verniciatura dovrà essere preceduta da una conveniente ed accuratissima preparazione delle superfici, e precisamente da raschiature, scrostature, eventuali riprese di spigoli e tutto quanto occorre per uguagliare le superfici medesime.

Successivamente le dette superfici dovranno essere perfettamente levigate con carta vetrata e, quando trattasi di coloriture o verniciature, nuovamente stuccate, quindi pomiciate e lisciate, previa imprimitura, con modalità e sistemi atti ad assicurare la perfetta riuscita del lavoro.

Speciale riguardo dovrà aversi per le superfici da rivestire con vernici.

Le tinteggiature, coloriture e verniciature dovranno, se richiesto, essere anche eseguite con colori diversi su una stessa parete, complete di filettature, zoccoli e quant'altro occorre per l'esecuzione dei lavori a regola d'arte.

La scelta dei colori è dovuta al criterio insindacabile della Direzione dei Lavori e non sarà ammessa alcuna distinzione tra colori ordinari e colori fini, dovendosi in ogni caso fornire i materiali più fini e delle migliori qualità.

Le successive passate di coloriture ad olio e verniciature dovranno essere di tonalità diverse, in modo che sia possibile, in qualunque momento, controllare il numero delle passate che sono state applicate.

In caso di contestazione, qualora l'impresa non sia in grado di dare la dimostrazione del numero di passate effettuate, la decisione sarà a sfavore dell'Impresa stessa. Comunque essa ha l'obbligo, dopo l'applicazione di ogni passata e prima di procedere all'esecuzione di quella successiva, di farsi rilasciare dal personale della Direzione dei Lavori una dichiarazione scritta.

Prima d'iniziare le opere da pittore, l'Impresa ha inoltre l'obbligo di eseguire nei luoghi e con le modalità che le saranno prescritti, i campioni dei vari lavori di rifinitura, sia per la scelta delle tinte che

per il genere di esecuzione, e di ripeterli eventualmente con le varianti richieste, sino ad ottenere l'approvazione della Direzione dei Lavori. Essa dovrà infine adottare ogni precauzione e mezzo atti ad evitare spruzzi o macchie di tinte o vernici sulle opere finite (pavimenti, rivestimenti, infissi, ecc.), restando a suo carico ogni lavoro necessario a riparare i danni eventualmente arrecati.

Verniciature su legno

Per le opere in legno, la stuccatura ed imprimitura dovrà essere fatta con mastici adatti, e la levigatura e rasatura delle superfici dovrà essere perfetta.

Verniciature su metalli

Per le opere metalliche la preparazione delle superfici dovrà essere preceduta dalla raschiatura delle parti ossidate.

Le opere dovranno eseguirsi di norma combinando opportunamente le operazioni elementari e le particolari indicazioni che seguono.

La Direzione dei Lavori avrà la facoltà di variare, a suo insindacabile giudizio, le opere elementari elencate in appresso, sopprimendone alcune od aggiungendone altre che ritenesse più particolarmente adatte al caso specifico e l'impresa dovrà uniformarsi a tali prescrizioni senza potere perciò sollevare eccezioni di sorta. Il prezzo dell'opera stessa subirà in conseguenza semplici variazioni in meno od in più, in relazione alle varianti introdotte ed alle indicazioni, della tariffa prezzi, senza che l'Impresa possa accampare perciò diritto a compensi speciali di sorta.

- a) Tinteggiatura a calce La tinteggiatura a calce degli intonaci interni e la relativa preparazione consisterà in:
 - spolveratura e raschiatura delle superfici;
 - prima stuccatura a gesso e colla;
 - levigatura con carta vetrata;
 - applicazione di due mani di tinta a calce.

Gli intonaci nuovi dovranno già aver ricevuto la mano di latte di calce denso (sciabaltura).

- b) Tinteggiatura a colla e gesso Saranno eseguite come appresso:
 - spolveratura e ripulitura delle superfici;
 - prima stuccatura a gesso e colla;
 - levigatura con carta vetrata;
 - spalmatura di colla temperata;
 - rasatura dell'intonaco ed ogni altra idonea preparazione;
 - applicazione di due mani di tinta a colla e gesso.

Tale tinteggiatura potrà essere eseguita a mezze tinte oppure a tinte forti e con colori fini.

- c) Verniciature ad olio Le verniciature comuni ad olio su intonaci interni saranno eseguite come appresso:
 - spolveratura e ripulitura delle superfici;
 - prima stuccatura a gesso e a colla;
 - levigatura con carta vetrata;
 - spalmatura di colla forte;
 - applicazione di una mano preparatoria di vernice ad olio con aggiunta di acquaragia per facilitare l'assorbimento, ed eventualmente di essiccativo;
 - stuccatura con stucco ad olio:
 - accurato levigatura con carta vetrata e lisciatura;
 - seconda mano di vernice ad olio con minori proporzioni di acquaragia;
 - terza mano di vernice ad olio con esclusione di diluente.

Per la verniciatura comune delle opere in legno le operazioni elementari si svolgeranno come per la verniciatura degli intonaci, con l'omissione delle stuccatura e della spalmatura con colla; per le opere in ferro, la verniciatura sarà preceduta da applicazione di antiruggine.

- d) Verniciature a smalto comune. Saranno eseguite con appropriate preparazioni, a seconda del grado di rifinitura che la Direzione dei Lavori vorrà conseguire ed a seconda del materiale da ricoprire (intonaci, opere in legno, ferro, ecc.). A superficie debitamente preparata si eseguiranno le seguenti operazioni:
 - applicazione di una mano di vernice a smalto con lieve aggiunta di acquaragia;
 - leggera pomiciatura a panno;
 - applicazione di una seconda mano di vernice a smalto con esclusione di diluente.
- e) Verniciature con vernici pietrificanti e lavabili a base di bianco di titanio, su intonaci, tipo con superficie finita liscia o "buccia d'arancio":
 - spolveratura, ripulitura e levigatura delle superfici con carta vetrata;
 - stuccatura a gesso e colla;
 - mano di leggera soluzione fissativa di colla in acqua;
 - applicazione di uno strato di standolio con leggera aggiunta di biacca in pasta, il tutto diluito con acquaragia;
 - applicazione a pennello di due strati di vernice a base di bianco di titanio diluita con acquaragia e con aggiunta di olio di lino cotto in piccola percentuale; il secondo strato sarà eventualmente battuto;
 - con spazzola per ottenere la superficie a buccia d'arancio.
- f) Verniciature con vernici pietrificanti e lavabili a base di bianco di titanio, su intonaci, tipo con superficie finita liscia o "buccia d'arancio", tipo "battuto" con superficie a rilievo:
 - spolveratura, ripulitura e levigatura delle superfici con carta vetrata;
 - stuccatura a gesso e colla;
 - mano di leggera soluzione fissativa di colla in acqua;
 - applicazione a pennello di uno strato di vernice come sopra cui sarà aggiunto del bianco di Meudon in polvere nella percentuale occorrente per ottenere il grado di rilievo desiderato:
 - battitura a breve intervallo dall'applicazione 4), eseguita con apposita spazzola, rulli di gomma, ecc.

Art. XXXII Opere da tappezziere

Tappezzeria con carta

Le pareti sulle quali deve essere applicata la tappezzeria saranno preparate diligentemente come per le tinteggiature, e successivamente lavate con acqua di colla.

La tappezzeria verrà applicata con colla di farina scevra di granuli e dovrà risultare perfettamente distesa e aderente, senza asperità, con le giunzioni bene sovrapposte ed esattamente verticali, in modo che vi sia esatta corrispondenza nel disegno; sarà, inoltre, completata in alto e in basso con fasce e bordature e con filettature a tinta in corrispondenza dei vani di finestra o di porta.

Se richiesto dalla Direzione dei Lavori, le pareti saranno preventivamente ricoperte da un primo strato di carta fodera.

Art. XXXIII Opere in vetrocemento

Opere in vetrocemento

Per le opere in vetrocemento si impiegano i diffusori di vetro ricotto, a tazza, o blocchetto a camera d'aria, con pianta quadrata o rettangolare.

Le lastre di vetrocemento, eseguite fuori opera od in opera, risultano dalla composizione di diffusori regolarmente disposti con o senza formelle in plastica ed annegati in getto di calcestruzzo armato a 400 kg di cemento R 325 per m³ d'impasto; le costolature fra i diffusori devono essere di sezione costante, prestabilita, salvo il caso che prescrizioni particolari impongano di modificarla per la esatta ripartizione dei diffusori nelle varie piastre, la variazione di larghezza delle costole non deve comunque mai essere inferiore al 10% rispetto a quella prestabilita.

Competono al vetrocementista la fornitura dei diffusori, delle formelle metalliche occorrenti per il getto, di quelle in plastica da mantenere in opera per mascheratura del cemento, gli inerti, i leganti, il ferro di armatura, il getto di calcestruzzo e della piastra, la sua rifinitura e lisciatura finali in opera.

Per le lastre gettate fuori opera, la formazione del piano di getto è di competenza del vetrocementista, mentre la posa in opera è di competenza dell'Imprenditore edile.

Per le lastre gettate in opera, competono al vetrocementista le prestazioni di cui sopra, ad eccezione del cassero, impalcati, ponteggi occorrenti, che rientrano nelle assistenze murarie a carico dell'Imprenditore edile.

Il vetrocemento si computa a metro quadrato di lastra misurata tra i fili esterni dei diffusori estremi.

Opere in vetrocemento armato

Nella costruzione di strutture in vetrocemento armato, che dovranno essere realizzate da Ditte specializzate, si dovranno seguire tutte le norme già citate per le opere in cemento armato, oltre le cure e gli speciali accorgimenti che sono particolari delle costruzioni in oggetto.

Si dovrà pertanto impiegare, per le nervature in cemento armato, un conglomerato cementizio formato con ghiaietta finissima e sabbia scelta di marrana, dosato con almeno 4 q di cemento Portland salvo l'uso di impasti più ricchi in legante o l'impiego di cemento ad alta resistenza qualora i calcoli statici o prove pratiche su cubetti ne dimostrino la necessità. Per l'armatura dovranno usarsi gli acciai Ag 50 od Ag 60.

I diffusori, tanto piani che cavi, di forma quadrata o tonda, dovranno essere di vetro speciale e dello spessore stabilito nell'elenco prezzi.

Le strutture di copertura saranno di norma del tipo a soletta nervata, in cui gli elementi in vetro risultino annegati in un reticolo di nervature sporgenti sotto la faccia inferiore del diffusore ed arrotondate inferiormente in modo da opporre il minimo ostacolo al passaggio dei raggi luminosi obliqui, oppure del tipo a soletta piena in cui i diffusori, del tipo a bicchiere rovesciato, hanno lo stesso spessore della soletta. Tali strutture potranno essere richieste tanto in piano che in pendenza, a schiena d'asino o centinate, a curva, a cupola, ecc. ed in genere saranno transitabili.

A disarmo avvenuto le nervature sporgenti dovranno essere accuratamente intonacate con malta di composizione eguale a quella del getto, seguendo esattamente la loro sagoma in modo da risultare a superficie liscia, regolare e perfettamente rifinita.

Gli elementi di vetro potranno essere richiesti con la faccia inferiore munita di prismi di vario tipo, per la diffusione uniforme della luce o per la sua deviazione in una direzione. Potranno richiedersi inoltre pareti verticali, eseguite come sopra tanto a nervature di calcestruzzo sporgenti da un lato, quanto a doppia superficie piana.

In tutti i casi si dovrà avere cura particolare nella scelta degli elementi di vetro in rapporto ai requisiti particolari cui deve rispondere l'opera nei dettagli costruttivi degli appoggi sulle strutture circostanti di sostegno, nel fissare i giunti di dilatazione, ma soprattutto nell'assicurare l'eventuale impermeabilizzazione, sia con adatte sostanze aggiunte al conglomerato, sia con uno strato

superiore di cemento plastico o di speciali mastici bituminosi, da stendere sulla faccia superiore della struttura e nei collegamenti perimetrali.

I carichi accidentali da considerare nella progettazione delle varie strutture saranno fissati dalla Direzione dei Lavori, alla cui approvazione dovrà essere inoltre sottoposto il progetto, completo dei calcoli statici, delle opere stesse, redatto come stabilito per le normali opere in cemento armato.

L'Impresa sarà responsabile dell'imperfetta esecuzione delle opere in oggetto e dovrà eseguire a sua cura e spese ogni riparazione ed anche il completo rifacimento di quelle che non rispondessero ai requisiti sopra descritti e in modo speciale che non comportassero perfetta impermeabilità all'acqua piovana.

Art. XXXIV Opere di impermeabilizzazione

La pasta di asfalto per stratificazioni impermeabilizzanti di terrazzi, coperture, fondazioni, ecc., risulterà dalla fusione di:

- 60 parti in peso di mastice di asfalto naturale (in pani);
- 4 parti in peso di bitume naturale raffinato;
- 36 parti in peso di sabbia vagliata, lavata e ben secca.

Nella fusione i componenti saranno ben mescolati perché l'asfalto non carbonizzi e l'impasto diventi omogeneo.

La pasta di asfalto sarà distesa a strati e a strisce parallele, dello spessore prescritto con l'ausilio delle opportune guide di ferro, compressa e spianata con la spatola e sopra di essa, mentre è ancora ben calda, si spargerà della sabbia silicea di granulometria fine uniforme la quale verrà battuta per ben incorporarla nello strato asfaltico.

Nelle impermeabilizzazioni eseguite con l'uso di cartafeltro e cartonfeltro questi materiali avranno i requisiti prescritti e saranno posti in opera mediante i necessari collanti con i giunti sfalsati.

Qualsiasi impermeabilizzazione sarà posta su piani predisposti con le opportune pendenze.

Le impermeabilizzazioni, di qualsiasi genere, dovranno essere eseguite con la maggiore accuratezza possibile (specie in vicinanza di fori, passaggi, cappe, ecc.); le eventuali perdite che si manifestassero in esse, anche a distanza di tempo e sino al collaudo, dovranno essere riparate ed eliminate dall'Impresa, a sua cura e spese, compresa ogni opera di ripristino.

Art. XXXV Opere di pavimentazione e rivestimento

Per quanto attiene ai pavimenti, il D.M. 14 giugno 1989, n. 236, "Regolamento di attuazione dell'art. 1 della legge 9 gennaio 1989, n. 13 - Prescrizioni tecniche necessarie a garantire l'accessibilità, l'adattabilità e la visitabilità degli edifici privati e di edilizia residenziale pubblica sovvenzionata e agevolata", prescrive che questi devono essere di norma orizzontali e complanari tra loro e, nelle parti comuni e di uso pubblico, non sdrucciolevoli.

Eventuali differenze di livello devono essere contenute ovvero superate tramite rampe con pendenza adeguata in modo da non costituire ostacolo al transito di una persona su sedia a ruote. Nel primo caso si deve segnalare il dislivello con variazioni cromatiche; lo spigolo di eventuali soglie deve essere arrotondato.

Nelle parti comuni dell'edificio, si deve provvedere ad una chiara individuazione dei percorsi, eventualmente mediante una adeguata differenziazione nel materiale e nel colore delle pavimentazioni. I grigliati utilizzati nei calpestii debbono avere maglie con vuoti tali da non costituire ostacolo o pericolo rispetto a ruote, bastoni di sostegno ecc.; gli zerbini devono essere incassati e le

guide solidamente ancorate. Qualora i pavimenti presentino un dislivello, questo non deve superare i 2,5 cm.

La posa in opera dei pavimenti di qualsiasi tipo o genere dovrà venire eseguita in modo che la superficie risulti perfettamente piana ed osservando scrupolosamente le disposizioni che, di volta in volta, saranno impartite dalla Direzione dei Lavori.

I singoli elementi dovranno combaciare esattamente tra di loro, dovranno risultare perfettamente fissati al sottostrato e non dovrà verificarsi nelle connesse dei diversi elementi a contatto la benché minima ineguaglianza.

I pavimenti si addentreranno per 15 mm entro l'intonaco delle pareti, che sarà tirato verticalmente sino al pavimento, evitando quindi ogni raccordo o guscio.

Nel caso in cui venga prescritto il raccordo, debbono sovrapporsi al pavimento non solo il raccordo stesso, ma anche l'incontro per almeno 15 mm.

I pavimenti dovranno essere consegnati diligentemente finiti lavorati e senza macchie di sorta.

Resta comunque contrattualmente stabilito che per un periodo di almeno dieci giorni dopo l'ultimazione di ciascun pavimento, l'Impresa avrà l'obbligo di impedire l'accesso di qualunque persona nei locali; e ciò anche per pavimenti costruiti da altre Ditte. Ad ogni modo, ove i pavimenti risultassero in tutto o in parte danneggiati per il passaggio abusivo di persone e per altre cause, l'Impresa dovrà a sua cura e spese ricostruire le parti danneggiate.

L'Impresa ha l'obbligo di presentare alla Direzione dei Lavori i campionari dei pavimenti che saranno prescritti. Tuttavia la Direzione dei Lavori ha piena facoltà di provvedere il materiale di pavimentazione.

L'Impresa, se richiesta, ha l'obbligo di provvedere alla posa in opera al prezzo indicato nell'elenco ed eseguire il sottofondo secondo le disposizioni che saranno impartite dalla Direzione stessa.

Sottofondi

Il piano destinato alla posa dei pavimenti, di qualsiasi tipo essi siano, dovrà essere opportunamente spianato mediante un sottofondo, in guisa che la superficie di posa risulti regolare e parallela a quella del pavimento da eseguire ed alla profondità necessaria.

Il sottofondo potrà essere costituito, secondo gli ordini della Direzione dei Lavori, da un massetto di calcestruzzo idraulico o cementizio o da un gretonato, di spessore minore di 4 cm in via normale, che dovrà essere gettato in opera a tempo debito per essere lasciato stagionare per almeno 10 giorni. Prima della posa del pavimento le lesioni eventualmente manifestatesi nel sottofondo saranno riempite e stuccate con un beverone di calce o cemento, e quindi vi si stenderà, se prescritto, lo spianato di calce idraulica (camicia di calce) dello spessore da 1,5 a 2 cm. Nel caso che si richiedesse un massetto di notevole leggerezza la Direzione dei Lavori potrà prescrivere che sia eseguito in calcestruzzo in pomice.

Quando i pavimenti dovessero poggiare sopra materie comunque compressibili il massetto dovrà essere costituito da uno strato di conglomerato di congruo spessore, da gettare sopra un piano ben costipato e fortemente battuto, in maniera da evitare qualsiasi successivo cedimento.

Pavimenti di laterizi

I pavimenti in laterizi, sia con mattoni di piatto che di costa, sia con pianelle, saranno formati distendendo sopra il massetto uno strato di malta crivellata, sul quale i laterizi si disporranno a filari paralleli, a spina di pesce, in diagonale, ecc. comprimendoli affinché la malta rifluisca nei giunti. Le connessioni devono essere allineate e stuccate con cemento e la loro larghezza non deve superare 3 mm per i mattoni e le pianelle non arrotati, e 2 mm per quelli arrotati.

Pavimenti in mattonelle di cemento con o senza graniglia

Tali pavimenti saranno posati sopra un letto di malta cementizia normale, distesa sopra il massetto; le mattonelle saranno premute finché la malta rifluisca dalle connessioni. Le connessioni debbono essere stuccate con cemento e la loro larghezza non deve superare 1 mm.

Avvenuta la presa della malta i pavimenti saranno arrotondati con pietra pomice ed acqua o con mole carborundum o arenaria, a seconda del tipo, e quelli in graniglia saranno spalmati in un secondo tempo con una mano di cera, se richiesta.

Pavimenti in mattonelle greificate

Sul massetto in calcestruzzo di cemento, si distenderà uno strato di malta cementizia magra dello spessore di 2 cm, che dovrà essere ben battuto e costipato. Quando il sottofondo avrà preso consistenza si poseranno su di esso a secco le mattonelle a seconda del disegno o delle istruzioni che verranno impartite dalla Direzione. Le mattonelle saranno quindi rimosse e ricollocate in opera con malta liquida di puro cemento, saranno premute in modo che la malta riempia e sbocchi dalle connessioni e verranno stuccate di nuovo con malta liquida di puro cemento distesavi sopra. Infine la superficie sarà pulita e tirata a lucido con segatura bagnata e quindi con cera. Le mattonelle greificate, prima del loro impiego, dovranno essere bagnate a rifiuto per immersione.

Pavimenti in lastre di marmo

Per i pavimenti in lastre di marmo si useranno le stesse norme stabilite per i pavimenti in mattonelle di cemento.

Pavimenti in getto di cemento

Sul massetto in conglomerato cementizio verrà disteso uno strato di malta cementizia grassa, dello spessore di 2 cm ed un secondo strato di cemento assoluto dello spessore di 5 mm, lisciato, rigato o rullato, secondo quanto prescriverà la Direzione dei lavori.

Sul sottofondo previamente preparato in conglomerato cementizio, sarà disteso uno strato di malta, composta di sabbia e cemento colorato giunti con lamine di zinco od ottone, dello spessore di 1 mm disposte a riquadri con lato non superiore a 1 m ed appoggiate sul sottofondo. Detto strato sarà battuto a rifiuto e rullato.

Per pavimenti a disegno di diverso colore, la gettata della malta colorata sarà effettuata adottando opportuni accorgimenti perché il disegno risulti ben delineato con contorni netti e senza soluzione di continuità.

Quando il disegno deve essere ottenuto mediante cubetti di marmo, questi verranno disposti sul piano di posa prima di gettare la malta colorata di cui sopra.

Le qualità dei colori dovranno essere adatte all'impasto, in modo da non provocarne la disgregazione; i marmi in scaglie tra 10 mm e 25 mm, dovranno essere non gessosi e il più possibile duri (giallo, rosso e bianco di Verona; verde, nero e rosso di Levanto; bianco, venato e bardiglio di Serravezza, ecc.).

I cubetti in marmo di Carrara dovranno essere pressoché perfettamente cubici, di 15 mm circa di lato, con esclusione degli smezzati; le fasce e le controfasce di contorno, in proporzione all'ampiezza dell'ambiente.

L'arrotatura sarà fatta a macchina, con mole di carborundum di grana grossa e fine, fino a vedere le scaglie nettamente rifinite dal cemento, poi con mole leggera, possibilmente a mano, e ultimate con due passate di olio di lino crudo, a distanza di qualche giorno, e con un'ulteriore mano di cera.

Pavimenti con rivestimento lapideo

I marmi possono venire posati su strato di allettamento cementizio o incollati direttamente al supporto. Lo strato di allettamento può essere usualmente costituito da una stesura di malta normale di cemento con aggiunta di calce grezza in ragione di m3 0,1 per m3 di impasto.

I procedimenti di lucidatura e levigatura in opera devono necessariamente venire differiti nel tempo rispetto alla posa onde evitare che tali trattamenti, che prevedono normalmente l'impiego di forti quantità di acqua e fango, possano provocare degradi alla superficie lucidata così come alla superficie muraria al contorno.

Alla posa con collante (normalmente composto da impasto di cemento e resine idrosolubili) possono venire facilmente assoggettati i rivestimenti a "tutto marmo".

In questi casi, dato il ridotto spessore dello strato di collegamento impiegato (3-4 mm) si deve operare su sottofondi particolarmente livellati e comunque resistenti, in grado di assorbire le sollecitazioni derivanti dai carichi cui la pavimentazione verrà sottoposta in fase di esercizio.

Nelle situazioni previste in modelli risolutivi isolati termicamente o acusticamente, lo strato di supporto della pavimentazione lapidea dovrà essere costituito non da un semplice strato di livellamento, ma da un vero e proprio strato di ripartizione dei carichi.

Nel caso di pavimentazione con rivestimento lapideo posato su strato legante cementizio con tecnica convenzionale, non si deve trascurare l'esigenza di frazionare la pavimentazione con giunti di dilatazione estesi a tutto lo spessore dello strato di allettamento, in campi non superiori ai m2 di superficie; da ridurre ulteriormente nel caso di pavimentazioni contenenti impianti di riscaldamento di tipo radiante.

Pavimenti a bollettonato

Su di un ordinario sottofondo si distenderà uno strato di malta cementizia normale, per lo spessore minimo di 1,5 cm sul quale verranno posti a mano pezzami di marmo colorato di varie qualità, di dimensioni e forme atte allo scopo e precedentemente approvati dalla Direzione dei Lavori. Essi saranno disposti in modo da ridurre al minimo gli interspazi di cemento. Su tale strato di pezzami di marmo, sarà gettata una boiacca di cemento colorato, distribuita bene ed abbondantemente sino a rigurgito, in modo che ciascun pezzo di marmo venga circondato da tutti i lati dalla malta stessa. Il pavimento sarà poi rullato. Verrà eseguita una duplice arrotatura a macchina con mole di carborundum di grana grossa e fina ed eventualmente la lucidatura a piombo.

Pavimenti in legno ("parquet")

Tali pavimenti dovranno essere eseguiti con legno ben stagionato e profilato di tinta e grana uniforme. Le doganelle delle dimensioni di....., unite a maschio e femmina, saranno chiodate sopra un'orditura di listelli della sezione di...... ed interasse non superiore a 35 cm.

L'orditura di listelli sarà fissata al sottofondo di mediante grappe di ferro opportunamente murate.

Lungo il perimetro degli ambienti dovrà collocarsi un coprifilo in legno all'unione tra pavimento e pareti.

La posa in opera si effettuerà solo dopo il completo prosciugamento del sottofondo. Le precauzioni da adottarsi in questi casi consigliano di evitare la posa in presenza di valori di umidità del supporto superiori al 14%.

Accanto allo strato di supporto vero e proprio dovranno inoltre venire analizzate anche natura e condizioni degli strati sottostanti, con particolare riferimento ad eventuali strati di livellamento, frequentemente realizzati in impasti di calcestruzzo particolarmente porosi ed imbibibili o allo stesso impalcato strutturale anch'esso costituito da alleggerimenti con cavità molto adatte a ritenere l'acqua di costruzione.

È necessario quindi evitare in ogni modo il contatto della pavimentazione con gli elementi umidi del sistema attraverso l'impiego di strati separatori continui posati al di sotto dello strato di supporto. Per tali strati occorre seguire alcune prescrizioni quali: saldatura tra i teli, risvolti in corrispondenza di elementi verticali (pilastri) o in corrispondenza di attraversamenti impiantistici.

Accanto a queste misure d'ordine generale, andranno collocate scelte specifiche rivolte a consentire, perimetralmente al sistema di pavimentazione, il recupero degli incrementi dimensionali dovuti alla eventuale dilatazione attraverso la realizzazione dei giunti di dilatazione, o alla eliminazione di possibili attrezzamenti impiantistici nel supporto con particolare riferimento alle canalizzazioni, per le quali può essere prevedibile l'innesco di fenomeni di condensazione superficiale.

La posa dovrà essere fatta a perfetta regola d'arte, senza discontinuità, gibbosità od altro; le doghe saranno disposte a spina di pesce con l'interposizione di bindelli fra il campo e la fascia di quadratura.

I pavimenti di parquet dovranno essere lavati e lucidati con doppia spalmatura di cera, da eseguirsi l'una a lavoro ultimato, l'altra all'epoca che sarà fissata dalla Direzione dei Lavori.

Pavimenti d'asfalto

Il sottofondo dei pavimenti in asfalto sarà formato con conglomerato cementizio dosato a 250 kg ed avrà lo spessore di cm. Su di esso sarà colato uno strato dell'altezza di 4 cm di pasta d'asfalto, risultante dalla fusione del mastice d'asfalto naturale e bitume, mescolati a ghiaietta o graniglia nelle proporzioni di 50 parti di asfalto, quattro di bitume e 46 di ghiaietta passata tra vagli di 5 e 10 mm. La ghiaietta sarà ben lavata, assolutamente pura ed asciutta.

Nella fusione i componenti saranno ben mescolati perché l'asfalto non carbonizzi e l'impasto diventi omogeneo.

L'asfalto sarà disteso a strati di 2 cm di spessore ognuno a giunti sfalsati. Sopra l'asfalto appena disteso, mentre è ben caldo, si spargerà della sabbia silicea di granulatura uniforme la quale verrà battuta e ben incorporata nello strato asfaltico.

Pavimenti in linoleum

Speciale cura si dovrà adottare per la preparazione dei sottofondi, che potranno essere costituiti da impasto di cemento e sabbia, o di gesso e sabbia.

La superficie superiore del sottofondo dovrà essere perfettamente piana e liscia, togliendo gli eventuali difetti con stuccatura a gesso.

L'applicazione del linoleum dovrà essere fatta su sottofondo perfettamente asciutto; nel caso in cui per ragioni di assoluta urgenza non si possa attendere il perfetto prosciugamento del sottofondo, esso sarà protetto con vernice speciale detta antiumido.

Quando il linoleum debba essere applicato sopra a vecchi pavimenti, si dovranno innanzitutto fissare gli elementi del vecchio pavimento che non siano fermi, indi si applicherà su di esso uno strato di gesso dello spessore da 2 a 4 mm, sul quale verrà fissato il linoleum.

L'applicazione del linoleum, dovrà essere fatta da operai specializzati, con mastice di resina o con altre colle speciali. Il linoleum dovrà essere incollato su tutta la superficie e non dovrà presentare rigonfiamenti od altri difetti di sorta.

La pulitura dei pavimenti di linoleum dovrà essere fatta con segatura (esclusa quella di castagno), inumidita con acqua dolce leggermente saponata, che verrà passata e ripassata sul pavimento fino ad ottenere pulitura. Dovrà poi il pavimento essere asciugato passandovi sopra segatura asciutta e pulita, e quindi strofinato con stracci imbevuti con olio di lino cotto. Tale ultima applicazione contribuirà a mantenere la plasticità e ad aumentare l'impermeabilità del linoleum.

Pavimenti con rivestimento tessile

La realizzazione di pavimentazioni con rivestimento tessile adotta criteri di posa che vanno dall'incollaggio totale dei teli, al tensionamento mediante fissaggio perimetrale su listelli chiodati o nastro biadesivo.

Il supporto deve essere il più possibile regolare, per evitare che risalti o eventuali interruzioni di continuità con dislivelli fra le parti provochino, con la pedonalizzazione del sistema di pavimentazione, punti di usura privilegiati.

Discontinuità possono essere dovute all'innesco di fessurazioni ad opera di canalizzazioni annegate nello strato di supporto o a cedimenti localizzati per la sottostante presenza di stratificazioni compressibili.

Pavimenti sopraelevati

In fase di determinazione per lo sviluppo planimetrico degli ambienti, è bene operare un coordinamento dimensionale delle superfici in modo da favorire l'impiego di elementi tutti della medesima gamma dimensionale e di evitare eventuali aggiustamenti lungo le zone perimetrali.

Un particolare problema è rappresentato dalla concentrazione dei carichi lungo il sistema di appoggi discreti in tutte quelle situazioni in cui o per la realizzazione della pavimentazione sopraelevata su pavimentazione preesistente o per la scelta di operare con stratificazioni funzionali già nel pacchetto degli strati componenti la partizione orizzontale (inserimento di strati termocoibenti, o di ammortizzazione) non ci si trovi in condizioni di avere supporti sufficientemente resistenti.

In questi casi è possibile operare sia attraverso l'impiego di strati di ripartizione dei carichi più o meno armati, che tuttavia incidono negativamente aumentando il carico permanente previsto dal sistema strutturale, sia attraverso un aumento delle superfici di appoggio delle singole colonne.

Pavimentazione in grigliato metallico

La posa potrà andare dal semplice accostamento e giustapposizione degli elementi, al loro fissaggio, tramite bullonatura o sistemi di ancoraggio necessari mediante staffe e casellotti metallici, all'inserimento di supporti elastici per l'ammortizzazione dei rumori d'urto.

Pavimentazione con rivestimento resiliente

La posa potrà andare dal semplice accostamento e giustapposizione degli elementi, al loro fissaggio.

Rivestimenti di pareti

I rivestimenti in materiale di qualsiasi genere dovranno essere eseguiti a perfetta regola d'arte, con il materiale prescelto dall'Amministrazione appaltante, e conformemente ai campioni che verranno volta a volta eseguiti, a richiesta della Direzione dei Lavori.

Particolare cura dovrà porsi nella posizione in sito degli elementi, in modo che questi a lavoro ultimato risultino perfettamente aderenti al retrostante intonaco.

Pertanto, i materiali porosi prima del loro impiego dovranno essere immersi nell'acqua fino a saturazione, e dopo aver abbondantemente innaffiato l'intonaco delle pareti, alle quali deve applicarsi il rivestimento, saranno allettati con malta cementizia normale, nelle qualità necessarie e sufficienti.

Gli elementi del rivestimento dovranno perfettamente combaciare fra loro e le linee dei giunti, debitamente stuccate con cemento bianco o diversamente colorato, dovranno risultare, a lavoro ultimato, perfettamente allineate. I rivestimenti dovranno essere convenientemente lavati e puliti.

L'applicazione del linoleum alle pareti sarà fatta nello stesso modo che per i pavimenti, avendo, anche per questo caso, cura di assicurarsi che la parete sia ben asciutta.

Art. XXXVI Sistemazioni a verde

I prezzi in elenco per le opere compiute comprendono la fornitura dei materiali e degli elementi vegetativi di ottima qualità e la prestazione dello specialista e suo aiutante, per la fornitura e posa a regola d'arte delle varie opere previste.

L'Imprenditore edile deve dare inizio ad esecuzione di ordini e disposizioni impartiti dalla Direzione dei Lavori, attenendosi rigorosamente a quanto ordinato, con divieto di introdurre varianti e modifiche, che non saranno tollerate o riconosciute.

Nell'esecuzione dei lavori devono essere adottati i procedimenti e le cautele nel rispetto delle norme antinfortunistiche di legge; l'Imprenditore edile assume le responsabilità conseguenti, rimanendo indenne il committente da ogni e qualsiasi responsabilità ed onere.

Per la realizzazione di aiuole, viali, ecc. si provvede al tracciamento previa redazione del piano quotato, quindi all'eventuale scasso, formazione di cassonetto dell'altezza prestabilita ed asportazione della terra di risulta.

Le zone da sistemare a prato, dopo l'esecuzione del cassonetto, devono essere sacrificate o vangate e pulite con asportazione di qualsiasi elemento non idoneo; quindi si deve provvedere alla fornitura di ottima terra di coltura per il riempimento del cassonetto per le aiuole e delle buche per messa a dimora di elementi vegetativi.

Lo spessore minimo della terra di coltura, dopo il costipamento naturale e quando si renda necessaria una scarica completa, non deve essere mai inferiore a 40 cm.

In corrispondenza dei viali, vialetti e piazzali, i cassonetti devono essere riempiti con materiale inerte (terra bianca, mista, ghiaia) per uno spessore compreso fra 25 e 40 cm fino al raggiungimento delle quote prestabilite.

Ove già esistesse in posto terra di coltura ritenuta idonea, la stessa, prima di essere utilizzata, deve essere mondata da ogni sorta di detriti, spurgata e convenientemente smossa, rivoltata e lavorata.

Solo dopo la completa sistemazione del terreno su tutta l'area si dovrà procedere alla esecuzione delle buche ed alla successiva posa di piantagioni e piantumazioni.

La posa delle piante deve essere fatta nella esatta posizione prescritta, sottoponendo le radici ad una opportuna preparazione ed assestando adeguatamente la terra attorno e sopra il pane radicale, previa adeguata concimazione sul fondo scavo con concime animale (stallatico). Ove necessario e richiesto, si deve provvedere all'infissione del palo tutore e dei paletti con le dovute assicurazioni e tenditori ed infine all'innaffiamento secondo l'andamento stagionale.

Per le zone ove è prevista la sistemazione a prato, si deve procedere alla vangatura con ripetute fresature del terreno, che deve essere mondato da ciottoli, sassi, erbe infestanti e quant'altro non idoneo per la sistemazione suddetta.

Dopo adeguato trattamento con concime naturale o chimico, secondo prescrizioni, si procede alla semina e successiva rastrellatura e rullatura del terreno.

Dopo la semina dovranno essere eseguite quelle varie opere di rifinitura, quali sistemazione del drenaggio e dello scolo delle acque, regolarizzazione delle pendenze, eliminazione di parti eccedenti previa esecuzione di eventuali cordonature di contenimento. Queste vengono realizzate con elementi retti o curvi in cemento, ciottoli, pietra naturale, con sottofondo e/o rinfianco in calcestruzzo e malta di cemento.

Il materiale inerte riportato in corrispondenza dei viali, vialetti e piazzali, dopo la stesa deve essere sufficientemente compresso (e se del caso ricaricato) con adeguati mezzi meccanici; sul piano così costipato verrà steso, su tutta la superficie, ghiaiettino o pietrischetto di 5-10 mm di pezzatura per uno spessore di 3-4 cm.

Tutte le opere sopradescritte si computano nelle loro dimensioni effettive a metro quadrato, metro lineare, a numero od a peso.

Manutenzione degli spazi verdi

La manutenzione degli spazi verdi viene appaltata con contratto particolare, però qualora sia stato eseguito un nuovo impianto di sistemazione a verde, all'appaltatore dello stesso compete un primo anno di manutenzione gratuita dalla data del verbale di ultimazione dei lavori.

Nel caso di appalto di manutenzione, possono essere ordinati all'Imprenditore edile rinnovi di piantagioni, nuove opere, anche di limitata entità.

Le opere di manutenzione prevedono:

- concimazioni chimiche;
- innaffiamenti;
- rifacimenti di aree erbose a scarsa vegetazione o dissesti da interventi sulle aree stesse;
- raccolta ed asporto dei sassi, materiali vari inerti giacenti sulle aiuole;
- fornitura e stesa terra di colture per l'eliminazione di avvallamenti e assestamenti;
- pulizia di aiuole e cortili in terra battuta da foglie;
- tagli e tosatura tappeti erbosi: sono previsti secondo necessità da un minimo di tre ad un massimo di cinque interventi per anno.

Il taglio dell'erba sarà eseguito esclusivamente con mezzi meccanici a lama rotante e/o con trituratori a coltelli, salvo diverse disposizioni impartite dalla Direzione dei Lavori ed integrati con altri attrezzi atti a completare l'operazione. Ad ogni intervento i bordi delle aiuole dovranno essere rifiniti nei particolari ed eseguita la spollonatura.

I materiali di risulta saranno allontanati e trasportati alle discariche autorizzate entro e non oltre il secondo giorno successivo alla esecuzione delle varie operazioni. Qualora per necessità operativa, l'Imprenditore edile dovesse sporcare strade e aree comuni, sarà tenuto a pulirle senza compenso.

Qualora i residui erbosi, provenienti dallo sfalcio, risultano minuti od in quantità non eccessiva, la raccolta non sarà eseguita e pertanto non compensata.

Art. XXXVII Opere varie

In mancanza di norme speciali, verranno seguite le migliori regole d'arte e si seguiranno i lavori nel miglior modo possibile, impegnandovi tutti i mezzi necessari.

Per la misurazione di tali opere, si seguiranno le norme indicate dalla descrizione dei lavori dell'elenco prezzi ed in mancanza di queste da quelle che saranno dettate dal Direttore dei Lavori in base alle normali consuetudini locali.

TITOLO VIII – ORDINE DA TENERSI NELL'ANDAMENTO DEI LAVORI

In genere l'Appaltatore avrà facoltà di sviluppare i lavori nel modo che crederà più conveniente per darli perfettamente compiuti nel termine contrattuale purché, a giudizio della Direzione dei Lavori, non riesca pregiudizievole alla buona riuscita delle opere ed agli interessi dell'Amministrazione.

È cura dell'Appaltatore verificare, preventivamente all'avvio dei lavori di demolizione, le condizioni di conservazione e di stabilità dell'opera nel suo complesso, delle singole parti della stessa, e degli eventuali edifici adiacenti all'oggetto delle lavorazioni di demolizione.

È altresì indispensabile che il documento di accettazione dell'appalto e di consegna dell'immobile da parte della Stazione appaltante sia accompagnato da un programma dei lavori redatto dall'Appaltatore consultata la Direzione dei Lavori e completo dell'indicazione della tecnica di demolizione selezionata per ogni parte d'opera, dei mezzi tecnici impiegati, del personale addetto, delle protezioni collettive ed individuali predisposte, della successione delle fasi di lavorazione previste.

In seguito all'accettazione scritta da parte della Direzione dei Lavori di tale documento di sintesi della programmazione dei lavori sarà autorizzato l'inizio lavori, previa conferma che l'Appaltatore provvederà all'immediata sospensione dei lavori in caso di pericolo per le persone, le cose della Stazione appaltante e di terzi.

Ogni lavorazione sarà affidata a cura ed onere dell'Appaltatore a personale informato ed addestrato allo scopo e sensibilizzato ai pericoli ed ai rischi conseguenti alla lavorazione.

L'Appaltatore dichiara di utilizzare esclusivamente macchine ed attrezzature conformi alle disposizioni legislative vigenti, e si incarica di far rispettare questa disposizione capitolare anche ad operatori che per suo conto o in suo nome interferiscono con le operazioni o le lavorazioni di demolizione (trasporti, apparati movimentatori a nolo, ecc.).

Sarà cura dell'Appaltatore provvedere alla redazione di un piano di emergenza per le eventualità di pericolo immediato con l'obiettivo di proteggere gli operatori di cantiere, le cose della Committenza e di terzi, l'ambiente e i terzi non coinvolti nei lavori.

In materia si fa riferimento agli articoli 150, 151, 152, 153, 154, 155 e 184 del d.lgs. 81/08 e successivo D.Lgs. correttivo ed integrativo pubblicato il 3 agosto 2009, n. 106..

L'Amministrazione si riserva in ogni modo il diritto di stabilire l'esecuzione di un determinato lavoro entro un congruo termine perentorio o di disporre l'ordine di esecuzione dei lavori nel modo che riterrà più conveniente, specialmente in relazione alle esigenze dipendenti dalla esecuzione di opere ed alla consegna delle forniture escluse dall'appalto, senza che l'Appaltatore possa rifiutarsi o farne oggetto di richiesta di speciali compensi.

NORME GENERALI PER IL COLLOCAMENTO IN OPERA

La posa in opera di qualsiasi materiale, apparecchio o manufatto, consisterà in genere nel suo prelevamento dal luogo di deposito, nel suo trasporto in sito (intendendosi con ciò tanto il trasporto in piano o in pendenza, che il sollevamento in alto o la discesa in basso, il tutto eseguito con qualsiasi sussidio o mezzo meccanico, opera provvisionale, ecc.), nonché nel collocamento nel luogo esatto di destinazione, a qualunque altezza o profondità ed in qualsiasi posizione, ed in tutte le opere conseguenti (tagli di strutture, fissaggio, adattamenti, stuccature e riduzioni in pristino).

L'Impresa ha l'obbligo di eseguire il collocamento di qualsiasi opera od apparecchio che gli venga ordinato dalla Direzione dei Lavori, anche se forniti da altre Ditte.

Il collocamento in opera dovrà eseguirsi con tutte le cure e cautele del caso; il materiale o manufatto dovrà essere convenientemente protetto, se necessario, anche dopo collocato, essendo l'Impresa

unica responsabile dei danni di qualsiasi genere che potessero essere arrecati alle cose poste in opera, anche dal solo traffico degli operai durante e dopo l'esecuzione dei lavori, sino al loro termine e consegna, anche se il particolare collocamento in opera si svolge sotto la sorveglianza e assistenza del personale di altre Ditte, fornitrici del materiale o del manufatto.

COLLOCAMENTO DI MANUFATTI IN LEGNO

I manufatti in legno come infissi di finestre, porte, vetrate, ecc., saranno collocati in opera fissandoli alle strutture di sostegno, mediante, a seconda dei casi, grappe di ferro, ovvero viti assicurate a tasselli di legno od a controtelai debitamente murati.

Tanto durante la loro giacenza in cantiere, quanto durante il loro trasporto, sollevamento e collocamento in sito, l'Impresa dovrà curare che non abbiano a subire alcun guasto o lordura, proteggendoli convenientemente da urti, da schizzi di calce, tinta o vernice, ecc.

Nel caso di infissi di qualsiasi tipo muniti di controtelaio, l'Impresa sarà tenuta ad eseguire il collocamento in opera anticipato, a murature rustiche, a richiesta della Direzione dei Lavori.

Nell'esecuzione della posa in opera le grappe dovranno essere murate a calce o cemento, se ricadenti entro strutture murarie; fissate con piombo e battute a mazzolo, se ricadenti entro pietre, marmi, ecc.

Sarà a carico dell'Impresa ogni opera accessoria occorrente per permettere il libero e perfetto movimento dell'infisso posto in opera (come scalpellamenti di piattabande, ecc.), come pure la verifica che gli infissi abbiano assunto l'esatta posizione richiesta, nonché l'eliminazione di qualsiasi imperfezione che venisse riscontrata, anche in seguito, sino al momento del collaudo.

COLLOCAMENTO DI MANUFATTI IN FERRO

I manufatti in ferro, quali infissi di porte, finestre, vetrate, ecc., saranno collocati in opera con gli stessi accorgimenti e cure, per quanto applicabili, prescritti all'articolo precedente per le opere in legno.

Nel caso di infissi di qualsiasi tipo muniti di controtelaio, l'Impresa avrà l'obbligo, a richiesta della Direzione dei Lavori, di eseguirne il collocamento; il collocamento delle opere di grossa carpenteria dovrà essere eseguito da operai specialisti in numero sufficiente affinché il lavoro proceda con la dovuta celerità. Il montaggio dovrà essere fatto con la massima esattezza, ritoccando opportunamente quegli elementi che non fossero a perfetto contatto reciproco e tenendo opportuno conto degli effetti delle variazioni termiche.

Dovrà tenersi presente infine che i materiali componenti le opere di grossa carpenteria, ecc., debbono essere tutti completamente recuperabili, senza guasti né perdite.

COLLOCAMENTO DI MANUFATTI IN MARMO E PIETRE

Tanto nel caso in cui la fornitura dei manufatti le sia affidata direttamente, quanto nel caso in cui venga incaricata della sola posa in opera, l'Impresa dovrà avere la massima cura per evitare, durante le varie operazioni di scarico, trasporto e collocamento in sito e sino a collaudo, rotture, scheggiature, graffi, danni alle lucidature, ecc. Essa pertanto dovrà provvedere a sue spese alle opportune protezioni, con materiale idoneo, di spigoli, cornici, colonne, scolini, pavimenti, ecc., restando obbligata a riparare a sue spese ogni danno riscontrato, come a risarcirne il valore quando, a giudizio insindacabile della Direzione dei Lavori, la riparazione non fosse possibile.

Per ancorare i diversi pezzi di marmo o pietra, si adopereranno grappe, perni e staffe, in ferro zincato o stagnato, od anche in ottone o rame, di tipi e dimensioni adatti allo scopo ed agli sforzi cui saranno assoggettati, e di gradimento della Direzione dei Lavori.

Tali ancoraggi saranno saldamente fissati ai marmi o pietre entro apposite incassature di forma adatta, preferibilmente a mezzo di piombo fuso e battuto a mazzuolo, e murati nelle murature di sostegno con malta cementizia. I vuoti che risulteranno tra i rivestimenti in pietra o marmo e le retrostanti murature dovranno essere diligentemente riempiti con malta idraulica fina o mezzana, sufficientemente fluida e debitamente scagliata, in modo che non rimangano vuoti di alcuna entità. La stessa malta sarà impiegata per l'allettamento delle lastre in piano per pavimenti, ecc.

È vietato l'impiego di agglomerante cementizio a rapida presa, tanto per la posa che per il fissaggio provvisorio dei pezzi, come pure è vietato l'impiego della malta cementizia per l'allettamento dei marmi.

L'Impresa dovrà usare speciali cure ed opportuni accorgimenti per il fissaggio o il sostegno di stipiti, architravi, rivestimenti, ecc., in cui i pezzi risultino sospesi alle strutture in genere ed a quelli in cemento armato in specie: in tale caso si potrà richiedere che le pietre o marmi siano collocati in opera prima del getto, ed incorporati con opportuni mezzi alla massa della muratura o del conglomerato, il tutto seguendo le speciali norme che saranno all'uopo impartite dalla Direzione dei Lavori e senza che l'impresa abbia diritto a pretendere compensi speciali.

Tutti i manufatti, di qualsiasi genere, dovranno risultare collocati in sito nell'esatta posizione prestabilita dai disegni o dalla Direzione dei Lavori; le connessioni ed i collegamenti eseguiti a perfetto combaciamento secondo le minori regole dell'arte, dovranno essere stuccati con cemento bianco o colorato, a seconda dei casi, in modo da risultare il meno appariscenti che sia possibile, e si dovrà curare di togliere ogni zeppa o cuneo di legno al termine della posa in opera.

I piani superiori delle pietre o marmi posti all'interno dovranno avere le opportune pendenze per convogliare le acque piovane, secondo le indicazioni che darà la Direzione dei Lavori.

Sarà in ogni caso a carico dell'Impresa, anche quando essa avesse l'incarico della sola posa in opera, il ridurre e modificare le murature ed ossature ed eseguire i necessari scalpellamenti e incisioni, in modo da consentire la perfetta posa in opera dei marmi e pietre di qualsiasi genere.

Nel caso di rivestimenti esterni potrà essere richiesto che la posa in opera delle pietre o marmi segua immediatamente il progredire delle murature, ovvero che venga eseguita in un tempo successivo, senza che l'Impresa possa accampare pretese di compensi speciali oltre quelli previsti dalla tariffa.

COLLOCAMENTO DI MANUFATTI VARI, APPARECCHI E MATERIALI FORNITI DALL'AMMINISTRAZIONE APPALTANTE

Qualsiasi apparecchio, materiale o manufatto fornito dall'Amministrazione appaltante sarà consegnato alle stazioni ferroviarie o in magazzini, secondo le istruzioni che l'Impresa riceverà tempestivamente.

Pertanto essa dovrà provvedere al suo trasporto in cantiere, immagazzinamento e custodia, e successivamente alla loro posa in opera, a seconda delle istruzioni che riceverà, eseguendo le opere murarie di adattamento e ripristino che si renderanno necessarie.

Per il collocamento in opera dovranno seguirsi inoltre tutte le norme indicate per ciascuna opera nei precedenti articoli del presente Capitolato, restando sempre l'Impresa responsabile della buona conservazione del materiale consegnatole, prima e dopo del suo collocamento in opera.

PARTE SECONDA IMPIANTI IDRICI ED IGIENICO-SANITARI / IMPIANTI ANTINCENDIO / IMPIANTI A GAS PRESCRIZIONI TECNICHE

TITOLO I - PRESCRIZIONI TECNICHE IMPIANTI IDRICI ED IGIENICO - SANITARI

Art. I Definizioni generali degli impianti

Ferme restando le disposizioni di carattere generale riportate negli articoli contenuti nella parte generale del presente Capitolato, tutti gli impianti da realizzare dovranno osservare le prescrizioni di seguito indicate oltre a quanto contenuto nei disegni di progetto allegati e alla normativa vigente.

Il progetto esecutivo finale degli impianti, se eseguito dall'Appaltatore, dovrà essere approvato dal Committente almeno 90 giorni prima dell'inizio dei lavori relativi e presentato contestualmente alla campionatura di tutti gli elementi; inoltre se eseguito dal Committente, dovrà essere consegnato all'Appaltatore almeno 90 giorni prima dell'inizio dei lavori relativi.

Le caratteristiche di ogni impianto saranno così definite:

- a) dalle prescrizioni generali del presente capitolato;
- b) dalle prescrizioni particolari riportate negli articoli seguenti;
- c) dalle eventuali descrizioni specifiche aggiunte come integrazioni o come allegati al presente capitolato;
- d) da disegni, dettagli esecutivi e relazioni tecniche allegati al progetto.

Resta, comunque, contrattualmente fissato che tutte le specificazioni o modifiche apportate nei modi suddetti fanno parte integrante del presente capitolato.

Tutte le tubazioni od i cavi necessari agli allacciamenti dei singoli impianti saranno compresi nell'appalto ed avranno il loro inizio dai punti convenuti con le Società fornitrici e, comunque, dovranno essere portati al cancello d'ingresso del lotto o dell'area di edificazione; tali allacciamenti ed i relativi percorsi dovranno comunque essere in accordo con le prescrizioni fissate dalla Direzione dei Lavori e saranno eseguiti a carico dell'Appaltatore.

Restano comunque esclusi dagli oneri dell'Appaltatore i lavori necessari per l'allaccio della fognatura dai confini del lotto alla rete comunale; in ogni caso l'Appaltatore dovrà realizzare, a sue spese, la parte di rete fognante dai piedi di ciascuna unità abitativa fino alle vasche o punti di raccolta costituiti da adeguate canalizzazioni e pozzetti di ispezione con valvole di non ritorno ed un sistema di smaltimento dei rifiuti liquidi concorde con la normativa vigente.

Art. Il Verifiche e prove preliminari

Durante l'esecuzione dei lavori si dovranno eseguire le verifiche e le prove preliminari di cui appresso:

- a) verifica della qualità dei materiali approvvigionati;
- b) prova preliminare per accertare che le condutture non diano luogo, nelle giunzioni, a perdite (prova a freddo); tale prova andrà eseguita prima della chiusura delle tracce, dei rivestimenti e pavimentazioni e verrà realizzata ad una pressione di 2 kg/cmq e comunque superiore a quella di esercizio:
- c) prova preliminare di tenuta a caldo e di dilatazione: con tale prova verrà accertato che l'acqua calda arrivi regolarmente a tutti i punti di utilizzo;
- d) verifica del montaggio degli apparecchi e della relativa esecuzione in modo da garantire la perfetta tenuta delle giunzioni e la totale assenza di qualunque tipo di inconveniente relativo alla rubinetteria;
- e) verifica per accertare il regolare funzionamento degli impianti completati di ogni particolare; tale prova potrà essere eseguita dopo che siano completamente ultimati tutti i lavori e le forniture.

f) ...

Le verifiche e le prove di cui sopra, eseguite a cura e spese dell'Appaltatore, verranno eseguite dalla Direzione dei Lavori in contraddittorio con l'Appaltatore stesso, restando quest'ultimo, anche nel caso di esito favorevole delle prove indicate, pienamente responsabile dei difetti o delle imperfezioni degli impianti installati fino al termine del periodo di garanzia.

Art. III Prescrizioni e prove sui materiali

I materiali utilizzati per la realizzazione delle opere dovranno rispondere alle specifiche di progetto e alle normative vigenti. In particolare, prima dell'accettazione di tubi, giunti e pezzi speciali e in corso d'opera, potrà essere richiesto l'intervento del progettista per pareri tecnici, anche in relazione ad eventuali varianti. È facoltà dell'Appaltatore avvalersi in qualsiasi momento dell'assistenza tecnica da parte della ditta fornitrice delle tubazioni.

Tubazioni per impianti idrici

Le tubazioni per impianti idrici saranno conformi alle specifiche della normativa vigente in materia ed avranno le caratteristiche indicate nel presente capitolato.

I materiali utilizzati per le tubazioni potranno essere dei tipi seguenti:

- a) tubazioni in ghisa sferoidale⁵;
- b) tubi in acciaio saldati⁶:
- c) tubi di resine termoindurenti rinforzate con fibre di vetro (PRFV), UNI 9032/08, UNI EN 1796/08 UNI EN 14364/08, 9033/88 (classe A) 1228/97 E 1229/98;
- d) tubazioni in polietilene ad alta densità (PEAD PN 16)⁷;
- e) tubazioni in cloruro di polivinile (PVC)8;
- f) tubazioni in polipropilene.

Sarà onere dell'Appaltatore presentare al Direttore dei Lavori prima dell'inizio delle opere eventuale campionatura dei materiali che intende fornire, relativa a tubazioni, giunzioni, pezzi speciali, ... corredata di tutta la documentazione tecnica necessaria alla verifica di conformità del materiale proposto alle prescrizioni tecniche di progetto.

All'esterno di ciascun tubo o pezzo speciale dovranno essere apposte in modo indelebile e ben leggibili le seguenti marchiature:

- marchio del produttore;
- sigla del materiale;
- data di fabbricazione;
- diametro interno o nominale;
- pressione di esercizio;

⁵ UNI EN 545/07 Tubi, raccordi ed accessori in ghisa sferoidale e loro assemblaggi per condotte d'acqua - Requisiti e metodi di prova.

metodi di prova.

⁶ UNI EN ISO 1127/98 Tubi di acciaio inossidabile - Dimensioni, tolleranze e masse lineiche convenzionali; UNI EN 10220/03 Tubi di acciaio, saldati e senza saldatura - Dimensioni e masse lineiche; UNI EN 10217-3/05 Tubi saldati di acciaio per impieghi a pressione - Condizioni tecniche di fornitura - Parte 3: Tubi di acciaio legato a grano fine; UNI EN 10217-7/05 Tubi saldati di acciaio per impieghi a pressione - Condizioni tecniche di fornitura - Parte 7: Tubi di acciaio inossidabile; UNI EN 10312/07 Tubi saldati di acciaio inossidabile per il convogliamento di liquidi acquosi inclusa l'acqua per il consumo umano - Condizioni tecniche di fornitura.

⁷ UNI EN 12201-1/04 Sistemi di tubazioni di materia plastica per la distribuzione dell'acqua - Polietilene (PE) - Generalità e UNI EN 12201-2/04 Sistemi di tubazioni di materia plastica per la distribuzione dell'acqua - Polietilene (PE) - Tubi.

₈ UNI EN 1401-1/09 Sistemi di tubazioni di materia plastica per fognature e scarichi interrati non in pressione - Policloruro di vinile non plastificato (PVC-U) - Specificazioni per i tubi, i raccordi ed il sistema.

- classe di resistenza allo schiacciamento (espressa in kN/m per i materiali non normati);
- normativa di riferimento.

Tubazioni in ghisa

Dovranno essere in ghisa grigia o sferoidale ed avere giunzioni a vite, a flangia o a giunto elastico. Tali tubazioni potranno essere utilizzate per le colonne di scarico in pezzi di varia misura, catramate, munite di bicchiere, complete di tutti i pezzi speciali, curve di ogni tipo con giunti suggellati con corda catramata e mastice, cravatte di ferro opportunamente distanziate, con un diametro medio del tubo di 100 mm.

Le caratteristiche meccaniche per tutti i diametri saranno:

- carico di rottura a trazione >= 41N/mmq (420 kg/cmq);
- allungamento a rottura min. 8%;
- durezza Brinell max 22,56 N/mmg (230 kg/mmg).

Le prove d'officina saranno eseguite a pressioni di 61 bar (60 atm) per diametri dai 60 ai 300 mm,, di 51 bar (50 atm) per diametri dai 350 ai 600 mm e di 40,8 bar (40 atm) per diametri dai 700 ai 1250 mm.

Gli eventuali rivestimenti e verniciature dovranno essere continui, aderenti e rispondere a specifiche caratteristiche adequate all'uso; nei diametri di maggiori dimensioni la verniciatura sarà preceduta dall'applicazione di uno strato di zinco conformemente alle norme UNI ISO 8179/869.

Tutti i pezzi in ghisa per i quali non è prescritta la verniciatura dovranno essere protetti con prodotti rispondenti alle prescrizioni progettuali ed espressamente accettati dalla Direzione Lavori.

Le giunzioni dei tubi saranno rigide od elastiche (con guarnizioni in gomma o simili); i raccordi dovranno avere le estremità adatte al tipo di giunzione previsto dalle prescrizioni di progetto.

Tubazioni in acciaio 10

Dovranno essere in acciaio non legato e corrispondere alle norme UNI ed alle prescrizioni vigenti, essere a sezione circolare, avere profili diritti entro le tolleranze previste e privi di difetti superficiali sia interni che esterni.

La classificazione dei tubi in acciaio è la seguente:

- tubi senza prescrizioni di qualità (Fe 33);
- tubi di classe normale (Fe 35-1/45-1/55-1/52-1);
- tubi di classe superiore (Fe 35-2/45-2/55-2/52-2).

L'acciaio delle lamiere per la realizzazione di tubi di acciaio deve essere di qualità ed avere di norma caratteristiche meccaniche e chimiche secondo la norma UNI 5335-64¹¹ o analoghe purché rientranti nei seguenti limiti:

- carico unitario di rottura a trazione non minore di 34 kg/mmg;
- rapporto tra carico snervamento e carico rottura non superiore a 0,80;
- contenuto di carbonio non maggiore di 0,29%;
- contenuto di fosforo non maggiore di 0,05%;
- contenuto di zolfo non maggiore di 0,05%;
- contenuto di fosforo e zolfo nel complesso non maggiore di 0,08%;

⁹ Norma ritirata senza sostituzione il 5 luglio del 2007. 10 Circolare Min. LL.PP. 05/05/66, n. 2136 - "Istruzioni sull'impiego delle tubazioni in acciaio saldate nella costruzione degli acquedotti".

¹¹ Tale norma è stata ritirata e sostituita con UNI EN 10002-1/04 Materiali metallici - Prova di trazione - Parte 1: Metodo di prova a temperatura ambiente.

- contenuto di manganese non maggiore di 1,20%;
- contenuto di carbonio e di manganese tali che la somma del contenuto di carbonio e di 1/6 di quello di manganese non sia superiore a 0,45%.

Le lamiere dovranno inoltre prevedere le seguenti tolleranze:

- spessore della lamiera al di fuori dei cordoni di saldatura:
 - in meno: 12,5% ed eccezionalmente 15% in singole zone per lunghezze non maggiori del doppio del diametro del tubo;
 - in più: limitate dalle tolleranze sul peso;
- diametro esterno ± 1,5% con un minimo di 1 mm;
- diametro esterno delle estremità calibrate dei tubi con estremità liscia per saldatura di testa per una lunghezza non maggiore di 200 mm dalle estremità:
 - 1 mm per tubi del diametro fino a 250 mm;
 - 2,5 mm; -1 millimetro per tubi del diametro oltre i 250 mm. L'ovalizzazione delle sezioni di estremità sarà tollerata entro limiti tali da non pregiudicare l'esecuzione a regola d'arte della giunzione per saldatura di testa;
- sul diametro interno del bicchiere per giunti a bicchiere per saldatura: + 3 mm. Non sono ammesse tolleranze in meno;
- sul peso calcolato in base alle dimensioni teoriche ed al peso specifico di 7,85 kg/cmc sono ammesse le seguenti tolleranze:
- sul singolo tubo: +10%; -8%;
- per partite di almeno 10 t: +/-7,5%.

Lo spessore dei tubi deve soddisfare la seguente formula, con un minimo di 2,5 mm:

$$s > = Pn \cdot De / 200 \cdot n \cdot S$$

ove:

s = spessore teorico del tubo (mm);

Pn = pressione nominale (kg/cmg);

De = diametro esterno del tubo (mm);

S = carico unitario di snervamento minimo dell'acciaio impiegato (kg/mmq);

n = coefficiente di sicurezza allo snervamento dell'acciaio, da ammettersi non superiore a 0,5.

Tutti i tubi, prima di essere rivestiti, saranno sottoposti in officina alla prova idraulica, assoggettandoli a una pressione di prova non minore di 1,5 Pn, ma tale da non produrre una sollecitazione del materiale superiore all' 80% del carico unitario di snervamento. Durante la prova il tubo sarà sottoposto a martellamento in prossimità delle saldature, ad entrambe le estremità, con martelli di peso non inferiore a 500 g e per il tempo che si riterrà sufficiente onde accertare con sicurezza che non si verifichino trasudamenti, porosità, cricche ed altri difetti. La durata della prova dovrà comunque in ogni caso non essere inferiore a 10 secondi. Tubi con difetti di saldatura possono essere nuovamente saldati in maniera opportuna e dovranno essere sottoposti ad una seconda prova idraulica.

Le estremità dei tubi dovranno permettere l'attuazione di uno dei seguenti tipi di giunzione:

- saldatura di testa, con estremità del tubo calibrate con o senza smussature;
- a bicchiere, di forma cilindrica o sferica, adatto alla saldatura autogena per sovrapposizione;
- a bicchiere cilindrico o leggermente conico, a seconda dell'entità delle pressioni di esercizio, per calafataggio con materiale di ristagno.

Le lamiere costituenti le tubazioni dovranno essere soggette ai seguenti controlli:

- prova di trazione longitudinale e trasversale, prova di resilienza, da eseguirsi con le modalità definite dalle tabelle UNI 4713:1979¹²;
- analisi chimica, da attuarsi per ogni colata, su campioni prelevati dalle lamiere. Le lamiere dovranno essere contraddistinte dal numero di colata, che dovrà essere riportato su ciascun tubo.

Le prove dovranno essere eseguite dal fabbricante e i certificati dovranno accompagnare la fornitura per essere poi messi a disposizione del Collaudatore per conto del Committente dei tubi, il quale avrà la facoltà di fare eseguire prove di controllo.

I tubi dovranno essere soggetti ai seguenti controlli:

- prova di trazione longitudinale e trasversale su provetta ricavata dal corpo del tubo in zone normali o parallele agli andamenti delle saldature. Le modalità di esecuzione e la determinazione dei valori delle prove dovranno essere conformi a quanto prescritto nelle tabelle UNI 5465/92¹³;
- prova di trazione su provetta contenente il cordone di saldatura, sia trasversalmente che longitudinalmente ad essa, secondo le « Norme generali concernenti l'esecuzione e l'impiego della saldatura autogena » di cui al decreto ministeriale delle comunicazioni 26 febbraio 1936;
- prova di allargamento secondo le tabelle UNI 663¹⁴, che può sostituire le prove a) e b) per tubi di diametro esterno inferiore a 140 mm;
- prova di appiattimento trasversale per tubi di diametro non superiore a 300 mm, effettuata su anello della larghezza di 50 mm, ricavato dall'estremità del tubo. Detto anello viene collocato tra due piastre parallele con la giunzione di saldatura equidistante da esse e compresso fino a che la distanza tra le piastre si riduca a 2/3 del diametro esterno dell'anello. Durante l'operazione di appiattimento non dovranno manifestarsi né incrinature lungo la saldatura o nell'interno di essa, né difetti di laminazione o bruciature nel metallo. Detta prova, per i tubi di diametro esterno superiore a 300 mm, potrà essere sostituita da prova di piegatura guidata sulla saldatura;
- controllo delle saldature. Il controllo delle saldature dovrà essere eseguito sistematicamente su tutte le saldature, a tubo nudo, con gli ultrasuoni. Nei casi di risultati incerti dovrà essere provveduto al successivo controllo radiografico. Ogni imperfezione o difetto individuato con detti controlli dovrà essere eliminato.

Tali prove dovranno essere eseguite su ogni partita di tubi contraddistinti dallo stesso numero di colata, su un tubo scelto a caso per ogni lotto di: 400 tubi o meno, per diametro esterno inferiore a 150 mm; 200 tubi o meno, per diametro esterno compreso tra 150 mm e 300; 100 tubi o meno, per diametro esterno superiore a 300 mm.

Nel caso di esito negativo la prova dovrà essere ripetuta in doppio su provini prelevati dallo stesso tubo. Se anche una sola delle controprove darà esito negativo, questa dovrà ripetersi su altri tre tubi. In caso di esito negativo anche di una sola di queste prove l'accertamento dovrà essere esteso a tutti i tubi della partita.

Dovrà essere conservata tutta la documentazione relativa alle prove sopra descritte a disposizione del Committente o del Direttore dei Lavori.

Rivestimenti protettivi delle tubazioni in acciaio¹⁵

I rivestimenti protettivi dei tubi potranno essere dei seguenti tipi:

zincatura (da effettuare secondo le prescrizioni vigenti);

¹² Tale norma è stata ritirata e sostituita con UNI EN 10045-1/92 Materiali metallici. Prova di resilienza su provetta Charpy. Metodo di prova.

¹³ Tale norma è stata ritirata e sostituita con UNI EN 10002-1/04 Materiali metallici - Prova di trazione - Parte 1: Metodo di prova a temperatura ambiente.

¹⁴ Tale norma è stata ritirata e sostituita con UNI EN 10216-1/05 Tubi senza saldatura di acciaio per impieghi a pressione - Condizioni tecniche di fornitura - Parte 1: Tubi di acciaio non legato per impieghi a temperatura ambiente.

15 Circolare Min. LL.PP. 05/05/66, n. 2136 - "Istruzioni sull'impiego delle tubazioni in acciaio saldate nella costruzione degli acquedotti".

- rivestimento esterno con guaine bituminose e feltro o tessuto di vetro;
- rivestimento costituito da resine epossidiche od a base di polietilene;
- rivestimenti speciali eseguiti secondo le prescrizioni del Capitolato Speciale o della Direzione dei Lavori.

Tutti i rivestimenti dovranno essere omogenei, aderenti ed impermeabili.

I rivestimenti protettivi interni ed esterni dovranno essere dei tipi comuni a tutti i tubi di acciaio e tali da:

- proteggere efficacemente la superficie interna dall'azione aggressiva dell'acqua convogliata e la superficie esterna dall'azione aggressiva dei terreni o dell'ambiente in cui le tubazioni sono posate;
- conservare la loro integrità anche durante le operazioni di carico, scarico e trasporto nei luoghi d'impiego;
- resistere senza alterazioni sia alle temperature più elevate della stagione calda sia alle temperature più basse della stagione fredda specialmente nelle località a maggiore altitudine.

La protezione catodica verrà realizzata con anodi reattivi (in leghe di magnesio) interrati lungo il tracciato delle tubazioni ad una profondità di 1,5 m e collegati da cavo in rame.

In caso di flussi di liquidi aggressivi all'interno delle tubazioni, dovranno essere applicate delle protezioni aggiuntive con rivestimenti isolanti (resine, ecc.) posti all'interno dei tubi stessi.

Tubi in polietilene ad alta densità

Saranno realizzati mediante polimerizzazione dell'etilene e dovranno essere conformi alla normativa vigente ¹⁶ ed alle specifiche relative ai tubi ad alta densità. Dovranno inoltre possedere una resistenza a trazione non inferiore a 9,8/14,7 N/mmq (100/150 kg/cmq), secondo il tipo (bassa o alta densità), resistenza alla temperatura da -50℃ a +60℃ e dovranno essere totalmente atossici.

Qualora i tubi in polietilene siano destinati ad impianti fissi di captazione, trattamento, adduzione e distribuzione delle acque destinate al consumo umano, ogni fornitura dovrà essere corredata da idonea marcatura attestante la conformità degli stessi alle norme del D.M. 6 aprile 2004, n. 174.

I tubi dovranno essere forniti senza abrasioni o schiacciamenti; ogni deformazione o schiacciamento delle estremità dovrà essere eliminato con taglio delle teste dei tubi.

Prima della posa in opera e della saldatura, i tubi dovranno essere accuratamente puliti, asciutti e dovrà essere eliminata ogni traccia di umidità. L'accatastamento delle tubazioni dovrà avvenire in luogo protetto dai raggi diretti del sole.

Tubi in PVC

Le tubazioni in cloruro di polivinile saranno usate negli scarichi per liquidi con temperature non superiori ai 70°C. I giunti saranno del tipo a bicc hiere incollato o saldato, a manicotto, a vite o a flangia. In caso di giunti di tipo rigido, si avrà cura di valutare le eventuali dilatazioni termiche lineari i cui effetti possono essere assorbiti interponendo appositi giunti di dilatazione ad intervalli regolari in relazione alle effettive condizioni di esercizio.

Tubi e raccordi

Saranno realizzati in cloruro di polivinile esenti da plastificanti. Nelle condotte con fluidi in pressione sono ammessi spessori compresi tra 1,6 e 1,8 mm, con diametri da 20 a 600 mm I raccordi potranno essere a bicchiere o ad anello e a tenuta idraulica. La marcatura dei tubi dovrà comprendere

l'indicazione del materiale, del tipo, del diametro esterno, della pressione nominale, il marchio di fabbrica, il periodo di produzione ed il marchio di conformità.

Per le giunzioni dovranno essere osservate le seguenti disposizioni:

- giunto a flangia: sarà formato da due flange, poste all'estremità dei tubi, e fissate con bulloni e guarnizioni interne ad anello posizionate in coincidenza del diametro dei tubi e del diametro tangente ai fori delle flange. Gli eventuali spessori aggiuntivi dovranno essere in ghisa;
- giunto elastico con guarnizione in gomma: è utilizzato per condotte d'acqua ed è ottenuto per compressione di una guarnizione di gomma posta all'interno del bicchiere nell'apposita sede;
- giunti saldati (per tubazioni in acciaio): dovranno essere eseguiti con cordoni di saldatura di spessore non inferiore a quello del tubo, con forma convessa, sezioni uniformi e dovranno presentarsi esenti da porosità od imperfezioni di sorta. Gli elettrodi da usare dovranno essere del tipo rivestito e con caratteristiche analoghe al metallo di base;
- giunti a vite e manicotto (per tubazioni in acciaio): dovranno essere impiegati solo nelle diramazioni di piccolo diametro; la filettatura dovrà coprire un tratto di tubo pari al diametro esterno ed essere senza sbavature;
- giunti isolanti (per tubazioni in acciaio): saranno del tipo a manicotto od a flangia ed avranno speciali guarnizioni in resine o materiale isolante; verranno impiegati per le colonne montanti delle tubazioni idriche e posti in luoghi ispezionabili oppure, se interrati, rivestiti ed isolati completamente dall'ambiente esterno.

Apparecchi idraulici

Su tutti gli apparecchi idraulici dovranno essere indicati i seguenti dati:

- nome del produttore e/o marchio di fabbrica;
- diametro nominale (DN);
- pressione nominale (PN);
- sigla del materiale con cui è costruito il corpo;
- freccia per la direzione del flusso (se determinante).

Tutti gli apparecchi ed i pezzi speciali dovranno essere conformi alle prescrizioni di progetto e corrispondere ai campioni approvati dalla Direzione dei Lavori. Ogni apparecchio dovrà essere montato e collegato alla tubazione secondo gli schemi progettuali o di dettaglio eventualmente forniti ed approvati dalla Direzione dei Lavori, dai quali risulteranno anche gli accessori necessari al montaggio di ogni apparecchio e le eventuali opere murarie previste.

La Direzione Lavori si riserva la facoltà di sottoporre a prove o verifiche i materiali forniti dall'Appaltatore intendendosi a totale carico della stessa tutte le spese occorrenti per il prelevamento ed invio, agli istituti di prova, dei campioni che la direzione intendesse sottoporre a verifica ed il pagamento della relativa tassa di prova a norma delle disposizioni vigenti.

Art. IV Impianti per la produzione di acqua calda per usi igienici e sanitari¹⁷

La temperatura di erogazione dell'acqua calda per usi igienici e sanitari si intende misurata nel punto di immissione nella rete di distribuzione. Su tale temperatura è ammessa una tolleranza di + 5°C. Come temperatura di erogazione si intende la temperatura media dell'acqua in uscita dal bollitore, fluente durante l'intervallo di tempo e con la portata definita dalla norma di omologazione. Gli impianti termici che prevedono la produzione centralizzata mediante gli stessi generatori di acqua calda sia per il riscaldamento degli ambienti che per usi igienici e sanitari devono essere dimensionati per il solo fabbisogno termico per il riscaldamento degli ambienti. È ammesso l'uso di

¹⁷ d. P.R. 28 giugno 1977, n. 1052 - Regolamento di esecuzione alla legge 30 aprile 1976 n. 373, relativa al consumo energetico per usi termici negli edifici.

generatori di potenza maggiore, purché la loro potenza massima al focolare non sia superiore a 50.000 kcal/h (58.000 W) e siano dotati di dispositivi automatici di esclusione della fornitura contemporanea dei due servizi, che limitino la potenza termica erogabile per il riscaldamento degli ambienti a quella massima consentita, calcolata come indicato nell'art. 14 del D.P.R. 1052/77.

Gli impianti centralizzati di riscaldamento di acqua per usi igienici e sanitari, al servizio di due o più appartamenti, devono essere dotati di contatori divisionali.

La distribuzione del fluido verrà affidata a collettori di opportuno diametro. Dai collettori saranno ripartiti, quindi, più circuiti nei vari diametri occorrenti per i diversi tronchi; tutte le condutture dovranno avere nei percorsi orizzontali, passaggi in traccia o sotto il solaio ove possibile (secondo le indicazioni del progetto o della Direzione dei Lavori).

Le condutture si staccheranno dalle colonne montanti verticali e dovranno essere complete di pezzi speciali, giunzioni, derivazioni, materiali di tenuta, staffe e collari di sostegno. Tutte le tubazioni e la posa in opera relativa dovranno corrispondere alle caratteristiche indicate dal presente capitolato, alle specifiche espressamente richiamate nei relativi impianti di appartenenza ed alla normativa vigente in materia.

L'Appaltatore dovrà, se necessario, provvedere alla preparazione di disegni particolareggiati da integrare al progetto occorrenti alla definizione dei diametri, degli spessori e delle modalità esecutive; l'Appaltatore dovrà, inoltre, fornire dei grafici finali con le indicazioni dei percorsi effettivi di tutte le tubazioni.

Si dovrà ottimizzare il percorso delle tubazioni riducendo, il più possibile, il numero dei gomiti, giunti, cambiamenti di sezione e rendendo facilmente ispezionabili le zone in corrispondenza dei giunti, sifoni, pozzetti, ecc.; sono tassativamente da evitare l'utilizzo di spezzoni e conseguente sovra-numero di giunti.

Nel caso di attraversamento di giunti strutturali saranno predisposti, nei punti appropriati, compensatori di dilatazione approvati dalla Direzione Lavori.

Le tubazioni interrate dovranno essere poste ad una profondità tale che lo strato di copertura delle stesse sia di almeno 1 metro.

Gli scavi dovranno essere eseguiti con particolare riguardo alla natura del terreno, al diametro delle tubazioni ed alla sicurezza durante le operazioni di posa. Il fondo dello scavo sarà sempre piano e, dove necessario, le tubazioni saranno poste in opera su un sottofondo di sabbia di 10 cm. di spessore su tutta la larghezza e lunghezza dello scavo.

Nel caso di prescrizioni specifiche per gli appoggi su letti di conglomerato cementizio o sostegni isolati, richieste di contropendenze e di qualsiasi altro intervento necessario a migliorare le operazioni di posa in opera, si dovranno eseguire le varie fasi di lavoro, anche di dettaglio, nei modi e tempi richiesti dalla Direzione dei Lavori.

Dopo le prove di collaudo delle tubazioni saranno effettuati i rinterri con i materiali provenienti dallo scavo ed usando le accortezze necessarie ad evitare danneggiamenti delle tubazioni stesse e degli eventuali rivestimenti.

Le tubazioni non interrate dovranno essere fissate con staffe o supporti di altro tipo in modo da garantire un perfetto ancoraggio alle strutture di sostegno.

Le tubazioni in vista o incassate dovranno trovarsi ad una distanza di almeno 8 cm. (misurati dal filo esterno del tubo o del suo rivestimento) dal muro; le tubazioni sotto traccia dovranno essere protette con materiali idonei.

Le tubazioni metalliche in vista o sottotraccia, comprese quelle non in prossimità di impianti elettrici, dovranno avere un adeguato impianto di messa a terra funzionante su tutta la rete.

Tutte le giunzioni saranno eseguite in accordo con le prescrizioni e con le raccomandazioni dei produttori per garantire la perfetta tenuta; nel caso di giunzioni miste la Direzione Lavori fornirà specifiche particolari alle quali attenersi.

L'Appaltatore dovrà fornire ed installare adeguate protezioni, in relazione all'uso ed alla posizione di tutte le tubazioni in opera e provvederà anche all'impiego di supporti antivibrazioni o spessori isolanti, atti a migliorare il livello di isolamento acustico.

Tutte le condotte destinate all'acqua potabile, in aggiunta alle normali operazioni di pulizia, dovranno essere accuratamente disinfettate.

Nelle interruzioni delle fasi di posa è obbligatorio l'uso di tappi filettati per la protezione delle estremità aperte della rete.

Le pressioni di prova, durante il collaudo, dovranno essere di 1,5-2 volte superiori a quelle di esercizio e la lettura sul manometro verrà effettuata nel punto più basso del circuito. La pressione dovrà rimanere costante per almeno 24 ore consecutive entro le quali non dovranno verificarsi difetti o perdite di qualunque tipo; nel caso di imperfezioni riscontrate durante la prova, l'Appaltatore dovrà provvedere all'immediata riparazione dopo la quale sarà effettuata un'altra prova e questo fino all'eliminazione di tutti i difetti dell'impianto.

Le tubazioni per l'acqua verranno collaudate come sopra indicato, procedendo per prove su tratti di rete ed infine sull'intero circuito; le tubazioni del gas e quelle di scarico verranno collaudate, salvo diverse disposizioni, ad aria o acqua con le stesse modalità descritte al comma precedente.

Reti di distribuzione

Si dovranno prevedere le seguenti reti:

- a) rete di distribuzione acqua fredda al servizio di:
- alimentazione dei vari apparecchi;
- alimentazione dell'impianto di innaffiamento;
- presa intercettabile per eventuale alimentazione piscine/punti esterni;
- b) rete di distribuzione acqua calda per uso igienico;
- c) rete di distribuzione dell'acqua calda per cucina e locale lavanderia;
- d) rete di ricircolo.

Le tubazioni dell'acqua fredda dovranno essere coibentate con guaina in schiuma poliuretanica di adeguato spessore o soluzione tecnica analoga; le tubazioni dell'acqua calda e del ricircolo saranno coibentate come sopra indicato, negli spessori conformi alla normativa vigente sui consumi energetici.

Le tubazioni verticali ed orizzontali dovranno essere sostenute da staffe e nell'attraversamento di pavimenti o pareti dovranno essere protette con idoneo materiale incombustibile per evitare il passaggio del fuoco.

Sulla sommità delle colonne montanti dovranno essere installati barilotti ammortizzatori in acciaio zincato e dovrà essere assicurata la continuità elettrica delle tubazioni nei punti di giunzione, derivazione ed installazione di valvole.

Dopo la posa in opera e prima della chiusura delle tracce o dei rinterri le tubazioni dovranno essere poste sotto carico alla pressione nominale delle valvole di intercettazione, per almeno 12 ore per verificare l'assenza di perdite; dopo le prime ore dall'inizio della prova non dovrà rilevarsi sul manometro di controllo nessun calo di pressione.

Le tubazioni, prima del montaggio della rubinetteria, dovranno essere lavate internamente per asportare i residui della lavorazione.

Le schermature di adduzione interne, al servizio dei locali con apparecchiature, saranno realizzate con tubazioni in polietilene reticolato di qualità certificata, faranno capo a collettori di derivazione in ottone atossico con intercettazione per ogni singola utenza.

Per il dimensionamento delle tubazioni, sia in acciaio zincato che in polietilene reticolato, si dovranno assumere i seguenti valori di portata dell'acqua fredda per le varie utenze:

TIPO DI APPARECCHIO	VELOCITÀ I/s
vaso igienico	0,10
lavabo	0,10
bidet	0,10
lavello	0,15
doccia	0,15
vasca da bagno	0,30
vasca idromassaggi	0,30
presa per lavaggio pavimenti	0,15
presa per lavatrice	0,10
presa per lavastoviglie	0,10

Per l'acqua calda ad uso igienico è richiesta una rete di alimentazione ad una temperatura di 60℃; per l'acqua calda destinata alla cucina ed al locale lavanderia è richiesta una rete di alimentazione alla temperatura di 80℃.

Per l'acqua calda agli utilizzi dovrà essere considerata una portata pari all'80% della corrispondente per l'acqua fredda.

Fissata la portata erogabile dei singoli apparecchi, la portata contemporanea di ogni diramazione che alimenta un gruppo di servizi dovrà ottenersi dalla moltiplicazione, per ogni tipo di apparecchio, della portata erogabile per il numero di apparecchi ed un coefficiente di contemporaneità ricavabile dalla seguente tabella, sommando i risultati ottenuti per ogni tipo di apparecchio.

NUMERO APPARECCHI	2	3	4	5	6	7	8	9	10
TIPO DI APPARECCHIO	Perc	entua	le de	lla so	mma	delle	porta	te sin	gole
vaso igienico	100	67	50	40	37	37	37	30	30
lavabo	100	100	75	60	50	50	50	50	50
bidet	100	67	50	40	37	37	37	30	30
lavello	100	100	75	60	50	50	50	50	50
doccia	100	67	50	40	37	37	37	30	30
vasca da bagno	100	67	50	40	37	37	37	30	30

vasca idromassaggi	100	67	50	40	37	37	37	30	30
presa lavaggio	100	100	75	60	50	50	50	50	50
presa lavatrice	100	100	75	60	50	50	50	50	50
presa lavastoviglie	100	100	75	60	50	50	50	50	50

Determinata la portata di ogni singola diramazione, le portate da assumere per i tratti di colonne e dei collettori principali dovranno essere state calcolate moltiplicando la somma delle portate contemporanee delle varie diramazioni alimentate dal tratto per un coefficiente di contemporaneità ricavabile dalla seguente tabella:

Numero di diramazioni alimentate dal tratto	1	2	3	4	5	6	7	8	9	10
Percentuale di contemporaneità	100	90	85	80	75	70	67	64	60	55

Sulla base delle portate contemporanee, il diametro delle varie tubazioni dovrà essere tale che la velocità dell'acqua in esse non superi il valore di 2 m/s e che sia decrescente nelle diramazioni fino ad un minimo di 0,5 m/s, restando fissato che le perdite di carico debbano assumere valori tali da garantire, a monte del rubinetto più distante, una pressione non inferiore a 1,5 m.

Per la distribuzione dell'acqua calda saranno realizzate due reti indipendenti come precedentemente specificato.

La miscelazione avverrà tramite miscelatori termostatici applicati nei punti di utilizzo, oppure tramite valvola miscelatrice a tre vie con sonda di temperatura.

Nel caso di impianti autonomi, il produttore d'acqua calda dovrà essere del tipo ad accumulo in acciaio zincato a caldo con fluido primario prodotto dalla caldaia nel cui vano superiore troverà sede il medesimo produttore; il complesso verrà installato nel locale centrale termica.

Le reti di distribuzione dell'acqua calda saranno realizzate a circolazione continua in modo che l'acqua raggiunga qualunque punto di erogazione alla temperatura di regime in un tempo massimo di 15 sec.

Dovrà essere realizzato, inoltre, un impianto di decalcificazione con scambiatore di calore.

Per ottenere la circolazione continua il sistema di produzione d'acqua calda sarà dotato di due elettropompe ognuna con portata pari a quella necessaria al ricircolo e con funzione di riserva l'una dell'altra.

Alla base delle colonne montanti saranno posizionate saracinesche di intercettazione in bronzo.

Le tubazioni in acciaio zincato poste sottotraccia dovranno essere protette, oltre alla coibentazione, con due mani di vernice antiruggine.

Le tubazioni di scarico degli apparecchi igienico-sanitari saranno realizzate in Geberit e collegate con colonne di scarico che dovranno essere disposte perfettamente in verticale; dove siano presenti delle riseghe nei muri i raccordi verranno eseguiti con pezzi speciali e, in corrispondenza di ogni piano, dovranno essere provviste di un tappo di ispezione.

La rete delle tubazioni comprende:

- le diramazioni ed i collegamenti orizzontali;
- le colonne di scarico (raccolta verticale);

i collettori di scarico (rete esterna).

Le diramazioni di scarico avranno pendenze non inferiori all'1,5% ed angoli di raccordo di 45°, tutti i collegamenti, giunti e saldature dovranno essere a perfetta tenuta idraulica.

Tutte le scatole sifonate saranno poste in opera in piano perfetto con il pavimento e raccordate senza difetti di alcun genere.

Ogni colonna dovrà avere il diametro costante e sarà dotata, alla base, di sifone con tappo di ispezione alloggiato in pozzetto asciutto. Tale pozzetto sarà collegato, con tubi in PVC rigido, ai pozzetti sifonati posti ai piedi delle altre colonne di scarico ed ai pozzetti di linea necessari al collegamento con la rete fognante.

Le tubazioni di collegamento dei vari pozzetti dovranno avere un diametro minimo di 110 mm. e pendenza non inferiore al 2%, l'allaccio in fogna dovrà essere a perfetta tenuta idraulica. Le dimensioni dei pozzetti dovranno essere da un minimo di 40 x 40 ad un massimo di 60 x 60 secondo le varie profondità.

Sarà realizzata la rete fognante fino al punto di allaccio con la fognatura esterna, completa di pozzetti posti nei punti di incrocio o confluenza delle tubazioni, di scavo, rinterro ed allaccio al collettore.

Le colonne di scarico dovranno essere prolungate oltre il piano di copertura degli edifici, avere esalatori per la ventilazione, essere opportunamente ispezionabili e protette con cappelli esalatori.

Tutte le colonne di scarico dovranno essere opportunamente coibentate per l'abbattimento dei rumori. I fori di passaggio della colonna sulla copertura dovranno essere protetti con converse di materiale idoneo.

Ad ogni colonna di scarico si affiancherà quella di ventilazione primaria che si innesterà su quella di scarico nella parte superiore a circa due metri sopra l'apparecchio più alto, ed in basso ad almeno 50 cm sotto l'apparecchio più basso.

Le tubazioni di scarico dei servizi igienici, le derivazioni delle colonne di scarico e le colonne di scarico saranno realizzate in tubazioni di polipropilene autoestinguente (Geberit) per temperature di acque di scarico fino a 120°C, con giunzioni a sald are dotate, lungo il loro percorso verticale, di manicotto d'innesto per le diramazioni.

Il collegamento alla colonna di scarico sarà diretto per i vari sanitari ad eccezione delle vasche e delle docce che si collegheranno alla cassetta sifonata in polipropilene autoestinguente innestata nel bocchettone di scarico degli apparecchi o, in loro assenza, direttamente alla colonna di scarico.

In linea di massima i diametri delle tubazioni di scarico dei singoli apparecchi saranno i seguenti:

APPARECCHI	DIAMETRI
lavabo	40 mm
bidet	40 mm
vasche	50 mm
doccia	50 mm
lavello	40 mm
vaso	110 mm
presa lavaggio	50 mm
presa lavatrice	40 mm
presa lavastoviglie	40 mm

In corrispondenza delle docce e nei servizi con prese per lavaggio pavimento, verranno installate pilette sifonate a pavimento in polipropilene autoestinguente per la raccolta delle acque di lavaggio.

Le colonne di scarico avranno un diametro di 110 mm.; dalle colonne della ventilazione primaria partiranno le derivazioni per la realizzazione della rete di ventilazione secondaria a tutti gli apparecchi igienici e predisposizioni di scarico.

Le tubazioni per la ventilazione primaria e secondaria saranno realizzate in PVC di tipo leggero.

Tutte le tubazioni verticali dovranno essere sostenute da staffe a collare in ferro zincato.

Le tubazioni nell'attraversamento dei muri, pavimenti e pareti di divisione dovranno essere protette con idoneo materiale incombustibile per evitare il passaggio di fiamme o fumo.

Apparecchi igienici

Gli apparecchi sanitari saranno posti in opera nei modi indicati dalla Direzione dei Lavori e le eventuali diversità dai disegni di progetto non costituiranno alcuna ragione per la richiesta di compensi speciali.

Gli apparecchi a pavimento verranno fissati con viti di acciaio su tasselli, non di legno, predisposti a pavimento; salvo disposizioni particolari, è vietato il fissaggio di tali elementi con malte od altri impasti.

Tutti gli allacci degli apparecchi igienici dovranno essere predisposti a valle delle valvole di intercettazione situate nel locale di appartenenza degli apparecchi stessi e dovranno comprendere:

- le valvole di intercettazione;
- le tubazioni in acciaio zincato FM oppure in polipropilene per distribuzione acqua calda e fredda;
- il rivestimento delle tubazioni acqua calda con guaina isolante in materiale sintetico espanso autoestinguente;
- spessore dell'isolante conforme alla normativa vigente;
- tubazioni di scarico in polietilene ad alta densità fino alla colonna principale di scarico.

Gli <u>apparecchi igienici in materiale ceramico</u> dovranno essere conformi alla normativa vigente ed alle specifiche prescrizioni relative; in particolare avranno una perdita di massa dello smalto all'abrasione non superiore a 0,25 g.,un assorbimento d'acqua non superiore allo 0,5% (per la porcellana dura) ed una resistenza a flessione non inferiore a 83 N/mmq. (8,5 kgf./mmq.).

Le dimensioni, le modalità di eventuali prove e la verifica della rispondenza alle caratteristiche fissate saranno eseguite nel rispetto delle norme citate.

- vaso igienico all'inglese (tipo a cacciata) in porcellana vetrificata bianca da porre in opera con sigillature in cemento bianco o collanti a base di silicone, fissato con viti, borchie, guarnizioni e anello in gomma compresi i collarini metallici di raccordo con l'esalatore ed al tubo dell'acqua di lavaggio.
- bidet in porcellana vetrificata bianca da fissare con viti, borchie ed apposite sigillature compresi i collegamenti alle tubazioni di adduzione e scarico, piletta da 1" e scarico automatico a pistone.
- lavabo di porcellana vetrificata bianca da mettere in opera su mensole di sostegno o su colonna di appoggio in porcellana oppure con incassi o semincassi su arredi predisposti completo di innesti alle tubazioni di adduzione e deflusso, scarico a pistone, sifone e raccorderie predisposte per gruppo miscelatore.
- vasca da bagno in ghisa o acciaio porcellanato bianco a bordo tondo o quadro da porre in opera con piletta a griglia di 1"1/4, rosetta e tubo del troppo pieno, gruppo miscelatore esterno con bocca d'erogazione centrale a vela da 1/2", completa di rubinetti di manovra, doccia flessibile a

mano e supporto a telefono e sifone compresi i collegamenti, le raccorderie ed il fissaggio della vasca stessa.

- piatto doccia in acciaio porcellanato bianco posto in opera con piletta a griglia, tubazioni, raccorderie e predisposizione per il gruppo miscelatore di comando e l'attacco per il soffione di uscita dell'acqua.
- cassetta di scarico in porcellana vetrificata bianca della capacità di lt. 13 ca. completa di tubo di cacciata in acciaio zincato, apparecchiatura di regolazione e comando, rubinetto a galleggiante, raccordi, guarnizioni, pulsante metallico di manovra e collegamenti con il vaso relativo.
- cassetta di scarico in PVC tipo «Geberit», ad incasso totale nella muratura retrostante il vaso relativo completa di regolazione entrata acqua, raccordi e tubazioni di collegamento, pulsante di manovra in plastica e relativi fissaggi.

Il materiale di supporto degli <u>apparecchi igienici in metallo porcellanato</u> potrà essere acciaio o ghisa e lo smalto porcellanato dovrà avere, in conformità alla normativa vigente, una resistenza all'attacco acido per quantità pari al 9%, alla soda nel valore di 120 g/mq al giorno ed alle sollecitazioni meccaniche nei termini adequati alle modalità d'impiego.

Rubinetterie

Tutte le caratteristiche delle rubinetterie dovranno corrispondere alla normativa vigente ed alle prescrizioni specifiche; dovranno avere resistenza a pressioni non inferiori a 15,2 bar (15 atm) e portata adeguata.

Le rubinetterie potranno avere il corpo in ottone o bronzo (secondo il tipo di installazione) ed i pezzi stampati dovranno essere stati trattati termicamente per evitare l'incrudimento; tutti i meccanismi e le parti di tenuta dovranno avere i requisiti indicati e, salvo altre prescrizioni, le parti in vista saranno trattate con nichelatura e cromatura in spessori non inferiori a 8 e 0,4 micron rispettivamente.

Le rubinetterie, a valvola o saracinesca, di rete e le rubinetterie degli apparecchi sanitari dovranno permettere il deflusso della quantità d'acqua richiesta, alla pressione fissata, senza perdite o vibrazioni.

Nella esecuzione dei montaggi dovrà essere posta la massima cura affinché l'installazione delle rubinetterie, apparecchiature, accessori, pezzi speciali, staffe di ancoraggio, ecc. avvenga in modo da evitare il formarsi di sporgenze ed affossamenti nelle superfici degli intonaci e dei rivestimenti e che la tenuta sia perfetta.

La pressione di esercizio, salvo diverse prescrizioni, non dovrà mai superare il valore di 4,9 bar (5 atmosfere).

Gli eventuali serbatoi di riserva dovranno avere capacità non inferiore a 300 litri, saranno muniti di coperchio, galleggiante di arresto, tubo di troppopieno, ecc. e verranno posti in opera a circa 40 cm. dal pavimento.

Le cabine idriche dovranno essere chiuse, avere pavimentazione impermeabilizzata con pendenza verso le pilette di scarico ed essere protette contro il gelo. Se richieste, le cisterne di riserva dovranno essere inserite in parallelo sulle tubazioni di immissione e ripresa ed avere le caratteristiche specificate.

Descrizione tecnica

1) Impianto di produzione di acqua calda sanitaria costituito da uno o più scaldacqua elettrici o termoelettrici, con caldaia vetroporcellanata collaudata per 8,0 bar e garantita 10 anni, corredati ciascuno di resistenza elettrica, termostato di regolazione, termometro, staffe di sostegno, valvole di sicurezza, flessibili di collegamento, valvola di intercettazione a sfera sull'ingresso dell'acqua fredda, tubazioni sottotraccia per il collegamento alla rete idrica ed al circuito di riscaldamento tramite tubi di rame o di ferro isolati e valvola ad angolo con detentore, impianto elettrico per il collegamento degli scaldacqua compreso l'interruttore con fusibili a servizio di

- ciascun apparecchio, con le opere murarie per la predisposizione delle tubazioni, per il fissaggio degli scaldacqua, per l'apertura e chiusura di tracce compreso il ripristino dell'intonaco, la rasatura e l'eventuale tinteggiatura.
- 2) Impianto di produzione di acqua calda sanitaria con bollitore per potenze da 15 a 200 kW realizzato nel locale centrale termica, costituito da bollitore a scambio rapido in acciaio zincato PN6 di capacità non inferiore a 8,5 l/kW, corredato di scambiatore estraibile a tubi di acciaio o ad intercapedine dimensionato per fornire la potenza richiesta con primario 90/70°C e secondario 15/45°C, tubazioni in acciaio nero fra primario scambiatore e collettori di andata e ritorno, tubazioni in acciaio zincato per arrivo, partenza e ricircolo acqua sanitaria, rivestimento isolante del bollitore e delle tubazioni conforme alle normative vigenti, n. 2 elettropompe di cui n. 1 per il circuito primario e n. 1 per il ricircolo, termoregolazione composta da termostato ad azione on-off sull'elettropompa del primario, valvole ed accessori necessari alla corretta installazione e funzionalità compreso il vaso di espansione di adeguata capacità, impianto elettrico per il collegamento di tutte le apparecchiature compresa la quota parte del quadro di centrale termica. Sono, inoltre, incluse tutte le opere murarie per la predisposizione delle tubazioni, l'assistenza alla posa dell'impianto elettrico, per l'apertura e chiusura di tracce compreso il ripristino dell'intonaco, la rasatura e l'eventuale tinteggiatura.
- 3) Impianto di produzione di acqua calda sanitaria con bollitori per potenze da 60 kW in su, realizzato nel locale centrale termica, costituito da uno o più bollitori a scambio rapido in acciaio zincato PN6 di capacità totale non inferiore a 10 l/kW, corredato di scambiatori estraibili in acciaio dimensionati per fornire in totale la potenza richiesta con primario 90/70°C e secondario 15/45°C, tubazioni in acciaio nero fra primario scambiatore e collettori di andata e ritorno, tubazioni in acciaio zincato per arrivo, partenza e ricircolo acqua sanitaria, rivestimento isolante dei bollitori e delle tubazioni conforme alle normative vigenti, n. 4 elettropompe di cui n. 2 per il circuito primario e n. 2 per il ricircolo, termoregolazione composta da termostato ad azione on-off sull'elettropompa del primario, valvole ed accessori necessari alla corretta installazione e funzionalità compresi i vasi di espansione di adeguata capacità, impianto elettrico per il collegamento di tutte le apparecchiature compresa la quota parte del quadro di centrale termica. Sono, inoltre, incluse tutte le opere murarie per la predisposizione delle tubazioni, l'assistenza alla posa dell'impianto elettrico, per l'apertura e chiusura di tracce compreso il ripristino dell'intonaco, la rasatura e l'eventuale tinteggiatura.
- 4) Impianto di produzione di acqua calda sanitaria con scambiatore a piastre per potenze da 15 a 200 kW realizzato nel locale centrale termica, costituito da scambiatore a piastre in acciaio inox AISI 316-PN16 dimensionato per fornire la potenza richiesta con primario 85/55°C e secondario 25/55°C, serbatoio di accumulo in acciaio zincato PN16 di capacità non inferiore a 3,5 l/kW completo di termometro, tubazioni in acciaio nero fra primario scambiatore e collettori di andata e ritorno, tubazioni in acciaio zincato fra secondario scambiatore e serbatoio di accumulo nonché per arrivo, partenza e ricircolo acqua sanitaria, rivestimento isolante del serbatoio di accumulo e delle tubazioni conforme alle normative vigenti, n. 3 elettropompe di cui n. 1 per il circuito primario, n. 1 per l'acqua sanitaria del circuito secondario e n. 1 per il ricircolo, termoregolazione composta da termostato ad azione on-off sulle elettropompe del primario e secondario, valvole ed accessori necessari, impianto elettrico per il collegamento di tutte le apparecchiature compresa la quota parte del quadro di centrale termica. Sono, inoltre, incluse tutte le opere murarie per la predisposizione delle tubazioni, l'assistenza alla posa dell'impianto elettrico, per l'apertura e chiusura di tracce compreso il ripristino dell'intonaco, la rasatura e l'eventuale tinteggiatura.
- 5) Impianto di produzione di acqua calda sanitaria con scambiatore a piastre per potenze da 60 kW in su realizzato nel locale centrale termica, costituito da scambiatore a piastre in acciaio inox AISI 316-PN16 dimensionato per fornire la potenza richiesta con primario 85/55℃ e secondario 25/55℃, serbatoio di accumulo in acciaio zincato P N16 di capacità non inferiore a 3,5 l/kW completo di termometro, tubazioni in acciaio nero fra primario scambiatore e collettori di andata e ritorno, tubazioni in acciaio zincato fra secondario e scambiatore e serbatoio di accumulo nonché per arrivo, partenza e ricircolo acqua sanitaria, rivestimento isolante del serbatoio di accumulo e delle tubazioni conforme alle normative vigenti, n. 6 elettropompe di cui n. 2 per il circuito primario, n. 2 per l'acqua sanitaria del circuito secondario e n. 2 per il ricircolo, termoregolazione

composta da regolatore elettronico con sonda ad immersione e valvola a tre vie con servomotore modulante installata sul primario, valvole ed accessori necessari, impianto elettrico per il collegamento di tutte le apparecchiature compresa la quota parte del quadro di centrale termica. Sono, inoltre, incluse tutte le opere murarie per la predisposizione delle tubazioni, l'assistenza alla posa dell'impianto elettrico, per l'apertura e chiusura di tracce compreso il ripristino dell'intonaco, la rasatura e l'eventuale tinteggiatura.

6) Scaldacqua elettrico o termoelettrico da installare a vista costituito da caldaia vetroporcellanata con garanzia di 5 anni collaudata per resistere ad una pressione di 8,0 bar, resistenza elettrica, termostato di regolazione, termometro, staffe di sostegno, valvola di sicurezza, flessibili di collegamento alla rete idrica, valvola di intercettazione a sfera sull'ingresso dell'acqua fredda, compreso il fissaggio, i collegamenti idrici ed elettrici e le opere murarie con le caratteristiche in accordo al progetto e da sottoporre, prima dell'installazione, alla DL per approvazione.

Art. V Trattamento dell'acqua

1) Filtro dissabbiatore per acqua fredda a calza lavabile, PN10, costituito da testata in bronzo, calza filtrante lavabile da 50 micron, coppa trasparente, attacchi filettati con le seguenti caratteristiche:

Diametro nominale	Portata nominale
15 mm. (1/2")	1 mc/h
20 mm. (3/4")	2,5 mc/h
25 mm. (1")	3,5 mc/h
32 mm. (1"1/4)	4,5 mc/h
40 mm. (1"1/2)	10 mc/h
50 mm. (2")	15 mc/h

2) Filtro dissabbiatore autopulente automatico per acqua fredda e calda, PN16, costituito da corpo in ghisa, calze filtranti in acciaio inox, dispositivo automatico a tempo per il comando del lavaggio in controcorrente delle calze filtranti, attacchi flangiati con le seguenti caratteristiche:

Diametro nominale	Portata nominale
65 mm. (3")	25 mc/h
80 mm. (3")	35 mc/h
100 mm. (4")	50 mc/h
125 mm. (5")	70 mc/h
150 mm. (6")	100 mc/h
200 mm. (8")	160 mc/h

3) Addolcitore domestico a colonna semplice con rigenerazione comandata a tempo, costituito da contenitore PN6, gruppo valvole automatiche per l'effettuazione della rigenerazione, timer a programma giornaliero/settimanale per il comando delle fasi di rigenerazione, serbatoio del sale, attacchi filettati.

Art. VI Elettropompe

- 1) Elettropompa sommersa per sollevamento dell'acqua dalle falde sotterranee del tipo a giranti multistadio sovrapposte, 2800 litri/min, per pozzi con diametro minimo di 100 mm completa di valvola di ritegno, diametro nominale 40 mm, inclusi i collegamenti idrici ed elettrici con le caratteristiche in accordo al progetto e da sottoporre, prima dell'installazione, alla DL per approvazione.:
- 2) Elettropompa sommersa per sollevamento dell'acqua dalle falde sotterranee del tipo a giranti multistadio sovrapposte, 2800 litri/min, per pozzi con diametro minimo di 150 mm completa di valvola di ritegno, diametro nominale 65 mm, inclusi i collegamenti idrici ed elettrici con le caratteristiche in accordo al progetto e da sottoporre, prima dell'installazione, alla DL per approvazione.:

Art. VII Riduttori di pressione

1) Riduttore di pressione del tipo a membrana con sede unica equilibrata, idoneo per acqua, aria e gas neutri fino ad 80°C, corpo e calotta in ottone OT58, filtro in lamiera inox, sede ed otturatore in resina, gruppo filtro regolatore facilmente intercambiabile, attacchi filettati, pressione massima a monte 25 bar, pressione in uscita regolabile da 1,5 a 6 bar, completo di raccordi a bocchettone e con diametri secondo lo schema seguente dove la portata nominale di acqua con velocità del fluido di 1,5 m/sec viene indicata dalla lettera «Q»:

Diametro nominale	Portata del fluido Q
15 mm. (1/2")	0,9 mc/h
20 mm. (3/4")	1,6 mc/h
25 mm. (1")	2,5 mc/h
32 mm. (1"1/4)	4,3 mc/h
40 mm. (1"1/2)	6,5 mc/h
50 mm. (2")	10,5 mc/h

2) Riduttore di pressione del tipo ad otturatore scorrevole, idoneo per acqua e fluidi neutri fino ad 80°C, corpo e calotta in ghisa, sede sostituibile i n bronzo, otturatore in ghisa con guarnizione di tenuta, pressione massima a monte 25 bar, pressione in uscita regolabile da 1,5 a 22 bar, attacchi flangiati, completo di controflange, guarnizioni e bulloni e con diametri secondo lo schema seguente dove la portata nominale di acqua con velocità del fluido di 2 m/sec viene indicata dalla lettera «Q»:

Diametro nominale	Portata del fluido Q
65 mm. (2"1/2)	25 mc/h
80 mm. (3")	35 mc/h
100 mm. (4")	55 mc/h
125 mm. (5")	90 mc/h
150 mm. (6")	125 mc/h
200 mm. (8")	230 mc/h
250 mm. (10")	350 mc/h
300 mm. (12")	530 mc/h

Art. VIII Vasi d'espansione

Vaso d'espansione chiuso con membrana atossica ed intercambiabile per impianti idrosanitari con certificato di collaudo dell'ISPESL e completo di valvola di sicurezza e manometro, pressione massima d'esercizio non inferiore a 8 bar e capacità di litri come da progetto. Prima dell'installazione dovrà essere sottoposto per approvazione alla DL.

Art. IX Autoclavi e pressostati

1) Autoclave per sollevamento liquidi, costituito da serbatoio verticale o orizzontale in acciaio zincato, esente dalla denuncia di vendita e di installazione, dalle verifiche ISPESL periodiche e di primo impianto, completo di valvola di sicurezza, manometro, alimentatore di aria automatico, certificato di esclusione e libretto matricolare ISPESL, con le seguenti caratteristiche:

Capacità	Pressione minima di esercizio
litri 750	6 bar
litri 1000	6 bar
litri 300	8 bar
litri 500	8 bar
litri 750	8 bar
litri 1000	8 bar
litri 500	12 bar

2) Autoclave per sollevamento liquidi, costituito da serbatoio verticale o orizzontale in acciaio zincato, soggetto a collaudo ISPESL e soggetto alle verifiche periodiche e di primo impianto, completo di valvola di sicurezza, manometro, alimentatore di aria automatico, indicatore di livello e libretto matricolare ISPESL, con le seguenti caratteristiche:

Capacità	Pressione minima di esercizio
litri 2000	6 bar
litri 2500	6 bar
litri 3000	6 bar
litri 4000	6 bar
litri 5000	6 bar
litri 1500	8 bar
litri 2000	8 bar
litri 2500	8 bar
litri 3000	8 bar
litri 4000	8 bar
litri 5000	8 bar
litri 750	12 bar
litri 1000	12 bar
litri 1500	12 bar

litri 2000	12 bar
litri 2500	12 bar
litri 3000	12 bar
litri 4000	12 bar
litri 5000	12 bar

- 3) Pressostato a regolazione on-off per autoclavi, taratura regolabile, differenziale regolabile, portata contatti superiore a 6 A a 250 V, compresi i collegamenti elettrici e la completa posa in opera con le seguenti caratteristiche:
 - scala 1,4/1,6 bar;
 - scala 2,8/7,0 bar;
 - scala 5,6/10,5 bar.

Art. X Ammortizzatori e manometri

1) Ammortizzatore di colpi d'ariete costituito da vaso d'espansione in acciaio inox con membrana, idoneo per essere installato in impianti idrosanitari per evitare brusche sovra-pressioni derivanti da colpi d'ariete, temperatura massima d'esercizio 99℃, attacco filettato DN15 (1/2") del tipo:

Capacità	Pressione minima di esercizio
litri 0,16	15 bar
litri 0,50	10 bar

2) Manometro con attacco radiale da 3/8", diametro 80 mm., completo di lancetta di riferimento ISPESL, eventuale rubinetto a tre vie, flangia e ricciolo, scale disponibili 1,6-2,5-4,0-6,0-10,0-16,0.

Art. XI Gruppi di sollevamento

- Gruppo di sollevamento acqua per piccoli impianti, costituito da un'elettropompa di tipo auto-adescante con motore monofase, serbatoio pressurizzato a membrana idoneo per impieghi alimentari, manometro, impianto elettrico completo di telesalvamotore, pressostati, cavo di collegamento all'elettropompa e morsettiera con le caratteristiche in accordo al progetto e da sottoporre, prima dell'installazione, alla DL per approvazione.
- 2) Gruppo di sollevamento acqua per medi impianti, costituito da due elettropompe di tipo auto-adescante con motore trifase, staffa portante con piedini antivibranti, collettori di aspirazione e mandata con giunti antivibranti, valvole di intercettazione e ritegno per ciascuna elettropompa, manometro di controllo con rubinetto a flangia, due o più serbatoi pressurizzati a membrana idonei per impieghi alimentari, impianto elettrico completo di quadro IP55 con interruttori, telesalvamotori, commutatore per invertire l'ordine di avviamento, spie di funzionamento e blocco, pressostati, cavi di collegamento alle elettropompe e morsettiera con le caratteristiche in accordo al progetto e da sottoporre, prima dell'installazione, alla DL per approvazione.
- 3) Gruppo di sollevamento acqua per medi e grandi impianti, costituito da due elettropompe di tipo centrifugo con motore trifase, staffa portante con piedini antivibranti, collettori di aspirazione e mandata con giunti antivibranti, valvole di intercettazione e ritegno per ciascuna elettropompa, manometro di controllo con rubinetto a flangia, due o più serbatoi pressurizzati a membrana idonei per impieghi alimentari, impianto elettrico completo di quadro IP55 con interruttori, telesalvamotori, commutatore per invertire l'ordine di avviamento, spie di funzionamento e blocco, pressostati, cavi di collegamento alle elettropompe e morsettiera con le caratteristiche in accordo al progetto e da sottoporre, prima dell'installazione, alla DL per approvazione.

4) Gruppo di sollevamento acqua per medi e grandi impianti, costituito da tre elettropompe di tipo centrifugo plurigirante con motore trifase, avviamento stella-triangolo per potenze unitarie inferiori a 4,0 kW, staffa portante con piedini antivibranti, collettori di aspirazione e mandata con giunti antivibranti, valvole di intercettazione e ritegno per ciascuna elettropompa, manometro di controllo con rubinetto a flangia, due o più serbatoi pressurizzati a membrana idonei per impieghi alimentari, impianto elettrico completo di quadro IP55 con interruttori, telesalvamotori, commutatore per invertire l'ordine di avviamento, spie di funzionamento e blocco, pressostati, cavi di collegamento alle elettropompe e morsettiera con le caratteristiche in accordo al progetto e da sottoporre, prima dell'installazione, alla DL per approvazione.

Art. XII Collettori solari

Collettore solare ad acqua calda costituito da piastra assorbente con canalizzazioni per l'acqua, protetta, nella parte superiore, da un vetro di adeguato spessore per resistere agli agenti atmosferici e, nella parte inferiore, da un opportuno strato di isolante con spessore totale non inferiore a mm. 30, il tutto racchiuso in un contenitore ben sigillato e idoneo ad essere installato direttamente all'esterno, completo dei raccordi flessibili, staffe di ancoraggio ed opere murarie richieste.

Art. XIII Giunti antivibranti

- 1) Giunto antivibrante in gomma idoneo ad interrompere la trasmissione dei rumori e per assorbire piccole vibrazioni, utilizzabile per acqua fredda e calda fino alla temperatura di 100℃, PN 10, completo di attacchi flangiati e controflange, bulloni e guarnizioni con diametri varianti dai 20 mm (3/4") ai 200 mm (8").
- 2) Giunto antivibrante in acciaio idoneo ad interrompere la trasmissione dei rumori e per assorbire piccole vibrazioni lungo le tubazioni, costituito da soffietto di acciaio e flange di gomma, utilizzabile per acqua fredda, calda e surriscaldata fino alla temperatura di 140℃, PN 10, completo di attacchi flangiati e controflange, bulloni e guarnizioni con diametri varianti dai 32 mm (1"1/4) ai 200 mm (8").

Art. XIV Modalità di posa delle tubazioni

La posa delle tubazioni, giunti e pezzi speciali dovrà rispettare rigorosamente quanto indicato dal fornitore e dagli elaborati progettuali per i rispettivi tipi di materiale adottato.

In caso di interruzione delle operazioni di posa, gli estremi della condotta posata dovranno essere accuratamente otturati per evitare che vi penetrino elementi estranei solidi o liquidi.

Si dovrà aver cura ed osservare tutti i necessari accorgimenti per evitare danneggiamenti alle tubazioni già posate, predisponendo opportune protezioni delle stesse durante lo svolgimento dei lavori e durante i periodi di inattività del cantiere. I tubi che dovessero risultare danneggiati in modo tale che possa esserne compromessa la funzionalità dovranno essere sostituiti a carico dell'Appaltatore.

Le reti impiantistiche dovranno essere realizzate col massimo numero di tubi interi e di massima lunghezza commerciale in modo da ridurre al minimo il numero dei giunti. Sarà perciò vietato l'impiego di spezzoni di tubi, a meno che sia espressamente autorizzato dalla Direzione dei Lavori.

Sia prima che dopo la posa delle tubazioni dovrà essere accertato lo stato e l'integrità di eventuali rivestimenti protettivi; dopo le operazioni di saldatura dovranno essere ripristinati con cura i rivestimenti protettivi in analogia per qualità e spessori a quanto esistente di fabbrica lungo il resto della tubazione.

Ultimate le operazioni posa in opera, la rete dovrà essere sottoposta a prova idraulica, con pressione, durata e modalità stabilite in progetto e nel presente capitolato in funzione delle caratteristiche della tubazione (tipo di tubo e giunto, pressione di esercizio, classi di impiego). Durante tali operazioni, il Direttore dei Lavori potrà richiedere l'assistenza della ditta fornitrice dei tubi. La prova, eseguita a giunti scoperti sarà ritenuta d'esito positivo sulla scorta delle risultanze del

grafico del manometro registratore ufficialmente tarato e dell'esame visivo dei giunti e sarà ripetuta in seguito al rinterro definitivo o alla chiusura delle tracce.

Art. XV Installazione degli impianti

Le imprese installatrici sono tenute ad eseguire gli impianti a regola d'arte utilizzando allo scopo materiali parimenti costruiti a regola d'arte. I materiali ed i componenti realizzati secondo le norme tecniche di sicurezza dell'Ente italiano di unificazione (UNI) nonché nel rispetto di quanto prescritto dalla legislazione tecnica vigente in materia, si considerano costruiti a regola d'arte.

Nel caso in cui per i materiali e i componenti gli impianti non siano state seguite le norme tecniche previste, l'installatore dovrà indicare nella dichiarazione di conformità la norma di buona tecnica adottata. A tal proposito si considerano a regola d'arte i materiali, componenti ed impianti per il cui uso o la cui realizzazione siano state rispettate le normative emanate dagli organismi di normalizzazione di cui all'allegato II della direttiva 83/189/CEE¹⁸, se dette norme garantiscono un livello di sicurezza equivalente.

Con riferimento alle attività produttive, si applica l'elenco delle norme generali di sicurezza riportate nell'art. 1 del D.P.C.M. 31 marzo 1989¹⁹.

¹⁸ Direttiva 83/189/CEE del Consiglio del 28 marzo 1983 che prevede una procedura d'informazione nel settore delle norme e delle regolamentazioni tecniche. Tale direttiva è stata modificata soprattutto dalla direttiva 88/182/CEE del Consiglio, del 22 marzo 1988, pubblicata nella GU L 81 del 26.3.1988, pag. 75, e dalla direttiva 94/10/CE del Parlamento europeo e del Consiglio, del 23 marzo 1994, pubblicata nella GU L 100 del 19.4.1994, pag. 30.

¹⁹ D.P.C.M. 31 marzo 1989 - "Applicazione dell'art. 12 del D.P.R. 17 maggio 1988, n. 175, concernente rischi rilevanti connessi a determinate attività industriali".

TITOLO II - PRESCRIZIONI TECNICHE PER IMPIANTI IDRICI ANTINCENDIO

Art. XVI Impianti idrici antincendio

Per impianto idrico antincendio si intende il complesso delle tubazioni, dei componenti e delle bocchette terminali per naspi o idranti, disposto in ciascuno dei piani del fabbricato.

Per i termini e le definizioni generali relativi ai componenti degli impianti idrici antincendio, si faccia riferimento al D.M. 30 novembre 1983²⁰ e alla norma UNI 10779/07²¹.

La rete deve essere indipendente, direttamente allacciata all'acquedotto comunale - o ad altro sistema di alimentazione - secondo le prescrizioni di legge e del competente comando dei Vigili del Fuoco e dotata di gruppo regolamentare per l'inserimento dell'autopompa dei Vigili del Fuoco.

Componenti degli impianti

Le reti di idranti sono composte dai seguenti componenti principali:

- alimentazione idrica: deve garantire la pressione e la portata minime richieste dall'impianto, per tutta la durata di erogazione prevista. L'alimentazione idrica deve essere in grado di mantenere permanentemente in pressione la rete di idranti;
- rete di tubazioni fisse in pressione ad uso esclusivo: per l'esecuzione della rete è ammesso, l'impiego di tubi di acciaio zincati a caldo aventi spessori minimi conformi alla norma UNI EN 10255/07²² e pressione nominale pari a I raccordi, le giunzioni e i pezzi speciali dovranno essere in acciaio o ghisa, con pressione nominale almeno pari a quella della tubazione utilizzata;
- attacchi di mandata per autopompa: consiste in un dispositivo collegato alla rete di idranti attraverso il quale può essere immessa acqua nella rete. Tale dispositivo deve essere costituito almeno dai seguenti componenti:
 - bocchette di immissione DN70, dotate di attacchi con girello e tappi;
 - valvola di sicurezza tarata a 1,2 MPa per l'eventuale eccesso di pressione dell'autopompa;
 - valvola di ritegno per impedire il passaggio dell'acqua dall'autopompa alla rete esterna;
 - valvola di intercettazione per il sezionamento dell'impianto in caso di intervento di manutenzione;
 - manometro per il controllo della pressione nella rete stradale, in modo che sia segnalata la necessità dell'entrata in azione dell'autopompa.

L'installazione del gruppo dovrà essere prevista al piano terra in corrispondenza dell'ingresso carrabile all'edificio o nelle sue immediate vicinanze per consentire la manovra per l'inserimento dell'autopompa da parte dei Vigili del Fuoco;

- valvole di intercettazione: possono essere di tipo a sfera o a farfalla, indicanti la posizione di apertura/chiusura. Nelle tubazioni di diametro superiore a 100 mm non possono essere utilizzate valvole ad azionamento a leva prive di riduttore;
- idranti o naspi: possono essere del tipo soprasuolo o sottosuolo. Devono in ogni caso essere dotati di una tubazione flessibile di lunghezza unificata, completa di raccordi, lancia di erogazione e dispositivi di attacco, da posizionare in prossimità dell'idrante stesso all'interno delle relativa cassetta di contenimento.

Criteri di installazione

Le tubazioni fuoriterra devono essere ancorate e protette contro il gelo, gli urti meccanici ed eventuali danneggiamenti dovuti fenomeni sismici; devono essere ubicate in posizione accessibile per le normali operazioni di manutenzione ed essere protette contro l'incendio in caso di attraversamento dei compartimenti antincendio. Ciascun tronco della tubazione di lunghezza

 $^{^{20}}$ D.M. 30 novembre 1983 - Termini, definizioni generali e simboli grafici di prevenzione incendi.

²¹ UNI 10779/07 Impianti di estinzione incendi - Reti di idranti - Progettazione, installazione ed esercizio.

²² UNI 10255/07 Tubi di acciaio non legato adatti alla saldatura e alla filettatura - Condizioni tecniche di fornitura. **PROGETTO ESECUTIVO** DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI"

superiore a 0,6 m deve essere supportato da idonei sostegni, posti a distanza non inferiore a 4 metri per tubazioni di diametro nominale inferiore a 65 mm e di 6 metri per quelle di dimensioni maggiori.

Le tubazioni interrate devono essere installate in posizione protetta dal gelo, dagli urti e dalla corrosione; a tale scopo, la profondità di posa non potrà essere inferiore a 0,8 m dalla generatrice superiore della tubazione.

Al termine dell'installazione dell'impianto l'Appaltatore dovrà rilasciare al Committente apposita documentazione attestante la corretta realizzazione dell'impianto stesso in conformità alle normative vigenti, al progetto e alle eventuali disposizione del competente Comando dei Vigili del Fuoco. L'Appaltatore dovrà inoltre consegnare al Committente i disegni as built degli impianti corredati di tutta la necessaria documentazione tecnica (manuali d'uso, schede tecniche, ...)

Collaudo degli impianti

Al termine delle operazioni di installazione sarà effettuato un collaudo volto all'accertamento della rispondenza dell'installazione al progetto approvato dal competente Comando dei Vigili del Fuoco. Prima delle operazioni di collaudo, l'Appaltatore dovrà effettuare a sue spese il lavaggio delle tubazioni con velocità dell'acqua non inferiore a 2 m/s.

Il collaudo prevede l'esperimento delle seguenti prove:

- esame generale dell'intero impianto, con verifica delle alimentazioni e della loro capacità, delle caratteristiche del sistema di pompaggio, dei diametri delle tubazioni installate e dei relativi sostegni;
- prova idrostatica delle tubazioni ad una pressione pari ad almeno 1,5 volte la pressione nominale di esercizio dell'impianto, con un minimo di 1,4 MPa per 2 ore;
- colludo delle alimentazioni;
- verifica di regolarità del flusso nei collettori di alimentazione;
- verifica della rispondenza dell'impianto alle prestazioni evidenziate in sede di progetto in riferimento alle portate e pressioni minime da garantire, alla contemporaneità delle erogazioni e alla durata delle alimentazioni.

Art. XVII Norme di sicurezza antincendio per gli edifici di civile abitazione²³

Gli edifici destinati a civile abitazione vengono classificati in funzione della loro altezza antincendio secondo quanto indicato nella tabella A allegata al d. m. 246/87 di cui si riporta uno stralcio.

Tipo di edificio	Altezza antincendi
а	da 12 a 24 m
b	da oltre 24 a 32 m
С	da oltre 32 a 54 m
d	da oltre 54 a 80 m
е	oltre 80 m

²³ D.M. 16 maggio 1987, n. 246 - "Norme di sicurezza antincendio per gli edifici di civile abitazione" - Allegato. Per i termini e le definizioni generali di prevenzione incendi si fa riferimento al D.M. 30 novembre 1983 - "Termini, definizioni generali e simboli grafici di prevenzione incendi".

Il D.M. 246/87 si applica ad edifici destinati a civile abitazione, con altezza antincendio uguale o superiore a 12 m di nuova costruzione o ad edifici esistenti in caso di ristrutturazione che comporti modifiche sostanziali; si intendono per modifiche sostanziali lavori che comportino il rifacimento di oltre il 50% dei solai o il rifacimento strutturale delle scale o l'aumento di altezza. Per gli edifici esistenti si applicano le disposizioni contenute nel punto 8 decreto citato.

2

Il punto 7 dell'allegato al decreto citato prevede che gli edifici di tipo "b", "c", "d", "e", siano dotati di reti idranti con le seguenti caratteristiche:

- la rete idranti deve essere costituita da almeno una colonna montante in ciascun vano scala dell'edificio; da essa deve essere derivato ad ogni piano, sia fuori terra che interrato, almeno un idrante con attacco 45 UNI 804/07 a disposizione per eventuale collegamento di tubazione flessibile o attacco per naspo;
- il naspo deve essere corredato di tubazione semirigida con diametro minimo di 25 mm e di lunghezza idonea ad assicurare l'intervento in tutte le aree del piano medesimo. Tale naspo deve essere installato nel locale filtro, qualora la scala sia a prova di fumo interna;
- al piede di ogni colonna montante deve essere installato un idoneo attacco di mandata per autopompa;
- l'impianto deve essere dimensionato per garantire una portata minima di 360 l/min per ogni colonna montante e, nel caso di più colonne, il funzionamento contemporaneo di 2 colonne;
- l'alimentazione idrica deve essere in grado di assicurare l'erogazione, ai 3 idranti idraulicamente più sfavoriti, di 120 l/min cad, con una pressione residua al bocchello di bar 1,5 per un tempo di almeno 60 min. Qualora l'acquedotto non garantisca le condizioni di cui al punto precedente dovrà essere installata idonea riserva idrica; questa può essere ubicata a qualsiasi piano e deve essere alimentata da acquedotto pubblico e/o da altre fonti. Tale riserva deve essere mantenuta costantemente piena;
- le elettropompe di alimentazione della rete antincendio devono essere collegate all'alimentazione elettrica dell'edificio tramite linea propria non utilizzata per altre utenze;
- negli edifici di tipo "d", "e", i gruppi di pompaggio della rete antincendio devono essere costituiti da due pompe, una di riserva all'altra, alimentate da fonti di energia indipendenti (ad es. elettropompa e motopompa). L'avviamento dei gruppi di pompaggio deve essere automatico;
- le tubazioni di alimentazione e quelle costituenti la rete devono essere protette dal gelo, da urti e dal fuoco. Le colonne montanti possono correre, a giorno o incassate, nei vani scale oppure in appositi alloggiamenti resistenti al fuoco REI 60.

Art. XVIII Regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio dei locali di intrattenimento e di pubblico spettacolo²⁴

Le attrezzature e gli impianti di estinzione degli incendi devono essere realizzati a regola d'arte ed in conformità a quanto di seguito indicato.

ESTINTORI

Tutti i locali devono essere dotati di un adeguato numero di estintori portatili. Gli estintori devono essere distribuiti in modo uniforme nell'area da proteggere, è comunque necessario che almeno alcuni si trovino in prossimità degli accessi o nella vicinanza delle aree a maggior pericolo di incendio, ubicati in posizione facilmente accessibile e visibile e segnalata da appositi cartelli.

Gli estintori portatili devono essere installati in ragione di uno ogni 200 mq di pavimento, o frazione, con un minimo di due estintori per piano.

²⁴ Decreto del Ministero dell'Interno 19 agosto 1996 - "Approvazione della regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio dei locali di intrattenimento e di pubblico spettacolo" - Allegato. Per i termini e le definizioni generali di prevenzione incendi si fa riferimento al D.M. 30 novembre 1983 - "Termini, definizioni generali e simboli grafici di prevenzione incendi".

Il decreto si applica ad edifici e locali adibiti ad intrattenimento e pubblico spettacolo esistenti o nel caso siano oggetto di interventi comportanti la loro completa ristrutturazione e/o il cambio di destinazione d'uso.

Gli estintori portatili dovranno avere capacità estinguente non inferiore a 13A, 89B, C; a protezione di aree ed impianti a rischio specifico devono essere previsti estintori di tipo idoneo.

NASPI

Devono essere installati almeno naspi DN 20 nei seguenti casi:

- locali, di cui all'art. 1, comma 1, lettere a) e c) del D.M. interno 19/8/96, con capienza non superiore a 150 persone;
- locali, di cui all'art. 1, comma 1, lettere b), d), e), f) del D.M. interno 19/8/96, con capienza superiore a 300 persone e non superiore a 600 persone.

Ogni naspo deve essere corredato da una tubazione semirigida lunga 20 m; il numero e la posizione dei naspi devono essere prescelti in modo da consentire il raggiungimento, con il getto, di ogni punto dell'area protetta.

I naspi possono essere collegati alla normale rete idrica, purché questa sia in grado di alimentare in ogni momento contemporaneamente, oltre all'utenza normale, i due naspi in condizione idraulicamente più sfavorevole, assicurando a ciascuno di essi una portata non inferiore a 35 l/min ed una pressione non inferiore a 1,5 bar, quando sono entrambi in fase di scarica. L'alimentazione deve assicurare un'autonomia non inferiore a 60 min. Qualora la rete idrica non sia in grado di assicurare quanto sopra prescritto, deve essere predisposta un'alimentazione di riserva, capace di fornire le medesime prestazioni.

IDRANTI DN 45

Devono essere installati impianti idrici antincendio con idranti nei seguenti casi:

- locali, di cui all'art. 1, comma 1 lettere a) e c) del D.M. interno 19/8/96, con capienza superiore a 150 persone;
- locali, di cui all'art. 1, comma 1, lettere b), d), e), f) del D.M. interno 19/8/96, con capienza superiore a 600 persone.

Gli impianti devono essere costituiti da una rete di tubazioni preferibilmente ad anello, con montanti disposti nelle gabbie delle scale o comunque in posizione protetta; dai montanti devono essere derivati gli idranti DN 45.

Devono essere inoltre soddisfatte le seguenti prescrizioni:

- al bocchello della lancia dell'idrante posizionato nelle condizioni più sfavorevoli di altimetria e distanza deve essere assicurata una portata non inferiore a 120 l/min ed una pressione residua di almeno 2 bar:
- il numero e la posizione degli idranti devono essere prescelti in modo da consentire il raggiungimento, con il getto, di ogni punto dell'area protetta, con un minimo di due idranti;
- l'impianto idraulico deve essere dimensionato in relazione al contemporaneo funzionamento del seguente numero di idranti: n. 2 idranti per locali di superficie complessiva fino a 5000 mq.; n. 4 idranti per locali di superficie complessiva fino a 10.000 mq.; n. 6 idranti per locali di superficie complessiva superiore a 10.000 mq.;
- gli idranti devono essere ubicati in posizioni utili all'accessibilità ed all'operatività in caso d'incendio;
- l'impianto deve essere tenuto costantemente in pressione:
- le tubazioni di alimentazione e quelle costituenti la rete devono essere protette dal gelo, dagli urti e dal fuoco.

ATTACCHI PER IL COLLEGAMENTO CON LE AUTOPOMPE VV.F.

Devono prevedersi attacchi di mandata DN 70 per il collegamento con le autopompe VV.F., nel seguente numero: n. 1 al piede di ogni colonna montante, nel caso di edifici con oltre tre piani fuori terra; n. 1 negli altri casi.

Detti attacchi devono essere predisposti in punti ben visibili e facilmente accessibili ai mezzi di soccorso.

IMPIANTO IDRICO ESTERNO

In prossimità dei locali, di cui all'art. 1, comma 1, lettera a) del D.M. interno 19/8/96, di capienza superiore a 1.000 spettatori, e di tutti gli altri locali elencati all'art. 1, comma 1, di capienza superiore a 2.000 spettatori del D.M. interno 19/8/96, deve essere installato all'esterno, in posizione facilmente accessibile ed opportunamente segnalata, almeno un idrante DN 70, da utilizzare per il rifornimento dei mezzi dei Vigili del Fuoco. Tale idrante deve assicurare una portata non inferiore a 460 l/min per almeno 60 min, con una pressione residua non inferiore a 3 bar.

Qualora l'acquedotto pubblico non garantisca con continuità, nelle 24 ore, le prestazioni richieste, deve essere realizzata una riserva idrica alimentata dall'acquedotto e/o altre fonti, di capacità tale da assicurare un'autonomia di funzionamento dell'impianto, nell'ipotesi di cui sopra per un tempo di almeno 60 minuti.

Il gruppo di pompaggio di alimentazione della rete antincendio deve essere, in tal caso, costituito da elettropompa provvista di alimentazione elettrica di riserva, alimentata con gruppo elettrogeno ad azionamento automatico; in alternativa a quest'ultimo può essere installata una motopompa di riserva ad avviamento automatico.

Per i teatri di capienza superiore a 2.000 spettatori, l'alimentazione della rete antincendio deve essere del tipo ad alta affidabilità.

Affinché un'alimentazione sia considerata ad alta affidabilità può essere realizzata in uno dei seguenti modi: una riserva virtualmente inesauribile; due serbatoi o vasche di accumulo, la cui capacità singola sia pari a quella minima richiesta dall'impianto, dotati di rincalzo; due tronchi di acquedotto che non interferiscano fra loro nell'erogazione, non siano alimentati dalla stessa sorgente, salvo che virtualmente inesauribile.

Tale alimentazione deve essere collegata alla rete antincendio tramite due gruppi di pompaggio, composti da una o più pompe, ciascuno dei quali in grado di assicurare le prestazioni richieste secondo una delle seguenti modalità: una elettropompa e una motopompa, una di riserva all'altra; due elettropompe, ciascuna con portata pari alla metà del fabbisogno ed una motopompa di riserva avente portata pari al fabbisogno totale; due motopompe, una di riserva all'altra; due elettropompe, una di riserva all'altra, con alimentazioni elettriche indipendenti. Ciascuna pompa deve avviarsi automaticamente.

IMPIANTO DI SPEGNIMENTO AUTOMATICO A PIOGGIA (IMPIANTO SPRINKLER)

Oltre che nei casi previsti ai punti precedenti, deve essere installato un impianto di spegnimento automatico a pioggia (impianto sprinkler) a protezione degli ambienti con carico d'incendio superiore a 50 kg/mg di legna standard.

IMPIANTO DI RIVELAZIONE E SEGNALAZIONE AUTOMATICA DEGLI INCENDI

Oltre che nei casi previsti ai punti precedenti, deve essere installato un impianto di rivelazione e segnalazione automatica degli incendi a protezione degli ambienti con carico d'incendio superiore a 30 kg/mg di legna standard.

RIVESTIMENTI PER IMPIANTI

L'Isolante degli impianti costituiti da tubazioni dovrà essere realizzato:

1) con una guaina flessibile o lastra in elastomero espanso a cellule chiuse, coefficiente di conducibilità termica a 40℃ non superiore a 0,050 W/m℃, comportamento al fuoco classe 2,

campo d'impiego da -60℃ a +105℃, spessore determi nato secondo la tabella «B» del D.P.R. 26 agosto 1993²⁵, n. 412 comprensivo di eventuale collante e nastro coprigiunto con le seguenti caratteristiche:

- diam. est. tubo da isolare 17 mm (3/8") spessore isolante 20 mm;
- diam. est. tubo da isolare 22 mm (1/2") spessore isolante 20 mm;
- diam. est. tubo da isolare 27 mm (3/4") spessore isolante 20 mm;
- diam. est. tubo da isolare 34 mm (1") spessore isolante 20 mm;
- diam. est. tubo da isolare 42 mm (1"1/4) spessore isolante 20 mm;
- diam. est. tubo da isolare 48 mm (1"1/2) spessore isolante 20 mm;
- diam. est. tubo da isolare 60 mm (2") spessore isolante 20 mm;
- diam. est. tubo da isolare 76 mm (2"1/2) spessore isolante 20 mm;
- diam. est. tubo da isolare 89 mm (3") spessore isolante 20 mm;
- diam. est. tubo da isolare 114 mm (4") spessore isolante 20 mm;
- diam. est. tubo da isolare 140 mm (5") spessore isolante 20 mm;
- diam. est. tubo da isolare 168 mm (6") spessore isolante 20 mm (in lastra).

Le lastre saranno di spessore mm. 6-9-13-20-25-32.

- 2) con coppelle e curve in poliuretano espanso rivestito esternamente con guaina in PVC dotata di nastro autoadesivo longitudinale, comportamento al fuoco autoestinguente, coefficiente di conducibilità termica a 40℃ non superiore a 0,032W /m℃, spessori conformi alla tabella «B» del D.P.R. 26 agosto 1993, n. 412, compreso il nastro coprigiunto con le seguenti caratteristiche:
 - diam. est. tubo da isolare 17 mm (3/8") spessore isolante 20 mm;
 - diam. est. tubo da isolare 22 mm (1/2") spessore isolante 20 mm;
 - diam. est. tubo da isolare 27 mm (3/4") spessore isolante 20 mm;
 - diam. est. tubo da isolare 34 mm (1") spessore isolante 20 mm;
 - diam. est. tubo da isolare 42 mm (1"1/4) spessore isolante 22 mm;
 - diam. est. tubo da isolare 48 mm (1"1/2) spessore isolante 23 mm;
 - diam. est. tubo da isolare 60 mm (2") spessore isolante 25 mm;
 - diam. est. tubo da isolare 76 mm (2"1/2) spessore isolante 32 mm;
 - diam. est. tubo da isolare 89 mm (3") spessore isolante 33 mm;
 - diam. est. tubo da isolare 114 mm (4") spessore isolante 40 mm.
- 3) Il rivestimento superficiale per ricopertura dell'isolamento di tubazioni, valvole ed accessori potrà essere realizzato in:
 - foglio di PVC rigido con temperatura d'impiego -25℃/+60℃ e classe 1 di reazione al fuoco, spessore 0,35 mm;
 - foglio di alluminio goffrato con temperature d'impiego -196℃/+250℃ e classe 0 di reazione al fuoco, spessore 0,2 mm;
 - foglio di alluminio liscio di forte spessore con temperature d'impiego -196℃/+250℃ e classe 0 di reazione al fuoco, spessore 0,6-0,8 mm.

Art. XIX Regola tecnica di prevenzione incendi per l'edilizia scolastica²⁶

_

²⁵ Si veda D.P.R. del 21/12/1999, n. 551 - Regolamento recante modifiche al D.P.R. 26 agosto 1993, n. 412, in materia di progettazione, installazione, esercizio e manutenzione degli impianti termici degli edifici, ai fini del contenimento dei consumi di energia. Il D.P.R. 412/93 ha subito numerose modifiche e aggiornamenti, gli ultimi dei quali fanno riferimento al decreto del 29 novembre 2004 - Modifiche alla tabella relativa alle zone climatiche di appartenenza dei comuni italiani, allegata al regolamento per gli impianti termici degli edifici, emanato con decreto del Presidente della Repubblica 26 agosto 1993, n. 412.

D.M. 26 agosto 1992 - "Norme di prevenzione incendi per l'edilizia scolastica" - Allegato. Per i termini e le definizioni generali di prevenzione incendi si fa riferimento al D.M. 30 novembre 1983 - "Termini, definizioni generali e simboli grafici di prevenzione incendi". Il decreto si applica edifici e locali adibiti a scuole, di qualsiasi tipo, ordine e grado di nuova costruzione o ad edifici esistenti in caso di ristrutturazione che comporti modifiche sostanziali; si intendono per modifiche sostanziali lavori che comportino il rifacimento di oltre il 50% dei solai o il rifacimento strutturale delle scale o l'aumento di altezza. Per gli edifici esistenti si applicano le disposizioni contenute nel punto 13 decreto citato.

Gli edifici scolastici vengono classificati in relazione alle presenze effettive contemporanee in prevedibili di alunni e di personale docente e non docente, nei seguenti tipi:

- tipo 0: scuole con numero di presenze contemporanee fino a 100 persone;
- tipo 1: scuole con numero di presenze contemporanee da 101 a 300 persone;
- tipo 2: scuole con numero di presenze contemporanee da 301 a 500 persone;
- tipo 3: scuole con numero di presenze contemporanee da 501 a 800 persone;
- tipo 4: scuole con numero di presenze contemporanee da 801 a 1200 persone;
- tipo 5: scuole con numero di presenze contemporanee oltre le 1200 persone.

Il punto 9 dell'allegato al D.M. 26/8/1992 prevede che ogni tipo di scuola sia dotata di idonei mezzi antincendio come di seguito precisato.

IDRANTI

- le scuole di tipo 1-2-3-4-5, devono essere dotate di una rete idranti costituita da una rete di tubazioni realizzata preferibilmente ad anello ed almeno una colonna montante in ciascun vano scala dell'edificio; da essa deve essere derivato ad ogni piano, sia fuori terra che interrato, almeno un idrante con attacco UNI a disposizione per eventuale collegamento di tubazione flessibile o attacco per naspo. La tubazione flessibile deve essere costituita da un tratto di tubo, di tipo approvato, con caratteristiche di lunghezza tali da consentire di raggiungere col getto ogni punto dell'area protetta. Il naspo deve essere corredato di tubazione semirigida con diametro minimo di 25 mm e anch'esso di lunghezza idonea a consentire di raggiungere col getto ogni punto dell'area protetta. Tale idrante non deve essere installato nel locale filtro, qualora la scala sia a prova di fumo interna;
- al piede di ogni colonna montante, per edifici con oltre 3 piani fuori terra, deve essere installato un idoneo attacco di mandata per autopompa. Per gli altri edifici è sufficiente un solo attacco per autopompa per tutto l'impianto;
- l'impianto deve essere dimensionato per garantire una portata minima di 360 l/min per ogni colonna montante e, nel caso di più colonne, il funzionamento contemporaneo di almeno 2 colonne;
- l'alimentazione idrica deve essere in grado di assicurare l'erogazione ai 3 idranti idraulicamente più sfavoriti, di 120 l/min cad., con una pressione residua al bocchello di 1,5 bar per un tempo di almeno 60 min. Qualora l'acquedotto non garantisca le condizioni di cui al punto precedente dovrà essere installata una idonea riserva idrica alimentata da acquedotto pubblico e/o da altre fonti. Tale riserva deve essere costantemente garantita.
- le elettropompe di alimentazione della rete antincendio devono essere alimentate elettricamente da una propria linea preferenziale;
- nelle scuole di tipo 4 e 5, i gruppi di pompaggio della rete antincendio devono essere costituiti da due pompe, una di riserva all'altra, alimentate da fonti di energia indipendenti (ad esempio elettropompa e motopompa o due elettropompe). L'avviamento dei gruppi di pompaggio deve essere automatico;
- le tubazioni di alimentazione e quelle costituenti la rete devono essere protette dal gelo, da urti e dal fuoco. Le colonne montanti possono correre, a giorno o incassate, nei vani scale oppure in appositi alloggiamenti resistenti al fuoco REI 60.

ESTINTORI

Devono essere installati estintori portatili di capacità estinguente non inferiore a 13A, 89B, C di tipo approvato dal Ministero dell'interno in ragione di almeno un estintore per ogni 200 mq di pavimento o frazione di detta superficie, con un minimo di due estintori per piano.

IMPIANTI FISSI DI RILEVAZIONE E/O DI ESTINZIONE DEGLI INCENDI

Limitatamente agli ambienti o locali il cui carico di incendio superi i 30 Kg/mq, deve essere installato un impianto di rivelazione automatica di incendio, se fuori terra, o un impianto di estinzione ad attivazione automatica, se interrato.

Art. XX Regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio delle strutture sanitarie, pubbliche e private²⁷

Le aree delle strutture sanitarie, ai fini antincendio, sono così classificate:

- tipo A aree od impianti a rischio specifico, classificati come attività soggette al controllo del C.N.V.V.F. ai sensi del D.M. 16 febbraio 1982 e del D.P.R. 689/59 (impianti di produzione calore, gruppi elettrogeni, autorimesse, ecc.);
- tipo B aree a rischio specifico accessibili al solo personale dipendente (laboratori di analisi e ricerca, depositi, lavanderie, ecc.) ubicate nel volume degli edifici destinati, anche in parte, ad aree dì tipo C e D;
- tipo C aree destinate a prestazioni medico-sanitarie di tipo ambulatoriale (ambulatori, centri specialistici, centri di diagnostica, consultori, ecc.) in cui non è previsto il ricovero;
- tipo D aree destinate a ricovero in regime ospedaliero e/o residenziale nonché aree adibite ad unità speciali (terapia intensiva, neonatologia, reparto di rianimazione, sale operatorie, terapie particolari, ecc.);
- tipo E aree destinate ad altri servizi pertinenti (uffici amministrativi, scuole e convitti professionali, spazi per riunioni e convegni, mensa aziendale, spazi per visitatori inclusi bar e limitati spazi commerciali).

Il punto 7 dell'allegato al D.M. 18/9/2002 (GU 27/09/2002, n. 227) prevede che ogni struttura sia dotata di idonei mezzi antincendio come di seguito precisato.

ESTINTORI

Tutte le strutture sanitarie devono essere dotate di un adeguato numero di estintori portatili di tipo approvato, distribuiti in modo uniforme nell'area da proteggere in modo da facilitarne il rapido utilizzo in caso di incendio; a tal fine è consigliabile che gli estintori siano ubicati lungo le vie di esodo, in prossimità degli accessi e in prossimità di aree a maggior pericolo.

Gli estintori devono essere ubicati in posizione facilmente accessibile, visibile e segnalata in modo che la distanza che una persona deve percorrere per utilizzarli non sia superiore a 30 m. Gli estintori portatili devono essere installati in ragione di almeno uno ogni 100 mq di pavimento, o frazione, con un minimo di due estintori per piano o per compartimento e di uno per ciascun impianto a rischio specifico.

Gli estintori portatili devono avere carica minima pari a 6 kg e capacità estinguente non inferiore a 34A - 144B C. Gli estintori a protezione di aree ed impianti a rischio specifico devono avere agenti estinguenti di tipo idoneo all'uso previsto.

²⁷ D.M. 18 settembre 2002 - "Approvazione della regola tecnica di prevenzione incendi per la progettazione, la costruzione e l'esercizio delle strutture sanitarie pubbliche e private" - Allegato. Per i termini e le definizioni generali di prevenzione incendi si fa riferimento al D.M. 30 novembre 1983 - "Termini, definizioni generali e simboli grafici di prevenzione incendi". II D.M. 18/9/2002 si applica a strutture sanitarie di nuova costruzione ed a quelle esistenti, nel caso siano oggetto di interventi comportanti la loro completa ristrutturazione e/o il cambio di destinazione d'uso. Per gli edifici esistenti si applicano le disposizioni di cui al titolo III dell'allegato.

IDRANTI

Per quanto riguarda i componenti degli impianti, le modalità di installazione, i collaudi e le verifiche periodiche, le alimentazioni idriche e i criteri di calcolo idraulico delle tubazioni, si applicano le norme UNI vigenti.

La tipologia delle reti idriche a naspi o idranti è fissata dalla seguente tabella in funzione del numero di posti letto:

Numero posti letto Tipo di impianto
Fino a 100 Naspi DN 25
Oltre 100 fino a 300 Idranti DN 45

Oltre 300 Idranti interni DN 45 ed idranti esterni DN 70

Per le strutture sanitarie articolate in diversi corpi di fabbrica separati da spazi scoperti, la tipologia degli impianti può essere correlata al numero dei posti letto del singolo corpo, purché le eventuali comunicazioni di servizio (tunnel di collegamento interrati o fuori terra, cunicoli tecnici e simili) siano protette, in corrispondenza di ciascun innesto con gli edifici, con idonei sistemi di compartimentazione conformi al punto 3. 1 del decreto sopra citato.

Devono essere garantite le seguenti caratteristiche idrauliche minime:

- per i naspi DN 25, una portata per ciascun naspo non minore di 60 l/min ad una pressione residua di almeno 2 bar considerando simultaneamente operativi non meno di 4 naspi nella posizione idraulicamente più sfavorevole;
- per gli idranti DN 45, una portata per ciascun idrante non minore di 120 l/min ad una pressione residua di almeno 2 bar, considerando simultaneamente operativi non meno di 3 idranti nella posizione idraulicamente più sfavorevole. In presenza di più colonne montanti, l'impianto deve avere caratteristiche tali da garantire per ogni montante le condizioni idrauliche di contemporaneità sopra indicate ed assicurare, per tali condizioni, il funzionamento contemporaneo di almeno due colonne montanti;
- per gli idranti esterni DN 70, il funzionamento di almeno 4 idranti nella posizione idraulicamente più sfavorevole, con una portata minima per ciascun idrante di 300 l/min a 4 bar, senza contemporaneità con gli idranti interni;
- l'autonomia degli impianti idrici antincendio non deve essere inferiore a 60 minuti primi;
- per strutture sanitarie con oltre 100 posti letto l'alimentazione idrica degli impianti antincendio deve essere di «tipo superiore» secondo le norme UNI vigenti.

IMPIANTO DI SPEGNIMENTO AUTOMATICO

Deve essere installato un impianto di spegnimento automatico a protezione di ambienti con carico di incendio superiore a 30 kg/mg di legna standard.

Tali impianti, devono utilizzare agenti estinguenti compatibili con le caratteristiche degli ambienti da proteggere e con i materiali e le apparecchiature ivi presenti, ed essere realizzati a regola d'arte secondo le vigenti norme di buona tecnica.

IMPIANTI DI RIVELAZIONE, SEGNALAZIONE E ALLARME.

Nelle strutture sanitarie deve essere prevista l'installazione in tutte le aree di:

 segnalatori di allarme incendio del tipo a pulsante manuale opportunamente distribuiti ed ubicati, in ogni caso, in prossimità delle uscite; impianto fisso di rivelazione e segnalazione automatica degli incendi in grado di rilevare e segnalare a distanza un principio d'incendio.

L'impianto deve essere progettato e realizzato a regola d'arte secondo le vigenti norme di buona tecnica. La segnalazione di allarme proveniente da uno qualsiasi dei rivelatori utilizzati deve determinare una segnalazione ottica ed acustica di allarme incendio presso il centro di gestione delle emergenze.

L'impianto deve consentire l'azionamento automatico dei dispositivi di allarme posti nell'attività entro:

- un primo intervallo di tempo dall'emissione della segnalazione di allarme proveniente da due o più rivelatori o dall'azionamento di un qualsiasi pulsante manuale di segnalazione di incendio;
- un secondo intervallo di tempo dall'emissione di una segnalazione di allarme proveniente da un qualsiasi rivelatore, qualora la segnalazione presso la centrale di controllo e segnalazione non sia tacitata dal personale preposto.

I predetti intervalli di tempo devono essere definiti in considerazione della tipologia dell'attività e dei rischi in essa esistenti nonché di quanto previsto nel piano di emergenza.

Qualora previsto dal decreto o dal progetto esecutivo, l'impianto di rivelazione deve consentire l'attivazione automatica di una o più delle seguenti azioni:

- chiusura automatica di eventuali porte tagliafuoco, normalmente mantenute aperte, appartenenti al compartimento antincendio da cui è pervenuta la segnalazione, tramite l'attivazione degli appositi dispositivi di chiusura;
- disattivazione elettrica degli eventuali impianti di ventilazione e/o condizionamento;
- chiusura di eventuali serrande tagliafuoco esistenti poste nelle canalizzazioni degli impianti di ventilazione e/o condizionamento riferite al compartimento da cui proviene la segnalazione;
- eventuale trasmissione a distanza delle segnalazioni di allarme in posti predeterminati in un piano operativo interno di emergenza.

I rivelatori installati nelle camere di degenza, in locali non sorvegliati e in aree non direttamente visibili, devono far capo a dispositivi ottici di ripetizione di allarme installati lungo i corridoi.

Le strutture sanitarie devono essere dotate di un sistema di allarme in grado di avvertire delle condizioni di pericolo in caso di incendio allo scopo di dare avvio alle procedure di emergenza nonché alle connesse operazioni di evacuazione. A tal fine devono essere previsti dispositivi ottici ed acustici, opportunamente ubicati, in grado di segnalare il pericolo a tutti gli occupanti dei fabbricato o delle parti di esso coinvolte dall'incendio. La diffusione degli allarmi sonori deve avvenire tramite impianto ad altoparlanti. Le procedure di diffusione dei segnali di allarme devono essere opportunamente regolamentate nel piano di emergenza.

Art. XXI Regola tecnica di prevenzione incendi per la progettazione, la costruzione e l'esercizio di edifici e/o locali destinati ad uffici ²⁸

D.M. 22 febbraio 2006 - "Approvazione della regola tecnica di prevenzione incendi per la progettazione, la costruzione e l'esercizio di edifici e/o locali destinati ad uffici" - Allegato. Per i termini e le definizioni generali di prevenzione incendi si fa riferimento al D.M. 30 novembre 1983 - "Termini, definizioni generali e simboli grafici di prevenzione incendi".
II D.M. 22/2/2006 si applica a edifici e/o locali destinati ad uffici con oltre 25 persone presenti, ad esclusione degli uffici di controllo e gestione diretta annessi o inseriti in reparti di lavorazione e/o deposito di attività industriali e/o artigianali, nel caso di nuova costruzione, agli edifici e/o locali esistenti in cui si insediano uffici di nuova realizzazione, agli edifici e/o locali esistenti già adibiti ad ufficio in caso siano oggetto di interventi che comportino modifiche sostanziali. Si intendono per modifiche sostanziali lavori che

In relazione al numero di presenze, gli uffici sono suddivisi nelle seguenti tipologie:

- tipo 1: da 26 fino a 100 presenze;
- tipo 2: da 101 fino a 300 presenze;
- tipo 3: da 301 fino a 500 presenze;
- tipo 4: da 501 fino a 1000 presenze;
- tipo 5: con oltre 1000 presenze.

Gli uffici devono essere protetti con mezzi portatili di estinzione incendi e con impianti realizzati e installati a regola d'arte ed in conformità a quanto di seguito indicato.

ESTINTORI

Gli uffici devono essere dotati di un adeguato numero di estintori portatili di idonea capacità estinguente, secondo i criteri stabiliti al punto 5.2 dell'allegato V al D.M. 10 marzo 1998²⁹, con riferimento ad attività a rischio di incendio elevato.

Gli estintori devono essere ubicati in posizione facilmente accessibile, visibile e segnalata, distribuiti in modo uniforme nell'area da proteggere; a tal fine è consigliabile che gli estintori siano ubicati lungo le vie di esodo ed in prossimità delle aree e impianti a rischio specifico.

IDRANTI

Gli uffici devono essere dotati di apposita rete naspi/idranti con le seguenti caratteristiche:

- le modalità di installazione, i collaudi e le verifiche periodiche, le alimentazioni idriche e i criteri di calcolo idraulico delle tubazioni, devono essere effettuati secondo le norme di buona tecnica vigenti;
- le caratteristiche prestazionali e di alimentazione sono quelle definite per la protezione interna dalla norma UNI 10779/07 con riferimento al livello di rischio 3:
- negli uffici di tipo 5 deve essere prevista anche la protezione esterna;
- per uffici articolati in diversi corpi di fabbrica separati da spazi scoperti, la tipologia degli impianti può essere correlata al numero di presenze del singolo corpo di fabbrica, purché le eventuali comunicazioni di servizio (tunnel di collegamento interrati o fuori terra, cunicoli tecnici e simili) siano protette, in corrispondenza di ciascun innesto con gli edifici, con sistemi di compartimentazione conformi alla normativa.

IMPIANTO DI SPEGNIMENTO AUTOMATICO

Deve essere installato un impianto di spegnimento automatico a protezione di ambienti con carico d'incendio superiore a 50 kg/mq, fatto salvo quanto stabilito dal decreto (punto 8.3) per archivi e depositi. Tali impianti devono utilizzare agenti estinguenti compatibili con le caratteristiche degli ambienti da proteggere e con i materiali e le apparecchiature ivi presenti, ed essere progettati, realizzati ed installati a regola d'arte secondo le vigenti norme di buona tecnica.

IMPIANTI DI RIVELAZIONE, SEGNALAZIONE E ALLARME.

Negli uffici deve essere prevista l'installazione in tutte le aree di:

 segnalatori di allarme incendio del tipo a pulsante manuale opportunamente distribuiti ed ubicati, in ogni caso, in prossimità delle uscite;

comportino interventi di ristrutturazione edilizia secondo la definizione riportata all'art. 3 (L), comma 1, lettera d), del D.P.R. 6 giugno 2001, n. 380. ²⁹ Si veda il D.M. 08/09/1999 - Modificazioni al decreto ministeriale 10 marzo 1998 recante: "Criteri generali di sicurezza

antincendio e per la gestione dell'emergenza nei luoghi di lavoro".

 impianto fisso di rivelazione e segnalazione automatica degli incendi in grado di rilevare e segnalare a distanza un principio d'incendio.

L'impianto deve essere progettato e realizzato a regola d'arte secondo le vigenti norme di buona tecnica. La segnalazione di allarme proveniente da uno qualsiasi dei rivelatori deve determinare una segnalazione ottica ed acustica di allarme incendio nella centrale di controllo e segnalazione, ubicata in ambiente presidiato.

L'impianto deve consentire l'azionamento automatico dei dispositivi di allarme posti nell'attività entro:

- un primo intervallo di tempo dall'emissione della segnalazione di allarme proveniente da 2 o più rivelatori o dall'azionamento di un qualsiasi pulsante manuale di segnalazione d'incendio
- un secondo intervallo di tempo dall'emissione di una segnalazione di allarme proveniente da un qualsiasi rivelatore, qualora la segnalazione presso la centrale di controllo e segnalazione non sia tacitata dal personale preposto. I predetti intervalli di tempo devono essere definiti in considerazione della tipologia dell'attività e dei rischi in essa esistenti, nonchè di quanto previsto nel piano di emergenza.

L'impianto di rivelazione può consentire l'attivazione automatica di una o più delle seguenti azioni:

- chiusura di eventuali porte tagliafuoco, normalmente mantenute aperte, appartenenti al compartimento antincendio da cui è pervenuta la segnalazione, tramite l'attivazione degli appositi dispositivi di chiusura;
- disattivazione elettrica degli eventuali impianti di ventilazione e/o condizionamento;
- attivazione di eventuali sistemi antincendio automatici (estinzione, evacuazione fumi, etc.);
- chiusura di eventuali serrande tagliafuoco poste nelle canalizzazioni degli impianti di ventilazione
 e/o condizionamento riferite al compartimento da cui proviene la segnalazione;
- eventuale trasmissione a distanza delle segnalazioni di allarme in posti predeterminati nel piano di emergenza.

Per i rivelatori ubicati nei depositi in cui il carico d'incendio è superiore a 60 kg/mq ovvero la superficie in pianta è superiore a 200 mq, devono essere installati dispositivi ottici di ripetizione di allarme lungo i corridoi. Tali ripetitori devono anche essere previsti per quei rivelatori che sorvegliano aree non direttamente presidiate per mancanza di persone o di un controllo diretto nonchè intercapedini comprese nei controsoffitti e nei pavimenti sopraelevati qualora vi siano installati impianti che possano determinare rischi di incendio.

Gli uffici devono essere dotati di un sistema di allarme in grado di avvertire le persone presenti delle condizioni di pericolo in caso di incendio allo scopo di dare avvio alle procedure di emergenza nonchè alle connesse operazioni di evacuazione. A tal fine devono essere previsti dispositivi ottici ed acustici, opportunamente ubicati, in grado di segnalare il pericolo a tutti gli occupanti dell'edificio o delle parti di esso coinvolte dall'incendio. La diffusione degli allarmi sonori deve avvenire tramite impianto ad altoparlanti. Le procedure di diffusione dei segnali di allarme devono essere opportunamente regolamentate nel piano di emergenza.

Art. XXII Norme di sicurezza antincendi per la costruzione e l'esercizio delle autorimesse e simili³⁰

³⁰ D.M. 1 febbraio 1986 - "Norme di sicurezza antincendi per la costruzione e l'esercizio di autorimesse e simili." - Allegato. Per i termini e le definizioni generali di prevenzione incendi si fa riferimento al D.M. 30 novembre 1983 - "Termini, definizioni generali e simboli grafici di prevenzione incendi".

Il D.M. 1/2/1986 si applica alle autorimesse di nuova istituzione o in caso di modifiche che comportino variazioni di classificazione e di superficie, in più o in meno, superiori al 20% della superficie in pianta o comunque eccedente i 180 mq.

Le autorimesse e simili possono essere di tipo:

- a) *isolate*: situate in edifici esclusivamente destinati a tale uso ed eventualmente adiacenti ad edifici destinati ad altri usi, strutturalmente e funzionalmente separati da questi;
- b) miste: tutte le altre.

In base all'ubicazione i piani delle autorimesse e simili si classificano in:

- a) interrati: con il piano di parcamento a quota inferiore a quello di riferimento;
- b) fuori terra: con il piano di parcamento a quota non inferiore a quello di riferimento. Sono parimenti considerate fuori terra, ai fini delle presenti norme, le autorimesse aventi piano di parcamento a quota inferiore a quello di riferimento, purché l'intradosso del solaio o il piano che determina l'altezza del locale sia a quota superiore a quella del piano di riferimento di almeno 0,6 m e purché le aperture di aerazione abbiano altezza non inferiore a 0,5 m.

In relazione alla configurazione delle pareti perimetrali, le autorimesse e simili possono essere::

- a) aperte: autorimesse munite di aperture perimetrali su spazio a cielo libero che realizzano una percentuale di aerazione permanente non inferiore al 60% della superficie delle pareti stesse e comunque superiore al 15% della superficie in pianta.
- b) chiuse: tutte le altre.

In base alle caratteristiche di esercizio e/o di uso le autorimesse e simili si distinguono in:

- a) sorvegliate: quelle che sono provviste di sistemi automatici di controllo ai fini antincendi ovvero provviste di sistema di vigilanza continua almeno durante l'orario di apertura;
- b) non sorvegliate: tutte le altre.

In base alla organizzazione degli spazi interni le autorimesse e simili si suddividono in:

- a) a box:
- b) a spazio aperto.

Le autorimesse devono essere protetti con mezzi portatili di estinzione incendi e con impianti realizzati e installati a regola d'arte ed in conformità a quanto di seguito indicato.

IDRANTI

Nelle autorimesse fuori terra ed al primo interrato di capacità superiore a cinquanta autoveicoli deve essere installato come minimo un idrante ogni cinquanta autoveicoli o frazione. In quelle oltre il primo interrato di capacità superiore a trenta autoveicoli deve essere installato come minimo un idrante ogni trenta autoveicoli o frazione. Per le autorimesse sulle terrazze deve essere installato come minimo un idrante ogni cento autoveicoli o frazione

Gli impianti idrici antincendio devono essere costituiti da una rete di tubazioni preferibilmente ad anello, con montanti disposti nelle gabbie delle scale o delle rampe; da ciascun montante, in corrispondenza di ogni piano dell'autorimessa, deve essere derivata con tubazione di diametro interno non inferiore a DN 40 un idrante UNI 45³¹ presso ogni uscita. La tubazione flessibile deve essere costituita da un tratto di tubo, di tipo approvato, di lunghezza che consenta di raggiungere col getto ogni punto dell'area protetta. La custodia degli idranti deve essere installata in un punto ben visibile. Deve essere munita di sportello in vetro trasparente, deve avere larghezza ed altezza non inferiore rispettivamente a 0,35 m e 0,55 m ed una profondità che consenta di tenere, a sportello chiuso, manichette e lancia permanentemente collegate.

La rete idrica deve essere eseguita con tubi di ferro zincato o materiali equivalenti protetti contro il gelo e deve essere indipendente dalla rete dei servizi sanitari.

Gli impianti devono avere caratteristiche idrauliche tali da garantire al bocchello della lancia, nelle condizioni sfavorevoli di altimetria e di distanza, una portata non inferiore a 120 litri al minuto e una

_

³¹ Norma ritirata senza sostituzione.

pressione di almeno 2 bar. L'impianto deve essere dimensionato per una portata totale determinata considerando la probabilità di contemporaneo funzionamento del 50 % degli idranti e, per ogni montante, degli idranti di almeno due piani.

L'impianto deve essere alimentato normalmente dall'acquedotto cittadino. Può essere alimentato anche da riserva idrica costituita da un serbatoio con apposito impianto di pompaggio idoneo a conferire in permanenza alla rete le caratteristiche idrauliche di cui al precedente punto. Tale soluzione dovrà essere sempre adottata qualora l'acquedotto cittadino non garantisca con continuità, nelle 24 ore, l'erogazione richiesta.

L'impianto deve essere tenuto costantemente sotto pressione e munito di attacco per il collegamento dei mezzi dei vigili del fuoco, da installarsi in un punto ben visibile e facilmente accessibile ai mezzi stessi.

La riserva idrica deve avere una capacità tale da assicurare il funzionamento dell'impianto per 30 minuti alle condizioni di portata e di pressione prescritte in precedenza.

IMPIANTO DI SPEGNIMENTO AUTOMATICO

Le autorimesse oltre il secondo interrato e quelle oltre il quarto fuori terra, se chiuse, e oltre il quinto piano fuori terra, se aperte, e gli autosilo, devono essere sempre protette da impianto fisso di spegnimento automatico.

Gli impianti fissi di spegnimento automatico devono essere del tipo a pioggia (sprinkler) con alimentazione ad acqua oppure del tipo ad erogatore aperto per erogazione di acqua/schiuma.

ESTINTORI

Deve essere prevista l'installazione di estintori portatili di «tipo approvato» per fuochi delle classi «A», «B» e «C» con capacità estinguente non inferige a «21 A» e «89 B».

Il numero di estintori deve essere il seguente: uno ogni cinque autoveicoli per i primi venti autoveicoli; per i rimanenti, fino a duecento autoveicoli, uno ogni dieci autoveicoli; oltre duecento, uno ogni venti autoveicoli.

Gli estintori devono essere disposti presso gli ingressi o comunque in posizione ben visibile e di facile accesso.

TITOLO III - PRESCRIZIONI TECNICHE PER IMPIANTI A GAS

Art. XXIII Impianti a gas di rete

Per impianto del gas a valle del punto di consegna si intende l'insieme delle tubazioni e dei loro accessori dal medesimo punto di consegna all'apparecchio utilizzatore, l'installazione ed i collegamenti del medesimo, le predisposizioni edili e/o meccaniche per la ventilazione del locale dove deve essere installato l'apparecchio, le predisposizioni edili e/o meccaniche per lo scarico all'esterno dei prodotti della combustione.

Componenti degli impianti

I materiali e componenti utilizzati per la realizzazione dell'impianto devono essere conformi alle norme tecniche UNI e CEI, nonché alla legislazione tecnica vigente in materia di sicurezza. Nel caso in cui per i materiali e i componenti gli impianti non siano state seguite le norme tecniche previste, l'installatore dovrà indicare nella dichiarazione di conformità la norma di buona tecnica adottata. A tal proposito si considerano a regola d'arte i materiali, componenti ed impianti per il cui uso o la cui realizzazione siano state rispettate le normative emanate dagli organismi di normalizzazione di cui all'allegato II della direttiva n. 83/189/CEE³², se dette norme garantiscono un livello di sicurezza equivalente.

Le tubazioni utilizzate per la realizzazione di impianti interni di distribuzione del gas potranno essere dei seguenti tipi:

- acciaio trafilato nero o zincato, giunti filettati, raccordi in ghisa malleabile zincata a bordi rinforzati mediante saldatura; filettature eseguite secondo la norma vigente, con tenuta sui filetti assicurata mediante applicazione di canapa con mastici inalterabili, nastro di tetrafluoruro di etilene o con materiali equivalenti. È tassativamente vietato l'uso di biacca, minio e materiali simili;
- acciaio liscio, con giunti saldati autogeni od all'arco elettrico;
- rame, con giunzioni realizzate mediante saldatura capillare e brasatura, con giunti meccanici senza guarnizioni;
- tubo di piombo, ammesso solo per il collegamento in uscita dal contatore, purché, la sua lunghezza si riduca alla necessità dell'attacco.

Le tubazioni collocate in sottosuolo dovranno essere adeguatamente protette con idoneo rivestimento.

Le guarnizioni dovranno essere di gomma sintetica o di altri prodotti aventi caratteristiche di elasticità e inalterabilità nei confronti del gas distribuito.

I rubinetti saranno di ottone, di bronzo o di altro materiale idoneo con azione libera non minore del 75% della sezione del tubo.

Si riportano alcuni riferimenti normativi utili per la verifica di conformità dei materiali installati:

- UNI 7129/08 Impianti a gas per uso domestico alimentati da rete di distribuzione. Progettazione, installazione e manutenzione. Tale norma si applica agli impianti costituiti da apparecchi con portata termica nominale singola inferiore a 35 kW e fornisce indicazioni circa i materiali ammessi all'uso (tubazioni e accessori), le modalità di installazione delle tubazioni (in vista, sottotraccia o interrate e negli attraversamenti) e le procedure per effettuare la prova di tenuta al termine dell'installazione;
- UNI 7140/93 + A1:1995 Apparecchi a gas per uso domestico. Tubi flessibili non metallici per allacciamento. Tale norma definisce le caratteristiche costruttive e le modalità di prova dei vari tipi

³² Direttiva 83/189/CEE del Consiglio del 28 marzo 1983 che prevede una procedura d'informazione nel settore delle norme e delle regolamentazioni tecniche. Tale direttiva è stata modificata soprattutto dalla direttiva 88/182/CEE del Consiglio, del 22 marzo 1988, pubblicata nella GU L 81 del 26.3.1988, pag. 75, e dalla direttiva 94/10/CE del Parlamento europeo e del Consiglio, del 23 marzo 1994, pubblicata nella GU L 100 del 19.4.1994, pag. 30.

di tubo flessibile non metallico per gli allacciamenti ai punti di alimentazione degli apparecchi di utilizzazione di tipo domestico con pressioni di esercizio inferiori a 0,1 bar.

– UNI EN 14800/07 - Tubi flessibili di acciaio inossidabile a parete continua per allacciamento di apparecchi a gas per uso domestico e similare. Tale norma elenca i requisiti costruttivi e dimensionali ed i metodi di prova per tubi flessibili di acciaio inossidabile a parete continua. Si applica ai tubi flessibili destinati all'allacciamento di apparecchi utilizzatori per uso domestico e similari, con portata termica nominale inferiore a 35 kW, alimentati a gas, con pressioni di esercizio inferiori a 0,1 bar.

Installazione degli impianti

TUBAZIONI

Le tubazioni dovranno essere di norma collocate a vista; è consentita anche l'installazione sotto traccia, purché vengano annegate in malta di cemento e le giunzioni di qualunque tipo siano dotate di scatole di ispezione non a tenuta. È comunque vietata la posa sotto traccia di ogni tipo di congiunzione o saldatura e di tubazioni aventi diametro minore di 1/2" serie gas.

È ammesso l'attraversamento di vani chiusi o intercapedini, purché il tubo venga collocato in una apposita guaina aperta alle due estremità comunicanti con ambienti areati.

È comunque vietata la posa in opera di tubi nelle canne fumarie, nei condotti per lo scarico delle immondizie, nei vani per ascensore o per il contenimento di altre tubazioni.

È vietata la posa in opera di tubi sotto le tubazioni dell'acqua, e l'uso dei tubi come messa a terra di apparecchiature elettriche (compreso il telefono), il contatto fra l'armatura metallica della struttura del fabbricato ed i tubi del gas.

Le tubazioni dovranno essere collocate ben diritte a squadra. I disturbi per condensazioni saranno eliminati adottando pendenze maggiori o uguali allo 0,5% e collocando nei punti più bassi i normali dispositivi di raccolta e scarico delle condense. Per tratti di tubazioni maggiori di 2 m che scaricano nel contatore, è obbligatoria l'inserzione di un sifone immediatamente a valle del contatore.

Le tubazioni in vista dovranno essere sostenute con zanche murate, distanziate non più di 2,5 m per diametri fino a 1" serie gas, di 3 m per diametri maggiori di 1" serie gas e comunque disposte in modo da non potersi muovere accidentalmente dalla propria posizione.

Negli attraversamenti di muri, le tubazioni non dovranno presentare dei giunti ed i fori passanti dovranno essere sigillati con malta di cemento. Per quanto riguarda la distribuzione con gas di petrolio liquefatto, negli attraversamenti di muri le tubazioni dovranno essere protette con altro tubo esterno di diametro maggiore. Nell'attraversamento di pavimenti, il tubo sarà infilato in una guaina sporgente di 2 o 3 cm dal pavimento e l'intercapedine fra tubo e guaina dovrà essere riempita con bitume e simili.

È ammessa la curvatura dei tubi purché, l'angolo compreso fra i due tratti di tubo sia uguale o maggiore di 90°. Le curvature saranno esequite sempre a freddo.

A monte di ogni apparecchio di utilizzazione o di ogni flessibile dovrà essere sempre inserito un rubinetto di intercettazione.

Se il contatore è situato all'esterno, sarà inserito un rubinetto immediatamente all'interno dell'alloggio, salvo il caso in cui la tubazione interna non presenti giunti fino al rubinetto di intercettazione dell'apparecchio.

Ogni rubinetto di intercettazione dovrà essere di facile manovrabilità e manutenzione e con possibilità di rilevare facilmente le posizioni di aperto e chiuso.

I tratti terminali dell'impianto, compresi quelli ai quali è previsto l'allacciamento degli apparecchi di utilizzazione e quelli dei dispositivi di raccolta e scarico delle condense, dovranno essere chiusi a tenuta con tappi filettati. E' vietato l'uso dei tappi di gomma, sughero od altri sistemi provvisori.

ALIMENTAZIONE

L'alimentazione degli impianti interni dovrà avvenire sempre in bassa pressione. La perdita di carico massima ammessa tra il misuratore ed uno qualsiasi degli apparecchi di utilizzazione è pari 5 mm H_2O .

APPARECCHI A GAS

Ai sensi del D.M. 26 novembre 1998 - Approvazione di tabelle UNI-CIG, di cui alla legge 6 dicembre 1971, n. 1083, recante norme per la sicurezza dell'impiego del gas combustibile (18 gruppo), gli apparecchi a gas sono classificati come segue:

- A.1 Apparecchi di cottura. Apparecchi destinati alla cottura dei cibi quali fornelli, forni a gas e piani di cottura siano essi ad incasso, separati fra loro oppure incorporati in un unico apparecchio chiamato solitamente "cucina a gas";
- A.2 Apparecchi di tipo A. Apparecchio non previsto per il collegamento a canna fumaria o a dispositivo di scarico dei prodotti della combustione all'esterno del locale in cui l'apparecchio è installato. Il prelievo dell'aria comburente e lo scarico dei prodotti della combustione avvengono nel locale di installazione;
- A.3 Apparecchi di tipo B. Apparecchio previsto per il collegamento a canna fumaria o a dispositivo che scarica i prodotti della combustione all'esterno del locale in cui l'apparecchio è installato. Il prelievo dell'aria comburente avviene nel locale di installazione e lo scarico dei prodotti della combustione avviene all'esterno del locale stesso;
- A.4 Apparecchi di tipo C. Apparecchio il cui circuito di combustione (prelievo aria comburente, camera di combustione, scambiatore di calore e scarico dei prodotti della combustione) è a tenuta rispetto al locale in cui l'apparecchio è installato. Il prelievo dell'aria comburente e lo scarico dei prodotti della combustione avvengono direttamente all'esterno del locale;

Gli apparecchi a gas produttori di acqua calda, potranno essere installati solamente in locali di servizio (bagni, cucine) o all'esterno. Tutti gli apparecchi muniti di attacco per il tubo di scarico dei fumi dovranno essere dotati di idoneo collegamento diretto con canne fumarie o dovranno scaricare i prodotti della combustione all'esterno.

L'allacciamento degli apparecchi produttori di acqua calda all'impianto interno del gas dovrà essere realizzato mediante raccordi rigidi.

Per ciascun apparecchio dovrà essere predisposto, in fase di dell'installazione, un rubinetto di arresto indipendente dall'apparecchio ed applicato sulla tubazione fissa di alimentazione, in posizione facilmente accessibile per la manovra e la manutenzione.

DISPOSITIVI RIVELATORI DI GAS

Il rivelatore di gas è un dispositivo costituito da almeno un elemento sensore atto a rivelare una determinata concentrazione di gas in aria, un dispositivo atto a generare il segnale di allarme ed elementi per il comando a distanza di altri dispositivi. Il rivelatore di gas può contenere l'alimentatore. Quando il rivelatore di gas non è direttamente alimentato dalla rete di pubblica distribuzione dell'energia elettrica, tramite alimentatore incorporato, il costruttore deve specificare l'alimentatore esterno da impiegare ed indicarne tutte le caratteristiche atte ad individuarlo (definizione conforme a quella della UNI CEI EN 50194/01).

L'eventuale impiego di dispositivi rivelatori di gas naturale o di GPL può contribuire, con funzioni aggiuntive ma non sostitutive, alla sicurezza di impiego del gas combustibile, mediante una funzione di rilevamento e di attivazione dell'intercettazione del gas stesso, in eventi eccezionali non intenzionali; tale impiego non esonera comunque dal rispetto di tutti i requisiti prescritti nei precedenti dalle normative vigenti³³.

³³ D.M. 26 novembre 1998 - "Approvazione di tabelle UNI-CIG, di cui alla legge 6 dicembre 1971, n. 1083, recante norme per la sicurezza dell'impiego del gas combustibile (18 gruppo)".

Rivelatore elettronico di gas metano o GPL per uso residenziale realizzato in materiale plastico autoestinguente con spia a led di indicazione del corretto funzionamento e spia a led per segnalazione di allarme, avvisatore acustico elettronico, alimentazione 220-230 V, omologazione certificata, completo di relè in grado di pilotare dispositivi esterni (elettrovalvole, estrattori di aria, ecc.).

Rivelatore di gas, di tipo industriale, con elemento sensibile alloggiato in contenitore antideflagrante a prova di esplosione, con circuito di misura a ponte di Wheatstone, campo di misura 0-100% Lie, tempo di risposta inferiore a 30 secondi, deriva a lungo termine inferiore a 5% F.S. in un anno, segnale di uscita 4-20 mA, regolabile mediante potenziometri, alimentazione 18-27 VDC, assorbimento massimo 3 W, collegamento con conduttore tripolare massimo 200 ohm per conduttore, condizioni di esercizio: temperatura da -30°C a + 50°C, umidità 20-99% RH; esecuzione antideflagrante, sensore Ex d11CT6, trasmettitore EEXdIICT6 da porre in opera e tarare sul luogo dell'installazione che dovrà prevedere nel caso di gas metano il posizionamento a 0,50 mt. dal soffitto e nel caso di GPL a 0,50 mt. dal pavimento. Questo tipo di rivelatore è collegabile ad una centrale multicanale per segnalare la presenza di gas/vapori infiammabili, gas tossici ed ossigeno, equipaggiata con unità di controllo ed in grado di collegare fino ad otto rivelatori di gas; l'unità di controllo dovrà essere dotata di uscita comune per segnalazione guasti e tre uscite di allarme ottico/acustico a soglie programmabili (preallarme 1, preallarme 2 ed allarme) per presenza gas.

Art. XXIV Regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio di impianti termici alimentati da combustibili gassosi³⁴

GENERALITÀ

1.1. Termini, definizioni e tolleranze dimensionali

Ai fini delle presenti disposizioni si applicano i termini, le definizioni e le tolleranze dimensionali approvati con il D.M. 30 novembre 1983. Inoltre si definisce:

- a) apparecchio di tipo A: apparecchi previsto per non essere collegato ad un condotto o ad uno speciale dispositivo per l'evacuazione dei prodotti della combustione all'esterno del locale di installazione:
- b) apparecchio di tipo B: apparecchio previsto per essere collegato ad un condotto o ad un dispositivo di evacuazione dei prodotti della combustione verso l'esterno. L'aria comburente è prelevata direttamente dall'ambiente dove l'apparecchio è collocato;
- c) apparecchio di tipo C: apparecchio con circuito di combustione a tenuta, che consente l'alimentazione di aria comburente al bruciatore con prelievo diretto dall'esterno e contemporaneamente assicura l'evacuazione diretta all'esterno di prodotti della combustione;
- d) condotte aerotermiche: condotte per il trasporto di aria trattata e/o per la ripresa dell'aria degli ambienti serviti e/o dell'aria esterna da un generatore d'aria calda;
- e) condotte del gas: insieme di tubi, curve, raccordi ed accessori uniti fra loro per la distribuzione del gas. Le condotte oggetto della presente regola tecnica sono comprese in una delle seguenti specie definite nel D.M. 24 novembre 1984³⁵:
 - 6ª specie: condotte per pressioni massime di esercizio maggiori di 0,04 fino a 0,5 bar;
 - 7ª specie: condotte per pressioni massime di esercizio fino a 0,04 bar;

³⁴ D.M. 12 aprile 1996 - "Approvazione della regola tecnica di prevenzione incendi per la progettazione, la costruzione e l'esercizio degli impianti termici alimentati da combustibili gassosi" - Allegato; si veda anche D.M. 16/11/1999 - Modificazione al decreto ministeriale 12 aprile 1996 recante: "Approvazione della regolamentazione tecnica di prevenzione incendi per la progettazione, la costruzione e l'esercizio di impianti termici alimentati da combustibili gassosi".
³⁵ Si vedano anche il D.M. 16/11/1999 - Modificazione al decreto ministeriale 24 novembre 1984 recante: "Norme di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione di gas naturale con densità non superiore a 0,8" (Gazzetta ufficiale 23/11/1999 n. 275) e il D.M. 27/11/1989 n.296 - Modificazione alla normativa di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione del gas naturale con densità non superiore a 0,8 di cui al decreto ministeriale 24 novembre 1984.

- f) gas combustibile: ogni combustibile che è allo stato gassoso alla temperatura di 15°C e alla pressione assoluta di 1013 mbar, come definito nella norma UNI EN 437/09;
- g) generatore di aria calda a scambio diretto: apparecchio destinato al riscaldamento dell'aria mediante produzione di calore in una camera di combustione con scambio termico attraverso pareti dello scambiatore, senza fluido intermediario, in cui il flusso dell'aria è mantenuto da uno o più ventilatori;
- h) impianto interno: complesso delle condotte compreso tra il punto di consegna del gas e gli apparecchi utilizzatori (questi esclusi);
- i) impianto termico: complesso dell'impianto interno, degli apparecchi e degli eventuali accessori destinato alla produzione di calore;
- modulo a tubo radiante: apparecchio destinato al riscaldamento di ambienti mediante emanazione di calore per irraggiamento, costituito da un unità monoblocco composta dal tubo o dal circuito radiante, dall'eventuale riflettore e relative staffe di supporto, dall'eventuale scambiatore, dal bruciatore, dal ventilatore, dai dispositivi di sicurezza, dal pannello di programmazione e controllo, dal programmatore e dagli accessori relativi;
- m) locale esterno: locale ubicato su spazio scoperto, anche in adiacenza all'edificio servito, purché strutturalmente separato e privo di pareti comuni. Sono considerati locali esterni anche quelli ubicati sulla copertura piana dell'edificio servito, purché privi di pareti comuni;
- n) locale fuori terra: locale il cui piano di calpestio è a quota non inferiore a quella del piano di riferimento;
- o) locale interrato: locale in cui l'intradosso del solaio di copertura è a quota inferiore a + 0,6 m al di sopra del piano di riferimento;
- p) locale seminterrato: locale che non è definibile fuori terra né interrato;
- q) piano di riferimento: piano della strada pubblica o privata o dello spazio scoperto sul quale è
 attestata la parete nella quale sono realizzate le aperture di aerazione;
- r) portata termica nominale: quantità di energia termica assorbita nell'unità di tempo dall'apparecchio, dichiarata dal costruttore, espressa in kilowatt (kW):
- s) pressione massima di esercizio: pressione massima relativa del combustibile gassoso alla quale può essere esercito l'impianto interno;
- t) punto di consegna del gas: punto di consegna del combustibile gassoso individuato in corrispondenza:
 - del raccordo di uscita del gruppo di misurazione;
 - del raccordo di uscita della valvola di intercettazione, che delimita la porzione di impianto di proprietà dell'utente, nel caso di assenza del gruppo di misurazione;
 - del raccordo di uscita del riduttore di pressione della fase gassosa nel caso di alimentazione da serbatoio;
- u) serranda tagliafuoco: dispositivo di otturazione ad azionamento automatico destinato ad interrompere il flusso dell'aria nelle condotte aerotermiche ed a garantire la compartimentazione antincendio per un tempo prestabilito.
- 1.2. Luoghi di installazione degli apparecchi

Gli apparecchi possono essere installati:

- all'aperto;
- in locali esterni;
- in fabbricati destinati anche ad altro uso o in locali inseriti nella volumetria del fabbricato servito.

Gli apparecchi devono in ogni caso essere installati in modo tale da non essere esposti ad urti o manomissioni.

INSTALLAZIONI ALL'APERTO

2.1. Disposizioni comuni

Gli apparecchi installati all'aperto devono essere costruiti per tale tipo di installazione.

E' ammessa l'installazione in adiacenza alle pareti dell'edificio servito alle seguenti condizioni: la parete deve possedere caratteristiche di resistenza al fuoco almeno REI 30 ed essere realizzata con materiale di classe 0 di reazione al fuoco, nonchè essere priva di aperture nella zona che si estende, a partire dall'apparecchio, per almeno 0,5 m lateralmente e 1 m superiormente.

Qualora la parete non soddisfi in tutto o in parte tali requisiti:

- gli apparecchi devono distare non meno di 0,6 m dalle pareti degli edifici, oppure
- deve essere interposta una struttura di caratteristiche non inferiori a REI 120 di dimensioni superiori di almeno 0,50 m della proiezione retta dell'apparecchio lateralmente ed 1 m superiormente.

2.2. Disposizioni particolari

2.2.1. Limitazioni per gli apparecchi alimentati con gas a densità maggiore di 0,8

Gli apparecchi devono distare non meno di 5 m da:

- cavità o depressioni, poste al piano di installazione degli apparecchi;
- aperture comunicanti con locali sul piano di posa degli apparecchi o con canalizzazioni drenanti.

Tale distanza può essere ridotta del 50% per gli apparecchi di portata termica inferiore a 116 kW.

2.2.2. Limitazioni per i generatori di aria calda installati all'aperto

Nel caso il generatore sia a servizio di locali di pubblico spettacolo o di locali soggetti ad affollamento superiore a 0,4 persone/mq, deve essere installata sulla condotta dell'aria calda all'esterno dei locali serviti, una serranda tagliafuoco di caratteristiche non inferiori a REI 30 asservita a dispositivo termico tarato a 80° C o a impianto automatico di rivelazione incendio. Inoltre, nel caso in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori o polveri suscettibili di dare luogo ad incendi o esplosioni, non è permesso il ricircolo dell'aria. Le condotte aerotermiche devono essere conformi al punto 4.5.3.

2.2.3. Tubi radianti installati all'aperto

E' permessa l'installazione di moduli con la parte radiante posta all'interno dei locali ed il resto dell'apparecchio al di fuori di questi, purché la parete attraversata sia di classe 0 di reazione al fuoco per almeno 1 m dall'elemento radiante. Per la parte installata all'interno si applica quanto disposto al punto 4.6.

INSTALLAZIONE IN LOCALI ESTERNI

I locali devono essere ad uso esclusivo e realizzati in materiali di classe 0 di reazione al fuoco. Inoltre essi devono soddisfare i requisiti di ubicazione richiesti al Titolo II, di aerazione richiesti al punto 4.1.2. e di disposizione degli apparecchi al loro interno, richiesti al punto 4.1.3.

INSTALLAZIONE IN FABBRICATI DESTINATI ANCHE AD ALTRO USO O IN LOCALI INSERITI NELLA VOLUMETRIA DEL FABBRICATO SERVITO

4.1. Disposizioni comuni

4.1.1. Ubicazione

 a) Il piano di calpestio dei locali non può essere ubicato a quota inferiore a -5 m al di sotto del piano di riferimento. Nel caso dei locali di cui al punto 4.2.6. è ammesso che tale piano sia a quota più bassa e comunque non inferiore a -10 m dal piano di riferimento.

- b) Almeno una parete, di lunghezza non inferiore al 15% del perimetro, deve essere confinante con spazio scoperto o strada pubblica o privata scoperta o nel caso di locali interrati, con intercapedine ad uso esclusivo, di sezione orizzontale netta non inferiore a quella richiesta per l'aerazione e larga non meno di 0,6 m ed attestata superiormente su spazio scoperto o strada scoperta.
- 4.1.1.1. Limitazioni dell'ubicazione di apparecchi alimentati con gas a densità maggiore di 0,8

L'installazione è consentita esclusivamente in locali fuori terra, eventualmente comunicanti con locali anch'essi fuori terra. In entrambi i casi il piano di calpestio non deve presentare avvallamenti o affossamenti tali da creare sacche di gas che determinino condizioni di pericolo.

4.1.2. Aperture di aerazione

I locali devono essere dotati di una o più aperture permanenti di aerazione realizzate su pareti esterne di cui al punto 4.1.1. b); è consentita la protezione delle aperture di aerazione con grigliati metallici, reti e/o alette antipioggia a condizione che non venga ridotta la superficie netta di aerazione.

Le aperture di aerazione devono essere realizzate e collocate in modo da evitare la formazione di sacche di gas, indipendentemente dalla conformazione della copertura. Nel caso di coperture piane tali aperture devono essere realizzate nella parte più alta della parete di cui al punto 4.1.1., b).

Ai fini della realizzazione delle aperture di aerazione, la copertura è considerata parete esterna qualora confinante con spazio scoperto e di superficie non inferiore al 50% della superficie in pianta del locale, nel caso dei locali di cui al punto 4.2. e al 20% negli altri casi.

Le superfici libere minime, in funzione della portata termica complessiva non devono essere inferiori a ("Q" esprime la portata termica, in kW ed "S" la superficie, in cm²):

- a) locali fuori terra : S = Q x 10;
- b) locali seminterrati ed interrati, fino a quota -5 m dal piano di riferimento: S = Q x 15;
- c) locali interrati, a quota compresa tra -5 m e -10 m al di sotto del piano di riferimento, (consentiti solo per i locali di cui al punto 4.2.): S = Q x 20 (con un minimo di 5.000 cm2)

Alle serre non si applicano tali valori.

In ogni caso ciascuna apertura non deve avere superficie netta inferiore a 100 cm²

4.1.2.1. Limitazioni delle aperture di aerazione per gli apparecchi alimentati con gas a densità maggiore di 0,8

Almeno i 2/3 della superficie di aerazione devono essere realizzati a filo del piano di calpestio, con un'altezza minima di 0,2 m. Le aperture di aerazione devono distare non meno di 2 m, per portate termiche non superiori a 116 kW e 4,5 m per portate termiche superiori, da cavità, depressioni o aperture comunicanti con locali ubicati al di sotto del piano di calpestio o da canalizzazioni drenanti.

4.1.3. Disposizione degli apparecchi all'interno dei locali

Le distanze tra un qualsiasi punto esterno degli apparecchi e le pareti verticali e orizzontali del locale, nonchè le distanze fra gli apparecchi installati nello stesso locale devono permettere l'accessibilità agli organi di regolazione, sicurezza e controllo nonchè la manutenzione ordinaria.

4.2. Locali di installazione di apparecchi per la climatizzazione di edifici ed ambienti, per la produzione centralizzata di acqua calda, acqua surriscaldata e/o vapore

I locali devono essere destinati esclusivamente agli impianti termici.

4.2.1. Ubicazione

I locali non devono risultare sottostanti o contigui a locali di pubblico spettacolo, ad ambienti soggetti ad affollamento superiore a 0,4 persone/m² o ai relativi sistemi di vie di uscita. Tale sottostanza o contiguità è tuttavia ammessa purché la parete confinante con spazio scoperto, strada pubblica o privata scoperta, o nel caso di locali interrati con intercapedine ad uso esclusivo, attestata

superiormente su spazio scoperto o strada scoperta, si estenda per una lunghezza non inferiore al 20% del perimetro e la pressione di esercizio non superi i 0,04 bar.

4.2.2. Caratteristiche costruttive

I locali posti all'interno di fabbricati destinati anche ad altri usi devono costituire compartimento antincendio.

Le strutture portanti devono possedere i requisiti di resistenza al fuoco non inferiore a R 120, quelle di separazione da altri ambienti non inferiore a REI 120. Le strutture devono essere realizzate con materiale di classe 0 di reazione al fuoco. Nel caso di apparecchi di portata termica complessiva inferiore a 116 kW è ammesso che tali caratteristiche siano ridotte a R60 e REI 60. Ferme restando le limitazioni di cui al punto 4.2.4., l'altezza del locale di installazione deve rispettare le seguenti misure minime, in funzione della portata termica complessiva:

- non superiore a 116 kW: 2.00 m;
- superiore a 116 kW e sino a 350 kW: 2.30 m;
- superiore a 350 kW e sino a 580 kW: 2.60 m;
- superiore a 580 kW: 2.90 m.

4.2.3. Aperture di aerazione

La superficie di aerazione, calcolata secondo quanto impartito nel punto 4.1.2., non deve essere in ogni caso inferiore di 3.000 cmq e nel caso di gas di densità maggiore di 0,8 a 5.000 cmq.

In caso di locali sottostanti o contigui a locali di pubblico spettacolo o soggetti ad affollamento superiore a 0,4 persone/mq o ai relativi sistemi di via di uscita, l'apertura di aerazione si deve estendere a filo del soffitto, nella parte più alta della parete attestata su spazio scoperto o su strada pubblica o privata scoperta o nel caso di locali interrati, su intercapedine ad uso esclusivo attestata superiormente su spazio scoperto o strada scoperta. La superficie netta di aerazione deve essere aumentata del 50% rispetto ai valori indicati al punto 4.1.2. ed in ogni caso deve estendersi lungo almeno il 70% della parete attestata sull'esterno, come sopra specificato, per una altezza, in ogni punto, non inferiore a 0,50 m. Nel caso di alimentazione con gas a densità superiore a 0,8, tale apertura deve essere realizzata anche a filo del pavimento nel rispetto di quanto previsto al punto 4.1.2.1.

4.2.4. Disposizione degli impianti all'interno dei locali

Lungo il perimetro dell'apparecchio è consentito il passaggio dei canali da fumo e delle condotte aerotermiche, delle tubazioni dell'acqua, gas, vapore e dei cavi elettrici a servizio dell'apparecchio.

E' consentita l'installazione a parete di apparecchi previsti per tale tipo di installazione.

E' consentito che più apparecchi termici a pavimento o a parete, previsti per il particolare tipo di installazione, siano posti tra loro in adiacenza o sovrapposti, a condizione che tutti i dispositivi di sicurezza e di controllo siano facilmente raggiungibili.

Il posizionamento dei vari componenti degli impianti deve essere tale da evitare il rischio di formazione di sacche di gas in misura pericolosa.

4.2.5. Accesso

L'accesso può avvenire dall'esterno da:

- spazio scoperto;
- strada pubblica o privata scoperta;
- porticati;
- intercapedine antincendio di larghezza non inferiore a 0,9 m;

oppure dall'interno tramite disimpegno, realizzato in modo da evitare la formazione di sacche di gas, ed avente le seguenti caratteristiche:

- a) impianti di portata termica non superiore a 116 kW: resistenza al fuoco della struttura REI 30 e con porte REI 30;
- b) impianti di portata termica superiore a 116 kW:
 - superficie netta minima di 2 mq;
 - resistenza al fuoco della struttura REI 60 e con porte REI 60;
 - aerazione a mezzo di aperture di superficie complessiva non inferiore a 0,5 m² realizzate su parete attestata su spazio scoperto, strada pubblica o privata scoperta, intercapedine. Nel caso di alimentazione con gas a densità non superiore a 0,8, è consentito l'utilizzo di un camino di sezione non inferiore a 0,1 mg.

Nel caso di locali ubicati all'interno del volume di fabbricati destinati, anche parzialmente a pubblico spettacolo, caserme, attività comprese nei punti 51, 75, 84, 85, 86, 87, 89, 90, 92 e 94 (per altezza antincendio oltre 54 m), dell'allegato al D.M. 16 febbraio 1982 o soggetti ad affollamento superiore a 0,4 persone per mq, l'accesso deve avvenire direttamente dall'esterno o da intercapedine antincendio di larghezza non inferiore a 0,9 m.

4.2.5.1. Porte

Le porte dei locali e dei disimpegni devono:

- essere apribili verso l'esterno e munite di congegno di autochiusura, di altezza minima di 2 m e larghezza minima 0,6 m. Per impianti con portata termica complessiva inferiore a 116 kW il senso di apertura delle porte non è vincolato;
- possedere caratteristiche di resistenza al fuoco non inferiori a REI 60 o REI 30, per impianti di portata termica rispettivamente superiore o non a 116 kW. Alle porte di accesso diretto da spazio scoperto, strada pubblica o privata, scoperta, o da intercapedine antincendio non è richiesto tale requisito, purché siano in materiale di classe 0 di reazione al fuoco.
- 4.2.6. Limitazioni per l'installazione a quota inferiore a -5 m e sino a -10 m al di sotto del piano di riferimento
- a) Le aperture di aerazione e l'accesso devono essere ricavati su una o più intercapedini antincendio, attestate su spazio scoperto, non comunicanti con alcun locale e ad esclusivo uso del locale destinato agli apparecchi.
- b) All'esterno del locale ed in prossimità di questo deve essere installata, sulla tubazione di adduzione del gas, una valvola automatica del tipo normalmente chiuso asservita al funzionamento del bruciatore e al dispositivo di controllo della tenuta del tratto di impianto interno tra la valvola stessa e il bruciatore.
- c) La pressione di esercizio non deve essere superiore a 0,04 bar.
- 4.3. Locali per forni da pane, lavaggio biancheria, altri laboratori artigiani e sterilizzazione

Gli apparecchi devono essere installati in locali ad essi esclusivamente destinati o nei locali in cui si svolgono le lavorazioni.

4.3.1. Caratteristiche costruttive

Le strutture portanti devono possedere i requisiti di resistenza al fuoco non inferiore a R 60, quelle di separazione da altri ambienti non inferiore a REI 60. Per portate termiche complessive fino a 116 kW, sono consentite strutture R/REI 30.

4.3.2. Accesso e comunicazioni

L'accesso può avvenire:

 direttamente dall'esterno, tramite porta larga almeno 0,9 m realizzata in materiale di classe 0 di reazione al fuoco; da locali attigui, purché pertinenti l'attività stessa, tramite porte larghe almeno 0,9 m, di resistenza al fuoco non inferiore a REI 30, dotate di dispositivo di autochiusura anche del tipo normalmente aperto purché asservito ad un sistema di rivelazione incendi.

4.4. Locali di installazione di impianti cucina e lavaggio stoviglie

I locali, fatto salvo quanto consentito nel successivo punto 4.4.3., devono essere esclusivamente destinati agli apparecchi.

4.4.1. Caratteristiche costruttive

Le strutture portanti devono possedere resistenza al fuoco non inferiore a R 120, quelle di separazione da altri ambienti non inferiore a REI 120. Per impianti di portata termica complessiva fino a 116 kW sono consentite caratteristiche R/REI 60.

4.4.2. Accesso e comunicazioni

L'accesso può avvenire direttamente:

- dall'esterno, tramite porta larga almeno 0,9 m in materiale di classe 0 di reazione al fuoco;
- e/o dal locale consumazione pasti, tramite porte larghe almeno 0,9 m di caratteristiche almeno REI 60 per portate termiche superiori a 116 kW e REI 30 negli altri casi, dotate di dispositivo di autochiusura anche del tipo normalmente aperto purché asservito ad un sistema di rivelazione incendi.

E' consentita la comunicazione con altri locali, pertinenti l'attività servita dall'impianto, tramite disimpegno anche non aerato, con eccezione dei locali destinati a pubblico spettacolo, con i quali la comunicazione può avvenire esclusivamente tramite disimpegno avente le caratteristiche indicate al punto 4.2.5., b), indipendentemente dalla portata termica.

4.4.2.1. Ulteriori limitazioni per gli apparecchi alimentati con gas a densità maggiore di 0,8

La comunicazione con caserme, locali soggetti ad affollamento superiore a 0,4 persone/m², locali di pubblico spettacolo o destinati alle attività di cui ai punti 51, 75, 84, 85, 86, 87 e 89 dell'allegato al D.M. 16 febbraio 1982, può avvenire esclusivamente tramite disimpegno avente le caratteristiche indicate al punto 4.2.5. - b), indipendentemente dalla portata termica.

4.4.3. Installazione in locali in cui avviene anche la consumazione di pasti

L'installazione di apparecchi a servizio di cucine negli stessi locali di consumazione pasti, è consentita alle seguenti ulteriori condizioni:

- a) gli apparecchi utilizzati devono essere asserviti a un sistema di evacuazione forzata (p.e.: cappa munita di aspiratore meccanico);
- b) l'alimentazione del gas alle apparecchiature deve essere direttamente asservita al sistema di evacuazione forzata e deve interrompersi nel caso che la portata di questo scenda sotto i valori prescritti in seguito; la riammissione del gas alle apparecchiature deve potersi fare solo manualmente:
- c) l'atmosfera della zona cucina, durante l'esercizio, deve essere mantenuta costantemente in depressione rispetto a quella della zona consumazione pasti;
- d) il sistema di evacuazione deve consentire l'aspirazione di un volume almeno uguale a 1 mc/min di fumi per ogni kW di potenza assorbita dagli apparecchi ad esso asserviti;
- e) le cappe o i dispositivi similari devono essere costruiti in materiale di classe 0 di reazione al fuoco e dotati di filtri per grassi e di dispositivi per la raccolta delle eventuali condense;
- f) tra la zona cucina e la zona consumazione pasti deve essere realizzata una separazione verticale, pendente dalla copertura fino a quota 2,2 m dal pavimento, atta ad evitare l'espandersi dei fumi e dei gas caldi in senso orizzontale all'interno del locale, in materiale di classe 0 di reazione al fuoco ed avente adeguata resistenza meccanica, particolarmente nel vincolo;

- g) le comunicazioni dei locali con altri, pertinenti l'attività servita, deve avvenire tramite porte REI 30 con dispositivo di autochiusura;
- h) il locale consumazione pasti, in relazione all'affollamento previsto, deve essere servito da vie di circolazione ed uscite, tali da consentire una rapida e sicura evacuazione delle persone presenti in caso di emergenza.
- 4.5. Locali di installazione di generatori di aria calda a scambio diretto

4.5.1. Locali destinati esclusivamente ai generatori

I locali e le installazioni devono soddisfare i requisiti richiesti al punto 4.2. E' tuttavia ammesso che i locali comunichino con gli ambienti da riscaldare attraverso le condotte aerotermiche, che devono essere conformi al successivo punto 4.5.3. Inoltre:

- nel caso in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori o polveri suscettibili di dare luogo ad incendi o esplosioni non è permesso il ricircolo dell'aria;
- l'impianto deve essere munito di dispositivo automatico che consenta, in caso di intervento della serranda tagliafuoco, l'espulsione all'esterno dell'aria calda proveniente dall'apparecchio;
- l'intervento della serranda tagliafuoco deve determinare automaticamente lo spegnimento del bruciatore.

4.5.2. Locali di installazione destinati ad altre attività

E' vietata l'installazione all'interno di: locali di pubblico spettacolo, locali soggetti ad affollamento superiore a 0,4 persone/mq, locali in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori o polveri suscettibili di dare luogo ad incendi o esplosioni.

All'interno di autorimesse ed autofficine potranno essere consentiti solo gli apparecchi rispondenti alle specifiche norme tecniche armonizzate.

4.5.2.1. Caratteristiche dei locali

Le pareti alle quali siano addossati, eventualmente, gli apparecchi devono possedere caratteristiche almeno REI 30 ed in classe 0 di reazione al fuoco.

Qualora non siano soddisfatti i requisiti di incombustibilità o di resistenza al fuoco, l'installazione all'interno deve avvenire nel rispetto delle seguenti distanze:

- 0,60 m tra l'involucro dell'apparecchio e le pareti;
- 1,00 m tra l'involucro dell'apparecchio ed il soffitto.

Se tali distanze non sono rispettate, deve essere interposta una struttura di caratteristiche non inferiori a REI 120 di dimensioni superiori di almeno 0,50 m della proiezione retta dell'apparecchio. Inoltre le pareti attraversate, in corrispondenza della condotta di scarico dei prodotti della combustione, devono essere adeguatamente protette. Nel caso di installazione in ambienti soggetti a depressione o nei quali le lavorazioni comportano lo sviluppo di apprezzabili quantità di polveri incombustibili, gli apparecchi con bruciatore atmosferico devono essere di tipo C (come modificato dall'articolo unico del D.M. 16 novembre 1999).

4.5.2.2. Disposizione degli apparecchi

La distanza fra la superficie esterna del generatore di aria calda e della condotta di evacuazione dei gas combusti da eventuali materiali combustibili in deposito deve essere tale da impedire il raggiungimento di temperature pericolose ed in ogni caso non inferiore a 4 m. Tali prescrizioni non si applicano agli apparecchi posti ad un'altezza non inferiore a 2,5 m dal pavimento per i quali sono sufficienti distanze minime a 1,5 m.

Gli apparecchi possono essere installati a pavimento od a una altezza inferiore a 2,5 m, se protetti da una recinzione metallica fissa di altezza non inferiore a 1,5 m e distante almeno 0,6 m e comunque posta in modo da consentire le operazioni di manutenzione e di controllo.

4.5.3. Condotte aerotermiche

Le condotte devono essere realizzate in materiale di classe 0 di reazione al fuoco. I giunti antivibranti devono essere di classe di reazione al fuoco non superiore a 2.

Negli attraversamenti di pareti e solai, lo spazio attorno alle condotte deve essere sigillato con materiale in classe 0 di reazione al fuoco, senza tuttavia ostacolare le dilatazioni delle condotte stesse.

Le condotte non possono attraversare luoghi sicuri (che non siano spazi scoperti), vani scala, vani ascensore e locali in cui le lavorazioni o i materiali in deposito comportano il rischio di esplosione e/o incendio. L'attraversamento dei soprarichiamati locali può tuttavia essere ammesso se le condotte o le strutture che le racchiudono hanno una resistenza al fuoco non inferiore alla classe del locale attraversato ed in ogni caso non inferiore a REI 30.

Qualora le condotte attraversino strutture che delimitano compartimenti antincendio, deve essere installata, in corrispondenza dell'attraversamento, almeno una serranda, avente resistenza al fuoco pari a quella della struttura attraversata, azionata automaticamente e direttamente da:

- rivelatori di fumo, installati nelle condotte, qualora gli apparecchi siano a servizio di più di un compartimento antincendio e si effettui il ricircolo dell'aria;
- dispositivi termici, tarati a 80°C, posti in corr ispondenza delle serrande stesse negli altri casi.

In ogni caso l'intervento della serranda deve determinare automaticamente lo spegnimento del bruciatore.

4.6. Locali di installazione di moduli a tubi radianti

E' vietata l'installazione all'interno di locali di pubblico spettacolo, locali soggetti ad affollamento superiore a 0,4 persone/m², locali in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di vapori e/o polveri suscettibili di dare luogo ad incendi e/o esplosioni.

4.6.1. Caratteristiche dei locali

Le strutture verticali e/o orizzontali su cui sono installati i moduli a tubi radianti devono essere almeno REI 30 e in classe 0 di reazione al fuoco. I moduli devono essere installati a non meno di 0,6 m dalle pareti.

4.6.2. Disposizione dei moduli all'interno dei locali

La distanza tra la superficie esterna del modulo ed eventuali materiali combustibili in deposito ed il piano calpestabile deve essere tale da impedire il raggiungimento di temperature pericolose ed in ogni caso non inferiore a 4 m.

4.7. Installazione all'interno di serre

L'installazione all'interno di serre deve avvenire nel rispetto delle seguenti distanze minime da superfici combustibili:

- 0,60 m tra l'involucro dell'apparecchio e le pareti;
- 1,00 m tra l'involucro dell'apparecchio ed il soffitto.

Se tali distanze non sono rispettate, deve essere interposta una struttura di caratteristiche non inferiori a REI 120 di dimensioni superiori di almeno 0,50 m della proiezione retta dell'apparecchio.

L'aerazione deve essere assicurata da almeno un'apertura di superficie non inferiore a 100 cmq. IMPIANTO INTERNO DI ADDUZIONE DEL GAS

5.1. Generalità

Il dimensionamento delle tubazioni e degli eventuali riduttori di pressione deve essere tale da garantire il corretto funzionamento degli apparecchi di utilizzazione. L'impianto interno ed i materiali impiegati devono essere conformi alla legislazione tecnica vigente.

5.2. Materiali delle tubazioni

Possono essere utilizzati esclusivamente tubi idonei. Sono considerati tali quelli rispondenti alle caratteristiche di seguito indicate e realizzati in acciaio, in rame o in polietilene.

5.2.1. Tubi di acciaio

- a) I tubi di acciaio possono essere senza saldatura oppure con saldatura longitudinale e devono avere caratteristiche qualitative e dimensionali non inferiori a quelle indicate dalla norma UNI EN 10255/07;
- b) i tubi in acciaio con saldatura longitudinale, se interrati, devono avere caratteristiche qualitative e dimensionali non inferiori a quelle indicate dalle norme UNI EN 10208-1/09 e UNI EN 10208-2/09.

5.2.2. Tubi di rame

I tubi di rame, da utilizzare esclusivamente per le condotte del gas della VII specie (pressione di esercizio non superiore a 0,04 bar) devono avere caratteristiche qualitative e dimensionali non minori di quelle indicate dalla norma UNI EN 1057/06. Nel caso di interramento lo spessore non può essere minore di 2,0 mm.

5.2.3. Tubi di polietilene

I tubi di polietilene, ammessi unicamente per l'interramento all'esterno di edifici, devono avere caratteristiche qualitative e dimensionali non minori di quelle indicate dalla norma UNI EN 1555-1-2-3-4-5/06, con spessore minimo di 3 mm.

5.3. Giunzioni, raccordi e pezzi speciali, valvole

5.3.1. tubazioni in acciaio

- a) L'impiego di giunti a tre pezzi è ammesso esclusivamente per i collegamenti iniziale e finale dell'impianto interno;
- b) le giunzioni dei tubi di acciaio devono essere realizzate mediante raccordi con filettature o a mezzo saldatura di testa per fusione o a mezzo di raccordi flangiati;
- c) nell'utilizzo di raccordi con filettatura è consentito l'impiego di mezzi di tenuta, quali ad esempio canapa con mastici adatti (tranne per il gas con densità maggiore di 0,8), nastro di tetrafluoroetilene, mastici idonei per lo specifico gas. E' vietato l'uso di biacca, minio o altri materiali simili:
- d) tutti i raccordi ed i pezzi speciali devono essere realizzati di acciaio oppure di ghisa malleabile;
 quelli di acciaio con estremità filettate o saldate, quelli di ghisa malleabile con estremità unicamente filettate;
- e) le valvole devono essere di facile manovrabilità e manutenzione e con possibilità di rilevare facilmente le posizioni di aperto e di chiuso. Esse devono essere di acciaio, di ottone o di ghisa sferoidale con sezione libera di passaggio non minore del 75% di quella del tubo sul quale vengono inserite. Non è consentito l'uso di ghisa sferoidale nel caso di gas con densità maggiore di 0,8.

5.3.2. Tubazioni in rame

- a) Le giunzioni dei tubi di rame devono essere realizzate mediante brasatura capillare forte;
- b) i collegamenti mediante raccordi metallici a serraggio meccanico sono ammessi unicamente nel caso di installazioni fuori terra e a vista o ispezionabili. Non sono ammessi raccordi meccanici con elementi di materiale non metallico. I raccordi ed i pezzi speciali possono essere di rame, di ottone o di bronzo. Le giunzioni miste, tubo di rame con tubo di acciaio, devono essere realizzate mediante brasatura forte o raccordi filettati;

- c) non è ammesso l'impiego di giunti misti all'interno degli edifici, ad eccezione del collegamento della tubazione in rame con l'apparecchio utilizzatore;
- d) le valvole per i tubi di rame devono essere di ottone, di bronzo o di acciaio, con le medesime caratteristiche di cui al punto 5.3.1. lettera e).

5.3.3. Tubazioni in polietilene

- a) I raccordi ed i pezzi speciali devono essere realizzati in polietilene; le giunzioni devono essere realizzate mediante saldatura di testa per fusione a mezzo di elementi riscaldanti o mediante saldatura per elettrofusione o saldatura mediante appositi raccordi elettrosaldabili;
- b) le giunzioni miste, tubo di polietilene con tubo metallico, devono essere realizzate mediante raccordi speciali (giunti di transizione) polietilene-metallo idonei per saldatura o raccordi metallici filettati o saldati. Sono altresì ammesse giunzioni flangiate;
- c) le valvole per tubi di polietilene possono essere, oltre che dello stesso polietilene, anche con il corpo di ottone, di bronzo o di acciaio, sempre con le medesime caratteristiche di cui al punto 5.3.1. lettera e).

5.4. Posa in opera

5.4.1. Percorso delle tubazioni

Il percorso tra punto di consegna ed apparecchi utilizzatori deve essere il più breve possibile ed è ammesso:

- a) all'esterno dei fabbricati:
 - interrato;
 - in vista:
 - in canaletta;

b) all'interno dei fabbricati:

- in appositi alloggiamenti, in caso di edifici o locali destinati ad uso civile o ad attività soggette ai controlli dei Vigili del Fuoco;
- in guaina d'acciaio in caso di attraversamento di locali non ricompresi nei punti precedenti, di androni permanentemente aerati, di intercapedini, a condizione che il percorso sia ispezionabile.

Nei locali di installazione degli apparecchi il percorso delle tubazioni è consentito in vista.

Per le installazioni a servizio di locali o edifici adibiti ad attività industriali si applicano le disposizioni previste dal D.M. 24 novembre 1984³⁶.

5.4.2. Generalità

a) Le tubazioni devono essere protette contro la corrosione e collocate in modo tale da non subire danneggiamenti dovuti ad urti;

- b) è vietato l'uso delle tubazioni del gas come dispersori, conduttori di terra o conduttori di protezione di impianti e apparecchiature elettriche, telefono compreso;
- c) è vietata la collocazione delle tubazioni nelle canne fumarie, nei vani e cunicoli destinati a contenere servizi elettrici, telefonici, ascensori o per lo scarico delle immondizie;
- d) eventuali riduttori di pressione o prese libere dell'impianto interno devono essere collocati all'esterno degli edifici o, nel caso delle prese libere, anche all'interno dei locali, se destinati esclusivamente all'installazione degli apparecchi. Queste devono essere chiuse o con tappi filettati o con sistemi equivalenti;

³⁶ Si vedano anche il D.M. 16/11/1999 - Modificazione al decreto ministeriale 24 novembre 1984 recante: "Norme di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione di gas naturale con densità non superiore a 0,8" (Gazzetta ufficiale 23/11/1999 n. 275) e il D.M. 27/11/1989 n.296 - Modificazione alla normativa di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione del gas naturale con densità non superiore a 0,8 di cui al decreto ministeriale 24 novembre 1984.

- e) è vietato l'utilizzo di tubi, rubinetti, accessori, ecc., rimossi da altro impianto già funzionante;
- f) all'esterno dei locali di installazione degli apparecchi deve essere installata, sulla tubazione di adduzione del gas, in posizione visibile e facilmente raggiungibile una valvola di intercettazione manuale con manovra a chiusura rapida per rotazione di 90° ed arresti di fine corsa nelle posizioni di tutto aperto e di tutto chiuso;
- g) per il collegamento dell'impianto interno finale, e iniziale (se alimentato tramite contatore), devono essere utilizzati tubi metallici flessibili continui;
- h) nell'attraversamento di muri la tubazione non deve presentare giunzioni o saldature e deve essere protetta da guaina murata con malta di cemento. Nell'attraversamento di muri perimetrali esterni, l'intercapedine fra guaina e tubazione gas deve essere sigillata con materiali adatti in corrispondenza della parte interna del locale, assicurando comunque il deflusso del gas proveniente da eventuali fughe mediante almeno uno sfiato verso l'esterno;
- i) è vietato l'attraversamento di giunti sismici;
- le condotte, comunque installate, devono distare almeno 2 cm dal rivestimento della parete o dal filo esterno del solaio;
- m) fra le condotte ed i cavi o tubi di altri servizi deve essere adottata una distanza minima di 10 cm; nel caso di incrocio, quando tale distanza minima non possa essere rispettata, deve comunque essere evitato il contatto diretto interponendo opportuni setti separatori con adeguate caratteristiche di rigidità dielettrica e di resistenza meccanica; qualora, nell'incrocio, il tubo del gas sia sottostante a quello dell'acqua, esso deve essere protetto con opportuna guaina impermeabile in materiale incombustibile o non propagante la fiamma.

5.4.3. Modalità di posa in opera all'esterno dei fabbricati

5.4.3.1. Posa in opera interrata

- a) Tutti i tratti interrati delle tubazioni metalliche devono essere provvisti di un adeguato rivestimento protettivo contro la corrosione ed isolati, mediante giunti dielettrici, da collocarsi fuori terra, nelle immediate prossimità delle risalite della tubazione;
- b) le tubazioni devono essere posate su un letto di sabbia lavata, di spessore minimo 100 mm, e ricoperte, per altri 100 mm, di sabbia dello stesso tipo. Per le tubazioni in polietilene è inoltre necessario prevedere, a circa 300 mm sopra la tubazione, la sistemazione di nastri di segnalazione;
- c) l'interramento della tubazione, misurato fra la generatrice superiore del tubo ed il livello del terreno, deve essere almeno pari a 600 mm. Nei casi in cui tale profondità non possa essere rispettata occorre prevedere una protezione della tubazione con tubi di acciaio, piastre di calcestruzzo o con uno strato di mattoni pieni;
- d) le tubazioni interrate in polietilene devono essere collegate alle tubazioni metalliche prima della fuoriuscita dal terreno e prima del loro ingresso nel fabbricato;
- e) le tubazioni metalliche interrate devono essere protette con rivestimento esterno pesante, di tipo bituminoso oppure di materiali plastici, e devono essere posate ad una distanza reciproca non minore del massimo diametro esterno delle tubazioni (ivi compresi gli spessori delle eventuali guaine). Nel caso di parallelismi, sovrappassi e sottopassi tra i tubi del gas e altre canalizzazioni preesistenti, la distanza minima, misurata fra le due superfici affacciate, deve essere tale da consentire gli eventuali interventi di manutenzione su entrambi i servizi.

5.4.3.2. Posa in opera in vista

- 1) Le tubazioni installate in vista devono essere adeguatamente ancorate per evitare scuotimenti, vibrazioni ed oscillazioni. Esse devono essere collocate in posizione tale da impedire urti e danneggiamenti e ove necessario, adeguatamente protette.
- 2) Le tubazioni di gas di densità non superiore a 0,8 devono essere contraddistinte con il colore giallo, continuo o in bande da 20 cm, poste ad una distanza massima di 1 m l'una dall'altra. Le

altre tubazioni di gas devono essere contraddistinte con il colore giallo, a bande alternate da 20 cm di colore arancione. All'interno dei locali serviti dagli apparecchi le tubazioni non devono presentare giunti meccanici.

5.4.3.3. Posa in opera in canaletta

Le canalette devono essere:

- ricavate nell'estradosso delle pareti;
- rese stagne verso l'interno delle pareti nelle quali sono ricavate mediante idonea rinzaffatura di malta di cemento;
- nel caso siano chiuse, dotate di almeno due aperture di ventilazione verso l'esterno di almeno 100 cmq cadauna, poste nella parte alta e nella parte bassa della canaletta. L'apertura alla quota più bassa deve essere provvista di rete tagliafiamma e, nel caso di gas con densità superiore a 0,8, deve essere ubicata a quota superiore del piano di campagna;
- ad esclusivo servizio dell'impianto.
- 5.4.4. Modalità di posa in opera all'interno dei fabbricati
- 5.4.4.1. Posa in opera in appositi alloggiamenti

L'installazione in appositi alloggiamenti è consentita a condizione che:

- gli alloggiamenti siano realizzati in materiale incombustibile, di resistenza al fuoco pari a quella richiesta per le pareti del locale o del compartimento attraversato ed in ogni caso non inferiore a REI 30;
- le canalizzazioni non presentino giunti meccanici all'interno degli alloggiamenti non ispezionabili;
- le pareti degli alloggiamenti siano impermeabili ai gas;
- siano ad esclusivo servizio dell'impianto interno;
- gli alloggiamenti siano permanentemente aerati verso l'esterno con apertura alle due estremità;
 l'apertura di aerazione alla quota più bassa deve essere provvista di rete tagliafiamma e, nel caso di gas con densità maggiore di 0,8, deve essere ubicata a quota superiore al piano di campagna, ad una distanza misurata orizzontalmente di almeno 10 metri da altre aperture alla stessa quota o quota inferiore.

5.4.4.2. Posa in opera in guaina

Le guaine devono essere:

- in vista;
- di acciaio di spessore minimo di 2 mm e di diametro superiore di almeno 2 cm a quello della tubazione del gas;
- le guaine devono essere dotate di almeno uno sfiato verso l'esterno. Nel caso una estremità della guaina sia attestata verso l'interno, questa dovrà essere resa stagna verso l'interno tramite sigillatura in materiale incombustibile;
- le tubazioni non devono presentare giunti meccanici all'interno delle guaine;
- sono consentite guaine metalliche o di plastica, non propagante la fiamma, nell'attraversamento di muri o solai esterni. Nell'attraversamento di elementi portanti orizzontali, il tubo deve essere protetto da una guaina sporgente almeno 20 mm dal pavimento e l'intercapedine fra il tubo e il tubo guaina deve essere sigillata con materiali adatti (ad esempio asfalto, cemento plastico e simili). E' vietato l'impiego di gesso.

Nel caso di androni fuori terra e non sovrastanti piani cantinati è ammessa la posa in opera delle tubazioni sotto pavimento, protette da guaina corredata di sfiati alle estremità verso l'esterno. Nel

caso di intercapedini superiormente ventilate ed attestate su spazio scoperto non è richiesta la posa in opera in guaina, purché le tubazioni siano in acciaio con giunzioni saldate.

5.5. Gruppo di misurazione

Il contatore del gas deve essere installato all'esterno in contenitore o nicchia areata oppure all'interno in locale o in nicchia entrambi areati direttamente dall'esterno.

5.6. Prova di tenuta dell'impianto interno

La prova di tenuta deve essere eseguita prima di mettere in servizio l'impianto interno e di collegarlo al punto di consegna e agli apparecchi. Se qualche parte dell'impianto non è in vista, la prova di tenuta deve precedere la copertura della tubazione. La prova dei tronchi in guaina contenenti giunzioni saldate deve essere eseguita prima del collegamento alle condotte di impianto.

La prova va effettuata adottando gli accorgimenti necessari per l'esecuzione in condizioni di sicurezza e con le seguenti modalità:

- a) si tappano provvisoriamente tutti i raccordi di collegamento agli apparecchi e al contatore;
- b) si immette nell'impianto aria od altro gas inerte, fino a che sia raggiunta una pressione pari a:
 - impianti di 6^a specie: 1 bar;
 - impianti di 7^a specie: 0,1 bar (tubazioni non interrate), 1 bar (tubazioni interrate);
- c) dopo il tempo di attesa necessario per stabilizzare la pressione (comunque non minore di 15 min), si effettua una prima lettura della pressione, mediante un manometro ad acqua od apparecchio equivalente, di idonea sensibilità minima;
- d) la prova deve avere la durata di:
 - 24 ore per tubazioni interrate di 6^a specie;
 - 4 ore per tubazioni non interrate di 6^a specie;
 - 30 min per tubazioni di 7^a specie.

Al termine della prova non devono verificarsi cadute di pressione rispetto alla lettura iniziale;

- e) se si verificassero delle perdite, queste devono essere ricercate con l'ausilio di soluzione saponosa o prodotto equivalente ed eliminate; le parti difettose devono essere sostituite e le guarnizioni rifatte. E' vietato riparare dette parti con mastici, ovvero cianfrinarle. Eliminate le perdite, occorre eseguire di nuovo la prova di tenuta dell'impianto;
- f) la prova è considerata favorevole quando non si verifichino cadute di pressione. Per ogni prova a pressione deve essere redatto relativo verbale di collaudo.

DISPOSIZIONI COMPLEMENTARI

6.1. Impianto elettrico

L'impianto elettrico deve essere realizzato in conformità alla legge n. 186 del 1° marzo 1968 ³⁷ e tale conformità deve essere attestata secondo le procedure previste dal D.M. 37 del 22/01/08³⁸.

L'interruttore generale nei locali di cui al punto 4.2. deve essere installato all'esterno dei locali, in posizione segnalata ed accessibile. Negli altri casi deve essere collocato lontano dall'apparecchio utilizzatore, in posizione facilmente raggiungibile e segnalata.

6.2. Mezzi di estinzione degli incendi

³⁷ Si veda anche la DIRETTIVA 2006/95/CE del parlamento europeo e del consiglio del 12 dicembre 2006, "concernente il ravvicinamento delle legislazioni degli Stati membri relative al materiale elettrico destinato ad essere adoperato entro taluni limiti di tensione".

³⁸ D.M. 22 gennaio 2008, n. 37 - Regolamento concernente l'attuazione dell'articolo 11 - quaterdecies, comma 13, lettera a) della legge n. 248 del 2 dicembre 2005, recante riordino delle disposizioni in materia di attività di installazione degli impianti all'interno degli edifici.

In ogni locale e in prossimità di ciascun apparecchio deve essere installato un estintore di classe 21A 89BC. I mezzi di estinzione degli incendi devono essere idonei alle lavorazioni o ai materiali in deposito nei locali ove questi sono consentiti.

6.3. Segnaletica di sicurezza

La segnaletica di sicurezza deve richiamare l'attenzione sui divieti e sulle limitazioni imposti e segnalare la posizione della valvola esterna di intercettazione generale del gas e dell'interruttore elettrico generale.

6.4. Esercizio e manutenzione

- 1. Si richiamano gli obblighi di cui all'art. 11 del D.P.R. 26 agosto 1993, n. 412³⁹ (S.O.G.U. n. 242 del 14 ottobre 1993).
- 2. Nei locali di cui al punto 4.2. è vietato depositare ed utilizzare sostanze infiammabili o tossiche e materiali non attinenti all'impianto e devono essere adottate adeguate precauzioni affinché, durante qualunque tipo di lavoro, l'eventuale uso di fiamme libere non costituisca fonte di innesco.

IMPIANTI ESISTENTI

- 7.1. Gli impianti esistenti devono essere resi conformi alle presenti disposizioni. E' tuttavia ammesso che:
- la superficie di aerazione sia inferiore a quella richiesta al punto 4.1.2., purché non inferiore a quella risultante dalla formula:
 - S > 8,6 Q (locali fuori terra);
 - S > 12,9 Q (locali seminterrati ed interrati fino a quota -5 m);
 - S > 17,2 Q (locale interrato fra quota compresa tra -5 e -10 metri al di sotto del piano di riferimento).

E' consentito che l'altezza dei locali sia inferiore a quella prevista nella precedente normativa, nel rispetto dei punti 4.1.3. e 4.2.4. Per impianti di portata termica superiore a 350 kW l'altezza non deve essere comunque inferiore a 2,5 m.

³⁹ II D.P.R. 412 del 26/08/93 è stato modificato, in relazione alle zone climatiche, dai seguenti decreti: 29/11/04, 08/04/04, D.M. 17/03/03.

TITOLO IV - PROGETTAZIONE, CERTIFICAZIONI E COLLAUDI

Art. XXV Progettazione degli impianti

Il progetto è redatto con particolare riguardo all'individuazione dei materiali e componenti da utilizzare e alle misure di prevenzione e di sicurezza da adottare ai sensi della normativa UNI e CEI vigente.

Tale progetto è depositato: a) presso gli organi competenti al rilascio di licenze di impianto o di autorizzazioni alla costruzione quando previsto dalle disposizioni legislative e regolamentari vigenti; b) presso gli uffici comunali, contestualmente al progetto edilizio, per gli impianti il cui progetto non sia soggetto per legge ad approvazione.

Qualora l'impianto a base di progetto sia variato in opera, il progetto presentato deve essere integrato con la necessaria documentazione tecnica attestante tali varianti in corso d'opera, alle quali, oltre che al progetto, l'installatore deve fare riferimento nella sua dichiarazione di conformità.

Art. XXVI Dichiarazione di conformità⁴⁰

In caso di rifacimento parziale o di ampliamento di impianti, la dichiarazione di conformità e il progetto si riferiscono alla sola parte degli impianti oggetto del rifacimento o dell'ampliamento. Nella dichiarazione di conformità dovrà essere espressamente indicata la compatibilità con gli impianti preesistenti.

La dichiarazione di conformità è resa su modelli predisposti con decreto del Ministro dell'industria, del commercio e dell'artigianato, ai sensi dell'articolo 7 del D.P.R. 447/1991, sentito l'UNI e il CEI. La dichiarazione di conformità è rilasciata anche sugli impianti realizzati dagli uffici tecnici interni delle ditte non installatrici, intendendosi per uffici tecnici interni le strutture aziendali preposte all'impiantistica.

Il sindaco rilascia il certificato di abitabilità o di agibilità dopo aver acquisito anche la dichiarazione di conformità o il certificato di collaudo degli impianti installati, ove previsto, salvo quanto disposto dalle leggi vigenti.

In caso di rifacimento parziale di impianti, il progetto e la dichiarazione di conformità o il certificato di collaudo, ove previsto, si riferiscono alla sola parte degli impianti oggetto dell'opera di rifacimento. Nella relazione dovrà essere espressamente indicata la compatibilità con gli impianti preesistenti.

Art. XXVII Attestato di certificazione energetica⁴¹

Al termine dei lavori, per gli edifici e le opere di cui all'art. 3 del d.lgs. 192/05⁴², l'Appaltatore dovrà fornire attestato di certificazione energetica redatto secondo i criteri e le metodologie di cui all'art. 4, comma 1 del decreto citato.

Tale attestato ha validità temporale massima di 10 anni a partire dal suo rilascio ed è aggiornato ad ogni intervento di ristrutturazione che comporta la modifica della prestazione energetica dell'edificio o dell'impianto. Esso comprende:

- i dati relativi all'efficienza energetica propri dell'edificio;

⁴¹ Decreto Legislativo 29/12/2006 n. 311 - Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico nell'edilizia (Gazzetta ufficiale 01/02/2007 n. 26).

⁴² Il presente decreto è stato modificato dal seguente: Decreto Legislativo 29/12/2006 n. 311 - Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico nell'edilizia (Gazzetta ufficiale 01/02/2007 n. 26).

- i valori vigenti a norma di legge e i valori di riferimento che consentano di valutare e confrontare la prestazione energetica dell'edificio;
- suggerimenti in merito agli interventi più significativi ed economicamente più convenienti per il miglioramento della predetta prestazione.

Art. XXVIII Verifiche, certificazioni e collaudi delle opere

VERIFICHE

Gli enti interessati operano la scelta del libero professionista nell'ambito di appositi elenchi conservati presso le Camere di commercio e comprendenti più sezioni secondo le rispettive competenze. Gli elenchi sono formati annualmente sulla base di documentata domanda di iscrizione e approvati dal Ministro dell'industria, del commercio e dell'artigianato.

I soggetti direttamente obbligati ad ottemperare a quanto previsto dalla legge devono conservare tutta la documentazione amministrativa e tecnica e consegnarla all'avente causa in caso di trasferimento dell'immobile a qualsiasi titolo, nonché devono darne copia alla persona che utilizza i locali.

All'atto della costruzione o ristrutturazione dell'edificio contenente gli impianti di cui all'art. 1, comma 2, del D.M. 22 gennaio 2008, n. 37, il Committente o il Proprietario affiggono ben visibile un cartello che, oltre ad indicare gli estremi della concessione edilizia ed informazioni relative alla parte edile, deve riportare il nome dell'installatore dell'impianto o degli impianti e, qualora sia previsto il progetto, il nome del progettista dell'impianto o degli impianti.

CERTIFICAZIONE DELLE OPERE E COLLAUDO

La conformità delle opere rispetto al progetto e alla relazione tecnica di cui all'art. 8 comma 1 del d.lgs. 192/05 deve essere asseverata dal Direttore dei lavori e presentata al comune di competenza contestualmente alla dichiarazione di fine lavori. Il Comune dichiara irricevibile la dichiarazione di fine lavori se la stessa non è accompagnata dalla predetta asseverazione.

Per eseguire i collaudi, ove previsti, e per accertare la conformità degli impianti alle disposizioni della presente legge e della normativa vigente, i Comuni, le Unità sanitarie locali, i Comandi provinciali dei Vigili del Fuoco e l'Istituto superiore per la prevenzione e la sicurezza del lavoro (ISPESL) hanno facoltà di avvalersi della collaborazione dei liberi professionisti, nell'ambito delle rispettive competenze, di cui all'articolo 5, comma 1. Il certificato di collaudo deve essere rilasciato entro tre mesi dalla presentazione della relativa richiesta.

Il collaudo dell'impianto centralizzato di acqua calda per usi igienici e sanitari, deve verificare ai fini della legge che la temperatura dell'acqua nel punto di immissione nella rete di distribuzione sia conforme al valore fissato all'art. 7 del D.P.R. 1052/77, con la tolleranza e le modalità indicate all'art. 11 del D.P.R. 1052/77. In occasione dei collaudi di cui sopra devono essere anche accertati gli spessori e lo stato delle coibentazioni delle tubazioni e dei canali d'aria dell'impianto.

Art. XXIX Sanzioni

Le sanzioni amministrative vengono determinate nella misura variabile tra il minimo e il massimo, con riferimento alla entità e complessità dell'impianto, al grado di pericolosità ed alle altre circostanze obiettive e soggettive della violazione.

Le sanzioni amministrative sono aggiornate ogni cinque anni con regolamento del Ministro dell'industria, del commercio e dell'artigianato, sulla base dell'evoluzione tecnologica in materia di prevenzione e sicurezza e della svalutazione monetaria.

Le violazioni della legge accertate, mediante verifica o in qualunque altro modo, a carico delle imprese installatrici sono comunicate alla Camera di commercio, industria, artigianato e agricoltura competente per territorio, che provvede all'annotazione nell'albo provinciale delle imprese artigiane o nel registro delle imprese in cui l'impresa inadempiente risulta iscritta, mediante apposito verbale.

La violazione reiterata per più di tre volte delle norme relative alla sicurezza degli impianti da parte delle imprese abilitate comporta altresì, in casi di particolare gravità, la sospensione temporanea dell'iscrizione delle medesime imprese dal registro delle ditte o dall'albo provinciale delle imprese artigiane, su proposta dei soggetti accertatori e su giudizio delle commissioni che sovrintendono alla tenuta dei registri e degli albi.

Dopo la terza violazione delle norme riguardanti la progettazione e i collaudi, i soggetti accertatori propongono agli ordini professionali provvedimenti disciplinari a carico dei professionisti iscritti nei rispettivi albi.

All'irrogazione delle sanzioni di cui al presente articolo provvedono le Camere di commercio, industria, artigianato ed agricoltura.

Ai sensi dell'art. 15, comma 7 del d.lgs. 192/05⁴³, il costruttore che non consegna al proprietario, contestualmente all'immobile, l'originale della certificazione energetica di cui all'articolo 6, comma 1 del medesimo decreto è punito con sanzioni amministrative.

<u>PARTE TERZA – IMPIANTI DI RISCALDAMENTO E DI CONDIZIONAMENTO PRESCRIZIONI TECNICHE</u>

⁴³ Decreto Legislativo 19 agosto 2005, n. 192 - "Attuazione della direttiva 2002/91/CE relativa al rendimento energetico nell'edilizia" modificato dal Decreto Legislativo 29/12/2006 n. 311 - Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico nell'edilizia

TITOLO I - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI IMPIANTI DI RISCALDAMENTO E CONDIZIONAMENTO

Art. I Definizioni generali degli impianti

Ferme restando le disposizioni di carattere generale riportate negli articoli contenuti nella parte generale del presente Capitolato, tutti gli impianti da realizzare dovranno osservare le prescrizioni di seguito indicate oltre a quanto contenuto nei disegni di progetto allegati e alla normativa vigente.

Il progetto esecutivo finale degli impianti, se eseguito dall'Appaltatore, dovrà essere approvato dal Committente almeno 90 giorni prima dell'inizio dei lavori relativi e presentato contestualmente alla campionatura di tutti gli elementi; inoltre se eseguito dal Committente, dovrà essere consegnato all'Appaltatore almeno 90 giorni prima dell'inizio dei lavori relativi.

Le caratteristiche di ogni impianto saranno così definite:

- e) dalle prescrizioni generali del presente capitolato;
- f) dalle prescrizioni particolari riportate negli articoli seguenti;
- g) dalle eventuali descrizioni specifiche aggiunte come integrazioni o come allegati al presente capitolato;
- h) da disegni, dettagli esecutivi e relazioni tecniche allegati al progetto.

Resta, comunque, contrattualmente fissato che tutte le specificazioni o modifiche apportate nei modi suddetti fanno parte integrante del presente capitolato.

Tutte le tubazioni od i cavi necessari agli allacciamenti dei singoli impianti saranno compresi nell'appalto ed avranno il loro inizio dai punti convenuti con le Società fornitrici e, comunque, dovranno essere portati al cancello d'ingresso del lotto o dell'area di edificazione; tali allacciamenti ed i relativi percorsi dovranno comunque essere in accordo con le prescrizioni fissate dalla Direzione dei Lavori e saranno eseguiti a carico dell'Appaltatore.

Restano comunque esclusi dagli oneri dell'Appaltatore i lavori necessari per l'allaccio della fognatura dai confini del lotto alla rete comunale; in ogni caso l'Appaltatore dovrà realizzare, a sue spese, la parte di rete fognante dai piedi di ciascuna unità abitativa fino alle vasche o punti di raccolta costituiti da adeguate canalizzazioni e pozzetti di ispezione con valvole di non ritorno ed un sistema di smaltimento dei rifiuti liquidi concorde con la normativa vigente.

Art. Il Verifiche e prove preliminari

Durante l'esecuzione dei lavori si dovranno eseguire le verifiche e le prove preliminari di cui appresso:

- a) verifica della qualità dei materiali approvvigionati;
- b) prova idraulica a freddo, se possibile in corso d'opera e comunque ad impianto ultimato, prima di effettuare le prove previste. Si ritiene positivo l'esito della prova quando non si verifichino fughe e deformazioni permanenti;
- c) prova preliminare di circolazione, di tenuta e di dilatazione con fluidi scaldanti e raffreddanti. Per gli impianti ad acqua calda tale prova si effettua portando a 90 °C la temperatura dell'acqua nelle caldaie e mantenendola per il tempo necessario per l'accurata ispezione di tutto il complesso delle conduttore e dei corpi scaldanti; per gli impianti a vapore la prova si effettua portando la pressione delle caldaie al valore massimo stabilito e mantenendolo per il tempo necessario. L'ispezione dovrà iniziare al raggiungimento dello stato di regime della rete al valore massimo di temperatura stabilito o ai valori corrispondenti alla massima potenza d'impianto prevista. Si ritiene positivo il risultato della prova qualora in tutti i corpi scaldanti arrivi il fluido alla temperatura stabilita e le dilatazioni non abbiano dato luogo a fughe o deformazioni permanenti;
- d) verifica del montaggio degli apparecchi e della relativa esecuzione;

e) verifica per accertare il regolare funzionamento degli impianti completati di ogni particolare; tale prova potrà essere eseguita dopo che siano completamente ultimati tutti i lavori e le forniture.

f) ...

Le verifiche e le prove di cui sopra verranno eseguite dalla Direzione dei Lavori in contraddittorio con l'Appaltatore, restando quest'ultimo, anche nel caso di esito favorevole delle prove indicate, pienamente responsabile dei difetti o delle imperfezioni degli impianti installati fino al termine del periodo di garanzia.

Specificazione tecnica applicativa per l'esecuzione delle operazioni di controllo termico su impianti di riscaldamento

I procedimenti indicati nella presente specificazione si applicano a prova effettuata in loco su generatori di calore per il controllo della qualità della combustione e per la determinazione della quantità percentuale del calore perduto al camino (calore sensibile).

Potenza termica al focolare - Si assume per potenza termica al focolare quella riportata nei dati di omologazione e, in assenza di questa, quella dichiarata dal costruttore sulla targhetta di identificazione del generatore di calore o su altro documento nel quale siano indicati gli estremi per l'identificazione del generatore stesso.

La prova viene effettuata nelle condizioni di normale funzionamento del bruciatore e deve essere eseguita quando il generatore è in funzione da almeno un'ora, dopo 10 minuti dalla completa accensione del bruciatore (a fiamma piena) e in assenza di pulsazioni.

Per i generatori ad acqua calda o surriscaldata la temperatura dell'acqua alla uscita del generatore non dovrà risultare, nel corso della prova, inferiore di oltre 20℃ alla temperatura massima di esercizio.

Devono essere effettuate le seguenti misure:

- temperatura dell'acqua all'uscita del generatore (nel caso di impianti ad acqua calda o surriscaldata)℃;
- pressione del vapore nel generatore (nel caso di generatori di vapore)kgf/cmg;
- temperatura dell'aria all'uscita del generatore (nel caso di impianti ad aria calda) ... ℃;
- temperatura dell'aria comburente°;
- tenore in CO₂ nei prodotti della combustione all'uscita del generatore %;
- indice di fumosità Bacharach (per i generatori funzionanti a combustibile liquido)
 N;
- tenore di CO (per i generatori funzionanti a combustibili gassosi%.

Le misure di cui sopra devono essere ripetute almeno tre volte ad intervalli di tempo uguali nel periodo di prova ritenuto necessario dall'operatore.

La durata della prova ed il numero delle letture delle varie misure potranno essere aumentati a giudizio dell'operatore ove per le condizioni di esercizio siano necessarie più letture per ricavare valori significativi, eliminando le eventuali misure anomale.

Per i generatori funzionanti a gas con bruciatore atmosferico le misure sui prodotti della combustione vanno effettuate a valle dell'interruttore di tiraggio.

Le misure saranno effettuate con i seguenti strumenti:

- temperatura dei prodotti della combustione: termometro a mercurio o termocoppia con sensibilità non inferiore a 5℃;
- temperatura dell'aria comburente: termometro a mercurio avente sensibilità non inferiore a 2℃;

- temperatura del fluido riscaldato: termometro a mercurio avente sensibilità non inferiore a 2℃;
- CO₂ nei fumi: analizzatore Orsat o strumento equivalente avente sensibilità non inferiore allo 0,5%;
- CO nei fumi: fialette di assorbimento o strumento equivalente con sensibilità non inferiore a 50 ppm;
- indice di fumosità: opacimetro Bacharach;
- sonde di prelievo: dovranno avere diametro interno non inferiore a 6 mm I tubi devono avere, compatibilmente con le esigenze di prova, la lunghezza minima e deve essere garantita la tenuta stagna degli stessi e del collegamento tra la sonda e la condotta di prelievo.

Dai valori medi dei rilievi effettuati sulla temperatura dei fumi e sulla percentuale di CO₂ viene determinata la perdita al camino per calore sensibile Q con la seguente formula approssimata:

$$Q_{S} = k \frac{t_{f} - t_{a}}{CO_{2}} \%$$

in cui:

 t_i = temperatura dei fumi (\mathcal{C})

 t_{a} = temperatura aria comburente (\mathfrak{C})

CO₂ = percentuale di anidride carbonica (%)

 $k = 0.495 + 0.00693 \times CO_{2}$ per gasolio

 $k = 0.516 + 0.0067 \times CO_{2}$ per olio combustibile

 $k = 0.379 + 0.0097 \times CO_{2}$ per gas naturale

k = 0,68 per antracite e litantrace

k = 0.67 per coke

Per gas manufatturato i dati necessari per la determinazione di Qs saranno forniti dalla società erogatrice.

L'indice di fumosità Bacharach (solo per combustibili liquidi) massimo ammesso è il seguente:

- per oli da gas (gasolio)N. = 2
- per oli combustibiliN. = 6

Il contenuto in CO nei fumi non dovrà in alcun caso superare lo 0,1% del volume dei fumi secchi e senza aria.

La superficie di aerazione non dovrà essere inferiore a 1 cmq/100 kcal/h. Tale valore dovrà essere congruamente maggiorato nel caso in cui l'adduzione dell'aria comburente risulti canalizzata.

Risultati del controllo secondo la specificazione tecnica applicativa:

- Tipo di combustibile.....

 certificato di provenienza (per gasolio).....

 fattura (per olio combustibile)......
- 2) Potenza termica al focolare.....kcal/h......
- 3) La superficie di aerazione è/non è idonea per una regolare combustione.
- 4) Analisi dei fumi all'uscita del generatore:

CO ₂ %
CO (solo per combustibili gassosi) %
Indice di fumosità BacharachN. =

5) Temperatura dell'aria comburente.....℃.......

	dei fumi all'uscita dei generatore C
	del fluido riscaldato (mandata)℃
6)	Stato della coibentazione accessibile
7)	Perdita per calore sensibile%
	Tale valore risulta/non risulta compatibile con i requisiti prescritti.
8)	Eventuali prescrizioni

Art. III Prescrizioni sui materiali

I materiali utilizzati per la realizzazione delle opere dovranno rispondere alle specifiche di progetto e alle normative vigenti. In particolare, prima dell'accettazione di tubi, giunti e pezzi speciali e in corso d'opera, potrà essere richiesto l'intervento del progettista per pareri tecnici, anche in relazione ad eventuali varianti. È facoltà dell'Appaltatore avvalersi in qualsiasi momento dell'assistenza tecnica da parte della ditta fornitrice delle tubazioni.

Tutti i componenti degli impianti, degli apparecchi e i relativi dispositivi di sicurezza regolazione e controllo che sono oggetto, per quanto riguarda i requisiti essenziali, di direttive europee recepite dallo Stato italiano, devono portare marcatura di conformità CE. In ogni caso devono essere realizzati secondo norme di buona tecnica.

Art. IV Tubazioni

La distribuzione del fluido verrà affidata a collettori di opportuno diametro, completi di manometro, termometro e rubinetto di scarico atti a sezionare l'impianto in oggetto in più zone.

Dai collettori saranno ripartiti, quindi, più circuiti nei vari diametri occorrenti per i diversi tronchi; tutte le condutture dovranno avere nei percorsi orizzontali, passaggi in traccia o sotto il solaio ove possibile (secondo le indicazioni del progetto termico o della Direzione dei Lavori).

Le condutture si staccheranno dalle colonne montanti verticali e dovranno essere complete di pezzi speciali, giunzioni, derivazioni, materiali di tenuta, staffe e collari di sostegno.

Tutte le tubazioni e la posa in opera relativa dovranno corrispondere alle caratteristiche indicate dal presente capitolato, alle specifiche espressamente richiamate nei relativi impianti di appartenenza ed alla normativa vigente in materia.

L'Appaltatore dovrà, se necessario, provvedere alla preparazione di disegni particolareggiati da integrare al progetto occorrenti alla definizione dei diametri, degli spessori e delle modalità esecutive; l'Appaltatore dovrà, inoltre, fornire dei grafici finali con le indicazioni dei percorsi effettivi di tutte le tubazioni.

Si dovrà ottimizzare il percorso delle tubazioni riducendo, il più possibile, il numero dei gomiti, giunti, cambiamenti di sezione e rendendo facilmente ispezionabili le zone in corrispondenza dei giunti, sifoni, pozzetti, ecc.; sono tassativamente da evitare l'utilizzo di spezzoni e conseguente sovrannumero di giunti.

Nel caso di attraversamento di giunti strutturali saranno predisposti, nei punti appropriati, compensatori di dilatazione approvati dalla Direzione Lavori.

Le tubazioni interrate dovranno essere poste ad una profondità tale che lo strato di copertura delle stesse sia di almeno 1 metro.

Gli scavi dovranno essere eseguiti con particolare riguardo alla natura del terreno, al diametro delle tubazioni ed alla sicurezza durante le operazioni di posa. Il fondo dello scavo sarà sempre piano e, dove necessario, le tubazioni saranno poste in opera su un sottofondo di sabbia di 10 cm di spessore su tutta la larghezza e lunghezza dello scavo.

Nel caso di prescrizioni specifiche per gli appoggi su letti di conglomerato cementizio o sostegni isolati, richieste di contropendenze e di qualsiasi altro intervento necessario a migliorare le

operazioni di posa in opera, si dovranno eseguire le varie fasi di lavoro, anche di dettaglio, nei modi e tempi richiesti dalla Direzione Lavori.

Dopo le prove di collaudo delle tubazioni saranno effettuati i rinterri con i materiali provenienti dallo scavo ed usando le accortezze necessarie ad evitare danneggiamenti delle tubazioni stesse e degli eventuali rivestimenti.

Le tubazioni non interrate dovranno essere fissate con staffe o supporti di altro tipo in modo da garantire un perfetto ancoraggio alle strutture di sostegno.

Le tubazioni in vista o incassate dovranno trovarsi ad una distanza di almeno 8 cm (misurati dal filo esterno del tubo o del suo rivestimento) dal muro; le tubazioni sotto traccia dovranno essere protette con materiali idonei.

Le tubazioni metalliche in vista o sottotraccia, comprese quelle non in prossimità di impianti elettrici, dovranno avere un adeguato impianto di messa a terra funzionante su tutta la rete.

Tutte le giunzioni saranno eseguite in accordo con le prescrizioni e con le raccomandazioni dei produttori per garantire la perfetta tenuta; nel caso di giunzioni miste la Direzione Lavori fornirà specifiche particolari alle quali attenersi.

L'Appaltatore dovrà fornire ed installare adeguate protezioni, in relazione all'uso ed alla posizione di tutte le tubazioni in opera e provvederà anche all'impiego di supporti antivibrazioni o spessori isolanti, atti a migliorare il livello di isolamento acustico.

Tutte le condotte destinate all'acqua potabile, in aggiunta alle normali operazioni di pulizia, dovranno essere accuratamente disinfettate.

Nelle interruzioni delle fasi di posa è obbligatorio l'uso di tappi filettati per la protezione delle estremità aperte della rete.

Le pressioni di prova, durante il collaudo, saranno di 1,5-2 volte superiori a quelle di esercizio e la lettura sul manometro verrà effettuata nel punto più basso del circuito. La pressione dovrà rimanere costante per almeno 24 ore consecutive entro le quali non dovranno verificarsi difetti o perdite di qualunque tipo; nel caso di imperfezioni riscontrate durante la prova, l'Appaltatore dovrà provvedere all'immediata riparazione dopo la quale sarà effettuata un'altra prova e questo fino all'eliminazione di tutti i difetti dell'impianto.

Le tubazioni per l'acqua verranno collaudate come sopra indicato, procedendo per prove su tratti di rete ed infine sull'intero circuito; le tubazioni del gas e quelle di scarico verranno collaudate, salvo diverse disposizioni, ad aria o acqua con le stesse modalità descritte al comma precedente.

Le tubazioni per impianti di riscaldamento saranno conformi alle specifiche della normativa vigente in materia ed avranno le caratteristiche indicate dettagliatamente nelle descrizioni delle opere relative; i materiali utilizzati per tali tubazioni saranno, comunque, dei tipi seguenti:

- a) tubazioni in acciaio nero FM, serie UNI EN 10255/07;
- b) tubazioni in rame ricotto fornite in rotoli;
- c) tubazioni in rame crudo fornite in barre;
- d) tubazioni in polietilene ad alta densità (PEAD PN 16)44.

Sarà onere dell'Appaltatore presentare al Direttore dei Lavori prima dell'inizio delle opere eventuale campionatura dei materiali che intende fornire, relativa a tubazioni, giunzioni, pezzi speciali, ... corredata di tutta la documentazione tecnica necessaria alla verifica di conformità del materiale proposto alle prescrizioni tecniche di progetto.

⁴⁴ UNI EN 12201-1/04 Sistemi di tubazioni di materia plastica per la distribuzione dell'acqua - Polietilene (PE) - Generalità e UNI EN 12201-2/04 Sistemi di tubazioni di materia plastica per la distribuzione dell'acqua - Polietilene (PE) - Tubi.

Tubazioni in acciaio⁴⁵

Dovranno essere in acciaio non legato e corrispondere alle norme UNI ed alle prescrizioni vigenti, essere a sezione circolare, avere profili diritti entro le tolleranze previste e privi di difetti superficiali sia interni che esterni.

La classificazione dei tubi in acciaio è la seguente:

- tubi senza prescrizioni di qualità (Fe 33);
- tubi di classe normale (Fe 35-1/45-1/55-1/52-1);
- tubi di classe superiore (Fe 35-2/45-2/55-2/52-2).

Le tubazioni in acciaio nero FM saranno utilizzate per la realizzazione di reti interne o esterne alle centrali tecnologiche, complete di pezzi speciali, materiali per la saldatura, verniciatura con doppia mano di antiruggine, staffaggi, fissaggio, collegamenti con diametri da 10 mm (3/8") fino a 400 mm (16") con peso variante da 0,74 kg/ml a 86,24 kg/mL.

Rivestimenti protettivi delle tubazioni in acciaio⁴⁶

I rivestimenti protettivi dei tubi potranno essere dei seguenti tipi:

- zincatura (da effettuare secondo le prescrizioni vigenti);
- rivestimento esterno con guaine bituminose e feltro o tessuto di vetro;
- rivestimento costituito da resine epossidiche od a base di polietilene;
- rivestimenti speciali eseguiti secondo le prescrizioni del Capitolato Speciale o della Direzione dei Lavori.

Tutti i rivestimenti dovranno essere omogenei, aderenti ed impermeabili.

Tubi in polietilene ad alta densità

Saranno realizzati mediante polimerizzazione dell'etilene e dovranno essere conformi alla normativa vigente ⁴⁷ ed alle specifiche relative ai tubi ad alta densità. Dovranno inoltre possedere una resistenza a trazione non inferiore a 9,8/14,7 N/mmq (100/150 kg/cmq), secondo il tipo (bassa o alta densità), resistenza alla temperatura da -50℃ a +60℃ e dovranno essere totalmente atossici.

I tubi dovranno essere forniti senza abrasioni o schiacciamenti; ogni deformazione o schiacciamento delle estremità dovrà essere eliminato con taglio delle teste dei tubi.

Prima della posa in opera e della saldatura, i tubi dovranno essere accuratamente puliti, asciutti e dovrà essere eliminata ogni traccia di umidità. L'accatastamento delle tubazioni dovrà avvenire in luogo protetto dai raggi diretti del sole.

Tubi in rame

Saranno del tipo idoneo per la distribuzione di fluidi e gas in pressione, rivestite con guaina isolante in materiale sintetico espanso classificato autoestinguente (tipo impianti elettrici), giunzioni con raccordi meccanici o a saldare, comprensive di pezzi speciali e materiale per la realizzazione dei giunti con le seguenti caratteristiche:

(diametro esterno x spessore) 10 x 1 - 12 x 1 - 14 x 1 - 16 x 1 - 18 x 1 - 22 x 1.

Saranno fornite in tubi del tipo normale o pesante (con spessori maggiorati) ed avranno raccordi filettati, saldati o misti.

⁴⁵ Circolare Min. LL.PP. 05/05/66, n. 2136 - "Istruzioni sull'impiego delle tubazioni in acciaio saldate nella costruzione degli acquedotti".

⁴⁶ Idem.

⁴⁷ UNI EN 12201-1/04 - Sistemi di tubazioni di materia plastica per la distribuzione dell'acqua - Polietilene (PE) - Generalità e UNI EN 12201-2/04 - Sistemi di tubazioni di materia plastica per la distribuzione dell'acqua - Polietilene (PE) - Tubi.

La curvatura dei tubi potrà essere fatta manualmente o con macchine piegatrici (oltre i 20 mm di diametro). I tubi incruditi andranno riscaldati ad una temperatura di 600°C. prima della piegatura.

Il fissaggio dovrà essere eseguito con supporti in rame. Le saldature verranno effettuate con fili saldanti in leghe di rame, zinco e argento.

I raccordi potranno essere filettati, misti (nel caso di collegamenti con tubazioni di acciaio o altri materiali) o saldati.

Nel caso di saldature, queste dovranno essere eseguite in modo capillare dopo il riscaldamento del raccordo e la spalmatura del decapante e risultare perfettamente uniformi.

Tubi per condotte

Dovranno corrispondere alle prescrizioni indicate con precise distinzioni fra gli acciai da impiegare per i tubi saldati (Fe 32 ed Fe 42) e quelli da impiegare per i tubi senza saldatura (Fe 52).

Le tolleranze saranno del +/- 1,5% sul diametro esterno (con un minimo di 1mm), di 12,5% sullo spessore e del +/- 10% sul peso del singolo tubo.

Scarichi condensa ventilconvettori e unità termoventilanti

Saranno realizzati in tubo di polietilene ad alta densità PN6 con giunzioni saldate, diametro interno minimo 13 mm, da allacciare direttamente alla rete fognaria acque bianche oppure alla rete fognaria acque nere tramite pozzetto sifonato.

Tubazioni preisolate per teleriscaldamento

Saranno in acciaio zincato, idonee per essere interrate, con guaina esterna in polietilene dello spessore minimo di 3 mm con i seguenti diametri:

~ [-		
_	diametro nominale 20 mm (3/4")	diam est. guaina polietilene 90 mm;
_	diametro nominale 25 mm (1"),	diam est. guaina polietilene 90 mm;
_	diametro nominale 32 mm (1"1/4)	diam est. guaina polietilene 110 mm;
_	diametro nominale 40 mm (1"1/2)	diam est. guaina polietilene 110 mm;
_	diametro nominale 50 mm (2")	diam est. guaina polietilene 125 mm;
_	diametro nominale 65 mm (2"1/2)	diam est. guaina polietilene 140 mm;
_	diametro nominale 80 mm (3")	diam est. guaina polietilene 160 mm;
_	diametro nominale 100 mm (4")	diam est. guaina polietilene 200 mm;
_	diametro nominale 125 mm (5")	diam est. guaina polietilene 225 mm;
_	diametro nominale 150 mm (6")	diam est. guaina polietilene 250 mm.

Le tubazioni saranno complete di uno strato di schiuma rigida di poliuretano interposto tra il tubo in acciaio e la guaina di polietilene con densità di 70/80 kg/mc e conducibilità a 50°C di 0,22 W/m, con spessori progressivi dell'isolante che garantiscano la rispondenza delle norme fissate dall'art. 5 del D.P.R. 26 agosto 1993, n. 412⁴⁸. Le eventuali valvole di intercettazione installate lungo la linea potranno essere del tipo preisolato oppure normale; in quest'ultimo caso i due tronconi di tubazione collegati alla valvola dovranno essere dotati di terminali di chiusura dell'isolamento e i bracci di compensazione delle dilatazioni (in prossimità delle curve a 90°) dovranno essere interrati con l'interposizione di un apposito cuscino che ne permetta i movimenti. La lavorazione dovrà essere completata con lo scavo, il riempimento, le eventuali pavimentazioni e pozzetti di ispezione e tutti i pezzi speciali necessari.

Tubi e raccordi

Saranno realizzati in cloruro di polivinile esenti da plastificanti. Nelle condotte con fluidi in pressione sono ammessi spessori compresi tra 1,6 e 18 mm, con diametri da 20 a 600 mm. I raccordi potranno essere a bicchiere o ad anello e a tenuta idraulica. La marcatura dei tubi dovrà comprendere l'indicazione del materiale, del tipo, del diametro esterno, della pressione nominale, il marchio di fabbrica, il periodo di produzione ed il marchio di conformità.

⁴⁸ II D.P.R. 412/93 è stato aggiornato dal Decreto Ministeriale del 06/08/1994, dal Decreto Pres. Repubblica del 21/12/1999 n. 551, dal Decreto Ministeriale del 20/04/2001, dal Decreto Ministeriale del 31/05/2001 e simili.

Per le giunzioni dovranno essere osservate le seguenti disposizioni:

- giunto a flangia: sarà formato da due flange, poste all'estremità dei tubi, e fissate con bulloni e guarnizioni interne ad anello posizionate in coincidenza del diametro dei tubi e del diametro tangente ai fori delle flange. Gli eventuali spessori aggiuntivi dovranno essere in ghisa;
- giunto elastico con guarnizione in gomma: è utilizzato per condotte d'acqua ed è ottenuto per compressione di una guarnizione di gomma posta all'interno del bicchiere nell'apposita sede;
- giunti saldati (per tubazioni in acciaio): dovranno essere eseguiti con cordoni di saldatura di spessore non inferiore a quello del tubo, con forma convessa, sezioni uniformi e dovranno presentarsi esenti da porosità od imperfezioni di sorta. Gli elettrodi da usare dovranno essere del tipo rivestito e con caratteristiche analoghe al metallo di base;
- giunti a vite e manicotto (per tubazioni in acciaio): dovranno essere impiegati solo nelle diramazioni di piccolo diametro; la filettatura dovrà coprire un tratto di tubo pari al diametro esterno ed essere senza sbavature;
- giunti isolanti (per tubazioni in acciaio): saranno del tipo a manicotto od a flangia ed avranno speciali guarnizioni in resine o materiale isolante; verranno impiegati per le colonne montanti delle tubazioni idriche e posti in luoghi ispezionabili oppure, se interrati, rivestiti ed isolati completamente dall'ambiente esterno.

Art. V Generatori di calore o centrale termica

Nel caso di impianti compatibili, secondo la normativa vigente, con i limiti previsti per le installazioni all'interno di ambienti abitati si potrà procedere alla messa in opera di generatori di calore che, ai sensi dell'art. 5 comma 10 del D.P.R. 26 agosto 1993, n. 412, dovranno essere isolati rispetto all'ambiente abitato, da realizzarsi con apparecchi di tipo «C» secondo la classificazione delle norme tecniche UNI 7129/08⁴⁹.

Per gli impianti di potenze superiori a quelle consentite all'interno di ambienti abitati si dovrà realizzare una centrale termica in locale separato e conforme alle prescrizioni specifiche.

Il locale caldaia dovrà avere accesso ed aerazione esclusivamente dall'esterno. Le sue strutture verticali ed orizzontali avranno una resistenza al fuoco di almeno 120' e saranno isolate acusticamente.

Gli eventuali serbatoi di combustibile liquido saranno realizzati in lamiera di acciaio di spessore non inferiore a 5 mm ed avranno una capacità massima di 15 mc; se interrati saranno opportunamente protetti, avranno una botola d'ispezione a tenuta, uno sfiato esterno ed allacci in acciaio per il carico del combustibile oltre a tutti i collegamenti ed apparecchiature necessari per il loro perfetto funzionamento.

Il generatore di calore dovrà essere dimensionato per il carico massimo; la regolazione automatica provvederà al suo inserimento anche in funzione della temperatura esterna e delle eventuali richieste di un termostato ambiente che dovrà essere installato nel punto fissato dal progetto termico.

La centrale termica sarà inoltre completa di:

- a. raccordo al camino per lo smaltimento dei prodotti della combustione;
- b. pompa anticondensa che dovrà evitare che la temperatura dell'acqua che rientra in caldaia sia inferiore ai 60° con conseguenti possibili shock te rmici;
- c. pompa di ricircolo al servizio dell'impianto idrico-sanitario al fine di far giungere l'acqua calda agli utilizzi a temperatura di regime in un tempo massimo di 15";
- d. vaso di espansione chiuso a membrana autopressurizzato;
- e. impianto di decalcificazione;

⁴⁹ UNI 7129:2008 Impianti a gas per uso domestico alimentati da rete di distribuzione. Progettazione, installazione e manutenzione.

f. tutti i dispositivi di controllo e sicurezza previsti dalle vigenti normative, quadro elettrico di controllo e comando.

Gli edifici multipiano costituiti da più unità immobiliari, ai sensi dell'art. 5 comma 9 del D.P.R. 26 agosto 1993, n. 412, dovranno essere dotati di appositi condotti di evacuazione dei prodotti della combustione con sbocco sopra il tetto dell'edificio alla quota prescritta dalla norma UNI 7129/08; il condotto dovrà essere progettato ai sensi della norma UNI EN 13384-3/06. Il progetto, nel caso di condotto ramificato collettivo, dovrà essere depositato presso il Comune ai sensi della legge 5 marzo 1990, n. 46⁵⁰.

Art. VI Corpi scaldanti

I corpi scaldanti saranno ad elementi componibili in ghisa (oppure in alluminio), nella forma, dimensione e posizionamento specificati dal progetto termico.

I radiatori in ghisa (o alluminio) saranno posti in opera previa verniciatura con due mani di vernice antiruggine ed una di vernice del tipo e colore definito; la mano a finire verrà applicata ad opere ultimate. Tutte le verniciature sono incluse nell'appalto.

I corpi scaldanti saranno corredati di valvola a doppia regolazione con volantino e detentore a vite. Si dovrà inoltre prevedere l'installazione di borchie di protezione all'uscita delle tubazioni dai tramezzi.

Art. VII Gruppi e centrali termiche

1) Centrale termica a gasolio per riscaldamento ambientale in locale proprio con caratteristiche di cui alla circolare Ministero dell'interno 29 luglio 1971, n. 73⁵¹ per potenze utili da 30 a 350 kW, costituita da generatore di calore per acqua calda fino a 100℃ a norma del D.M. 1 dicembre 1975⁵² e di tutte le altre norme di sicurezza per apparecchi contenenti liquidi caldi sotto pressione, rendimento termico utile minimo alla potenza nominale non inferiore al valore di 84+2log (in percentuale) della potenza nominale, bruciatore monostadio a gasolio, serbatoio interrato per gasolio da 0,3 mc per potenze utili fino a 60 kW e da 0,5 mc per potenze oltre 60 kW, nel rispetto delle norme fissate dal D.P.R. 22 dicembre 1970, n. 1391⁵³ e dalla circolare del Ministero dell'interno 29 luglio 1971, n. 73, corredato da tubo di sfiato protetto con rete antifiamma e passo d'uomo carrabile, impianto di adduzione del gasolio al bruciatore con valvola di intercettazione e leva di comando posizionata all'esterno della centrale, raccordo fumi coibentato con punto di prelievo dei prodotti della combustione sul condotto tra la cassa dei fumi del generatore ed il camino (con dimensioni e caratteristiche conformi alla norma UNI EN 13384-3/06) per l'inserimento di sonde per la determinazione del rendimento di combustione e della composizione dei gas di scarico, accessori di regolazione e sicurezza composti da pressostato di blocco, indicatore di pressione, tubo ammortizzatore, rubinetto portamanometro, termostato ad immersione regolabile, valvola di scarico termico, imbuto di scarico, termometro, pozzetto per applicazione di termometro di controllo, separatore d'aria, termoidrometro, valvola di sicurezza a membrana tarata ISPESL, valvola miscelatrice a quattro vie, flussostato, vaso di espansione a membrana collaudato ISPESL, valvola automatica di riempimento, gruppo termoregolatore pilotato da sonda termometrica di rilevamento della temperatura esterna che consenta la regolazione della temperatura ambiente su due livelli sigillabili nell'arco delle 24 ore,

⁵⁰ Ai sensi dell'art. 3, comma 1, della legge n. 17 del 2007, con l'entrata in vigore del D.M. n. 37 del 22/01/08, la legge 5/03/1990 n. 46 è abrogata, ad eccezione degli artt. 8, 14 e 16 le cui sanzioni trovano applicazione in misura raddoppiata per le violazioni degli obblighi previsti dallo stesso regolamento.

⁵¹ Circ. 29 luglio 1971, n. 73 - "Impianti termici ad olio combustibile o a gasolio - Istruzioni per l'applicazione delle norme contro l'inquinamento atmosferico; disposizioni ai fini della prevenzione incendi". Si veda anche la Circolare 19/04/1972 n.28 - Ministero dell'interno (dir. gen. prot. civ. e servizi antincendi) - chiarimenti circa l'applicazione delle norme vigenti riguardanti gli impianti termici (legge n. 615 del 13-7-1966; D.P.R. n. 1391 del 22-12-1970 e circolare Ministero dell'interno n. 73 del 29-7-1971).

⁵² D.M. 1 dicembre 1975 - "Norme di sicurezza per apparecchi contenenti liquidi caldi sotto pressione".

⁵³ D.P.R. 22 dicembre 1970, n.1391 - "Regolamento per l'esecuzione della L. 13 luglio 1966, n. 615, recante provvedimenti contro l'inquinamento atmosferico, limitatamente al settore degli impianti termici".

elettropompa anticondensa, tubazioni in acciaio nero FM per collegamento dell'elettropompa anticondensa e dei collettori di mandata e di ritorno, rivestimento delle tubazioni con materiale isolante, n. 2 elettropompe (di cui una di riserva) per la circolazione dell'acqua, tubazione by-pass contro la chiusura totale delle valvole termostatiche sui corpi scaldanti, valvole ed accessori necessari alla corretta installazione e funzionamento, temperatura di mandata di progetto di 75℃, temperatura di ritorno di progetto di 65℃, i mpianto elettrico interno alla centrale termica realizzato nel rispetto della norma CEI 64-8 variante V2, cavi non propaganti l'incendio secondo norma CEI 20-22, collegamento elettrico dei bruciatori all'impianto con condutture metalliche flessibili grado di protezione IP40, quadro di distribuzione protetto da portello che assicuri un grado di protezione almeno pari a IP40, interruttore elettrico onnipolare di emergenza da posizionare all'esterno della centrale in prossimità dell'accesso alla stessa, comprese le opere murarie per lo scavo, il rinterro e la pavimentazione necessarie alla posa del serbatoio e dell'impianto di adduzione del gasolio stesso, il basamento per la caldaia, lo staffaggio ed il fissaggio delle tubazioni, l'assistenza muraria per l'impianto elettrico, la fornitura e posa in opera di almeno un estintore portatile di tipo approvato per fuochi delle classi «A», «B» e «C» con capacità estinguente non inferiore a «21A-89B-C». Qualora, nel caso di impianti con potenza complessiva superiore ai 100 kW, fosse previsto l'utilizzo di acqua con durezza superiore ai 30° francesi si dovrà provvedere all'installazione di un sistema di trattamento dell'acqua conforme alla norma UNI 8065/89⁵⁴.

2) Centrale termica a gasolio per riscaldamento ambientale in locale proprio con caratteristiche di cui alla circolare Ministero dell'interno 29 luglio 1971, n. 73⁵⁵ per potenze utili da 350 a 3000 kW, costituita da due o più generatori di calore per acqua calda fino a 100℃ in cascata ed attivati in maniera automatica in base al carico termico dell'utenza, conforme al D.M. 1 dicembre 1975⁵⁶ e di tutte le altre norme di sicurezza per apparecchi contenenti liquidi caldi sotto pressione, rendimento termico utile minimo alla potenza nominale non inferiore al valore di 84+2log (in percentuale) della potenza nominale, bruciatori pluristadio a gasolio, serbatoio interrato per gasolio da 1 mc per potenze utili fino a 600 kW e da 1,5 mc per potenze oltre 600 kW, nel rispetto delle norme fissate dal D.P.R. 22 dicembre 1970, n. 1391⁵⁷ e dalla circolare del Ministero dell'interno 29 luglio 1971, n. 73, corredato da tubo di sfiato protetto con rete antifiamma e passo d'uomo carrabile, impianto di adduzione del gasolio al bruciatore con valvola di intercettazione e leva di comando posizionata all'esterno della centrale, raccordo fumi coibentato con punto di prelievo dei prodotti della combustione sul condotto tra la cassa dei fumi del generatore ed il camino (con dimensioni e caratteristiche conformi alla norma UNI EN 13384-3/06) per l'inserimento di sonde per la determinazione del rendimento di combustione e della composizione dei gas di scarico, accessori di regolazione e sicurezza composti da pressostato di blocco, indicatore di pressione, tubo ammortizzatore, rubinetto portamanometro, termostato ad immersione regolabile, valvola di scarico termico, imbuto di scarico, termometro, pozzetto per applicazione di termometro di controllo, separatore d'aria, termoidrometro, valvola di sicurezza a membrana tarata ISPESL, valvola miscelatrice a quattro vie, flussostato, vaso di espansione a membrana collaudato ISPESL, valvola automatica di riempimento, gruppo termoregolatore pilotato da sonda termometrica di rilevamento della temperatura esterna che consenta la regolazione della temperatura ambiente su due livelli sigillabili nell'arco delle 24 ore, elettropompa anticondensa, tubazioni in acciaio nero FM per collegamento dell'elettropompa anticondensa e dei collettori di mandata e di ritorno, rivestimento delle tubazioni con materiale isolante, n. 2 elettropompe (di cui una di riserva) per la circolazione dell'acqua, tubazione by-pass contro la chiusura totale delle valvole termostatiche sui corpi scaldanti, valvole ed accessori necessari alla corretta installazione e funzionamento, temperatura di mandata di progetto di

⁵⁴ UNI 8065/89 - Trattamento dell' acqua negli impianti termici ad uso civile.

⁵⁵ Circ. 29 luglio 1971, n. 73 - "Impianti termici ad olio combustibile o a gasolio - Istruzioni per l'applicazione delle norme contro l'inquinamento atmosferico; disposizioni ai fini della prevenzione incendi".

⁵⁶ D.M. 1 dicembre 1975 - "Norme di sicurezza per apparecchi contenenti liquidi caldi sotto pressione".

⁵⁷ D.P.R. 22 dicembre 1970, n.1391 - "Regolamento per l'esecuzione della L. 13 luglio 1966, n. 615, recante provvedimenti contro l'inquinamento atmosferico, limitatamente al settore degli impianti termici".

75℃, temperatura di ritorno di progetto di 65℃, i mpianto elettrico interno alla centrale termica realizzato nel rispetto della norma CEI 64-8 variante V2, cavi non propaganti l'incendio secondo norma CEI 20-22, collegamento elettrico dei bruciatori all'impianto con condutture metalliche flessibili grado di protezione IP40, quadro di distribuzione protetto da portello che assicuri un grado di protezione almeno pari a IP40, interruttore elettrico onnipolare di emergenza da posizionare all'esterno della centrale in prossimità dell'accesso alla stessa, installazione, nel caso fosse previsto l'utilizzo di acqua con durezza superiore ai 30° francesi, di un sistema di trattamento dell'acqua conforme alla norma UNI 8065/89. Nella fornitura e posa in opera dovranno essere comprese le opere murarie per lo scavo, il rinterro e la pavimentazione necessarie alla posa del serbatoio e dell'impianto di adduzione del gasolio stesso, il basamento per la caldaia, lo staffaggio ed il fissaggio delle tubazioni, l'assistenza muraria per l'impianto elettrico, la fornitura e posa in opera di almeno un estintore portatile di tipo approvato per fuochi delle classi «A», «B» e «C» con capacità estinguene non inferiore a «21A-89B-C».

3) Centrale termica a gas metano per riscaldamento ambientale in locale proprio e separato da altri locali con murature resistenti al fuoco per almeno 120', con accesso da aree a cielo libero, dotato di aerazione prescritta dalla circolare del Ministero dell'interno 25 novembre 1969, n. 68⁵⁸ per potenze utili da 30 a 350 kW, costituita da generatore di calore per acqua calda fino a 100℃ rendimento termico utile minimo alla potenza nominale non inferiore al valore di 84+2log (in percentuale) della potenza nominale, bruciatore monostadio a gas metano completo di rampa gas a norma UNI EN 676/08⁵⁹ munito di dispositivo automatico di sicurezza totale, approvato dal Ministero dell'interno, che interrompa il flusso del gas qualora, per qualsiasi motivo, dovesse spegnersi la fiamma, filtro e stabilizzatore di pressione per non superare la pressione di 3946,6 Pa (400 mm di c.d.a.), tubazione di adduzione del gas in acciaio zincato (tipo Mannesmann) dal contatore al bruciatore corredato di valvola di intercettazione di emergenza interna ed esterna alla centrale termica da porre in prossimità dell'accesso alla stessa, attraversamento di eventuali murature con controcamera metallica chiusa all'interno del locale ed aperta verso l'esterno. raccordo fumi coibentato con punto di prelievo dei prodotti della combustione sul condotto tra la cassa dei fumi del generatore ed il camino per l'inserimento di sonde per la determinazione del rendimento di combustione e della composizione dei gas di scarico, accessori di regolazione e sicurezza composti da pressostato di blocco, indicatore di pressione, tubo ammortizzatore, rubinetto portamanometro, termostato ad immersione regolabile, valvola di scarico termico, imbuto di scarico, termometro, pozzetto per applicazione di termometro di controllo, separatore d'aria, termoidrometro, valvola di sicurezza a membrana tarata ISPESL, valvola miscelatrice a quattro vie, flussostato, vaso di espansione a membrana collaudato ISPESL, valvola automatica di riempimento, gruppo termoregolatore pilotato da sonda termometrica di rilevamento della temperatura esterna che consenta la regolazione della temperatura ambiente su due livelli sigillabili nell'arco delle 24 ore, elettropompa anticondensa, tubazioni in acciaio nero FM per collegamento dell'elettropompa anticondensa e dei collettori di mandata e di ritorno, rivestimento delle tubazioni con materiale isolante, n. 2 elettropompe (di cui una di riserva) per la circolazione dell'acqua, tubazione by-pass contro la chiusura totale delle valvole termostatiche sui corpi scaldanti, valvole ed accessori necessari alla corretta installazione e funzionamento, temperatura di mandata di progetto di 75℃, temperatura di ritorno di progetto di 65℃, impianto elettrico interno alla centrale termica realizzato nel rispetto della norma CEI 64-2 Appendice B del tipo AD-FT nella zona classificata C3Z2 ed impianto AD-FE1 nella zona classificata C3Z1 (zona a ventilazione impedita che si estende dal soffitto fino a 0,5 m al di sotto della quota minima dell'apertura di aerazione), interruttore elettrico onnipolare di emergenza da posizionare all'esterno della centrale in prossimità dell'accesso alla stessa, apparecchiature, condutture, ecc. nella zona C3Z2 con grado di protezione IP40, nella zona C3Z1 con grado di protezione IP44, cavi non propaganti l'incendio secondo norma CEI 20-22, collegamento elettrico dei bruciatori all'impianto con condutture metalliche flessibili grado di protezione IP40, quadro di distribuzione protetto da portello che assicuri un grado di protezione almeno pari a IP40, comprese le opere

⁵⁸ Circ. 25 novembre 1969, n.68 - "Norme di sicurezza per impianti termici a gas di rete".

 $_{59}$ UNI EN 676/ $_{\hbox{\scriptsize 08}}$ - Bruciatori automatici di combustibili gassosi ad aria soffiata.

murarie per il basamento per la caldaia, lo staffaggio ed il fissaggio delle tubazioni, l'assistenza muraria per l'impianto elettrico, la fornitura e posa in opera di almeno un estintore portatile di tipo approvato per fuochi delle classi «A», «B» e «C» con capacità estinguente non inferiore a «21A-89B-C». Qualora, nel caso di impianti con potenza complessiva superiore ai 100 kW, fosse previsto l'utilizzo di acqua con durezza superiore ai 30° francesi si dovrà provvedere all'installazione di un sistema di trattamento dell'acqua conforme alla norma UNI 8065/89.

4) Centrale termica a gas metano per riscaldamento ambientale in locale proprio e separato da altri locali con murature resistenti al fuoco per almeno 120', con accesso da aree a cielo libero, dotato di aerazione prescritta dalla circolare del Ministero dell'interno 25 novembre 1969, n. 68⁶⁰ per potenze utili da 350 a 3000 kW, costituita da due o più generatori di calore per acqua calda fino a 100℃, in cascata ed attivati in maniera automatica in base al carico termico dell'utenza, rendimento termico utile minimo alla potenza nominale non inferiore al valore di 84+2log (in percentuale) della potenza nominale, bruciatori pluristadio a gas metano completo di rampa gas a norma UNI EN 676/08 munito di dispositivo automatico di sicurezza totale, approvato dal Ministero dell'interno, che interrompa il flusso del gas qualora, per qualsia-si motivo, dovesse spegnersi la fiamma, filtro e stabilizzatore di pressione per non superare la pressione di 3946,6 Pa (400 mm di c.d.a.), tubazione di adduzione del gas in acciaio zincato (tipo Mannesmann) dal contatore al bruciatore corredato di valvola di intercettazione di emergenza interna ed esterna alla centrale termica da porre in prossimità dell'accesso alla stessa, attraversamento di eventuali murature con controcamera metallica chiusa all'interno del locale ed aperta verso l'esterno, raccordo fumi coibentato con punto di prelievo dei prodotti della combustione sul condotto tra la cassa dei fumi del generatore ed il camino (con dimensioni e caratteristiche conformi alla norma UNI EN 13384-3/06) per l'inserimento di sonde per la determinazione del rendimento di combustione e della composizione dei gas di scarico, accessori di regolazione e sicurezza composti da pressostato di blocco, indicatore di pressione, tubo ammortizzatore, rubinetto portamanometro, termostato ad immersione regolabile, valvola di scarico termico, imbuto di scarico, termometro, pozzetto per applicazione di termometro di controllo, separatore d'aria, termoidrometro, valvola di sicurezza a membrana tarata ISPESL, valvola miscelatrice a quattro vie, flussostato, vaso di espansione a membrana collaudato ISPESL, valvola automatica di riempimento, gruppo termoregolatore pilotato da sonda termometrica di rilevamento della temperatura esterna che consenta la regolazione della temperatura ambiente su due livelli sigillabili nell'arco delle 24 ore, elettropompa anticondensa, tubazioni in acciaio nero FM per collegamento dell'elettropompa anticondensa e dei collettori di mandata e di ritorno, rivestimento delle tubazioni con materiale isolante, n. 2 elettropompe (di cui una di riserva) per la circolazione dell'acqua, tubazione by-pass contro la chiusura totale delle valvole termostatiche sui corpi scaldanti, valvole ed accessori necessari alla corretta installazione e funzionamento, temperatura di mandata di progetto di 75℃, temperatura di ritorno di progetto di 65℃, impianto elettrico interno alla centrale termica realizzato nel rispetto della norma CEI 64-2 Appendice B del tipo AD-FT nella zona classificata C3Z2 ed impianto AD-FE1 nella zona classificata C3Z1 (zona a ventilazione impedita che si estende dal soffitto fino a 0,5 m al di sotto della quota minima dell'apertura di aerazione), interruttore elettrico onnipolare di emergenza da posizionare all'esterno della centrale in prossimità dell'accesso alla stessa, apparecchiature, condutture, ecc. nella zona C3Z2 con grado di protezione IP40, nella zona C3Z1 con grado di protezione IP44, cavi non propaganti l'incendio secondo norma CEI 20-22, collegamento elettrico dei bruciatori all'impianto con condutture metalliche flessibili grado di protezione IP40, quadro di distribuzione protetto da portello che assicuri un grado di protezione almeno pari a IP40, installazione, nel caso fosse previsto l'utilizzo di acqua con durezza superiore ai 30° francesi, di un sistema di trattamento dell'acqua conforme alla norma UNI 8065:1989. Nella fornitura e posa in opera dovranno essere comprese le opere murarie per il basamento per la caldaia, lo staffaggio ed il fissaggio delle tubazioni, l'assistenza muraria per l'impianto elettrico, la fornitura e posa in opera di almeno un estintore portatile di tipo approvato per fuochi delle classi «A», «B» e «C» con capacità estinguente non inferiore a «21A-89B-C».

⁶⁰ Circ. 25 novembre 1969, n.68 - "Norme di sicurezza per impianti termici a gas di rete". PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO-

5) Centrale termica a gas petrolio liquefatto (GPL) per riscaldamento ambientale in locale proprio e separato da altri locali con murature resistenti al fuoco per almeno 120', con accesso da aree a cielo libero, dotato di aerazione prescritta dalla circolare del Ministero dell'interno 6 febbraio 1975, n. 412/4183⁶¹ per potenze utili da 30 a 350 kW, costituita da generatore di calore per acqua calda fino a 100℃ rendimento termico utile minimo alla p otenza nominale (temperatura media acqua 70℃) non inferiore al valore di 84+2log (in percentuale) della potenza nominale, bruciatore monostadio a gas di petrolio liquefatto completo di rampa gas a norma UNI EN 676/08 munito di dispositivo automatico di sicurezza totale, approvato dal Ministero dell'interno, che interrompa il flusso del gas qualora, per qualsiasi motivo, dovesse spegnersi la fiamma, filtro e stabilizzatore di pressione per non superare la pressione di 3946,6 Pa (400 mm di c.d.a.), tubazione di adduzione del gas in acciaio zincato (tipo Mannesmann) dal serbatojo al bruciatore corredato di valvola di intercettazione di emergenza interna ed esterna alla centrale termica da porre in prossimità dell'accesso alla stessa, attraversamento di eventuali murature con controcamera metallica chiusa all'interno del locale ed aperta verso l'esterno, raccordo fumi coibentato con punto di prelievo dei prodotti della combustione sul condotto tra la cassa dei fumi del generatore ed il camino (con dimensioni e caratteristiche conformi alla norma UNI EN 13384-3/06) per l'inserimento di sonde per la determinazione del rendimento di combustione e della composizione dei gas di scarico, accessori di regolazione e sicurezza composti da pressostato di blocco, indicatore di pressione, tubo ammortizzatore, rubinetto portamanometro, termostato ad immersione regolabile, valvola di scarico termico, imbuto di scarico, termometro, pozzetto per applicazione di termometro di controllo, separatore d'aria, termoidrometro, valvola di sicurezza a membrana tarata ISPESL, valvola miscelatrice a quattro vie, flussostato, vaso di espansione a membrana collaudato ISPESL, valvola automatica di riempimento, gruppo termoregolatore pilotato da sonda termometrica di rilevamento della temperatura esterna che consenta la regolazione della temperatura ambiente su due livelli sigillabili nell'arco delle 24 ore, elettropompa anticondensa, tubazioni in acciaio nero FM per collegamento dell'elettropompa anticondensa e dei collettori di mandata e di ritorno, rivestimento delle tubazioni con materiale isolante, n. 2 elettropompe (di cui una di riserva) per la circolazione dell'acqua, tubazione by-pass contro la chiusura totale delle valvole termostatiche sui corpi scaldanti, valvole ed accessori necessari alla corretta installazione e funzionamento, temperatura di mandata di progetto di 75℃, temperatura di ritorno di progetto di 65℃, i mpianto elettrico interno alla centrale termica realizzato nel rispetto della norma CEI 64-2 Appendice B del tipo AD-FT nella zona classificata C3Z2 ed impianto AD-FE1 nella zona classificata C3Z1 (zona a ventilazione impedita che si estende dal pavimento fino a 0,5 m al di sopra dello stesso), interruttore elettrico onnipolare di emergenza da posizionare all'esterno della centrale in prossimità dell'accesso alla stessa, apparecchiature, condutture, ecc. nella zona C3Z2 con grado di protezione IP40, nella zona C3Z1 con grado di protezione IP44, cavi non propaganti l'incendio secondo norma CEI 20-22, collegamento elettrico dei bruciatori all'impianto con condutture metalliche flessibili grado di protezione IP40, quadro di distribuzione protetto da portello che assicuri un grado di protezione almeno pari a IP40, comprese le opere murarie per il basamento per la caldaia, lo staffaggio ed il fissaggio delle tubazioni. l'assistenza muraria per l'impianto elettrico, la fornitura e posa in opera di almeno un estintore portatile di tipo approvato per fuochi delle classi «A», «B» e «C» con capacità estinguente non inferiore a «21A-89B-C».

Qualora, nel caso di impianti con potenza complessiva superiore ai 100 kW, fosse previsto l'utilizzo di acqua con durezza superiore ai 30°fr ancesi si dovrà provvedere all'installazione di un sistema di trattamento dell'acqua conforme alla norma UNI 8065/89.

6) Centrale termica a gas petrolio liquefatto (GPL) per riscaldamento ambientale in locale proprio e separato da altri locali con murature resistenti al fuoco per almeno 120 minuti primi, con accesso da aree a cielo libero, dotato di aerazione prescritta dalla circolare del Ministero dell'interno 6 febbraio 1975, n. 412/4183 per potenze utili da 350 a 3000 kW, costituita da due o più generatori di calore per acqua calda fino a 100℃, in cascata ed attivati in maniera automatica in base al carico termico dell'utenza, rendimento termico utile minimo alla potenza nominale non inferiore al valore di 84+2log (in percentuale) della potenza nominale, bruciatori pluristadio a gas petrolio

⁶¹ lett. circ. 6 febbraio 1975, n. 412/4183 - "Bruciatori a gas di petrolio liquefatto - Quesito".

liquefatto completo di rampa gas a norma UNI EN 676/08 munito di dispositivo automatico di sicurezza totale, approvato dal Ministero dell'interno, che interrompa il flusso del gas qualora, per qualsiasi motivo, dovesse spegnersi la fiamma, filtro e stabilizzatore di pressione per non superare la pressione di 3946,6 Pa (400 mm di c.d.a.), tubazione di adduzione del gas in acciaio zincato (tipo Mannesmann) dal serbatoio al bruciatore corredato di valvola di intercettazione di emergenza interna ed esterna alla centrale termica da porre in prossimità dell'accesso alla stessa, attraversamento di eventuali murature con controcamera metallica chiusa all'interno del locale ed aperta verso l'esterno, raccordo fumi coibentato con punto di prelievo dei prodotti della combustione sul condotto tra la cassa dei fumi del generatore ed il camino (con dimensioni e caratteristiche conformi alla norma UNI EN 13384-3/06) per l'inserimento di sonde per la determinazione del rendimento di combustione e della composizione dei gas di scarico, accessori di regolazione e sicurezza composti da pressostato di blocco, indicatore di pressione, tubo ammortizzatore, rubinetto portamanometro, termostato ad immersione regolabile, valvola di scarico termico, imbuto di scarico, termometro, pozzetto per applicazione di termometro di controllo, separatore d'aria, termoidrometro, valvola di sicurezza a membrana tarata ISPESL, valvola miscelatrice a quattro vie, flussostato, vaso di espansione a membrana collaudato ISPESL, valvola automatica di riempimento, gruppo termoregolatore pilotato da sonda termometrica di rilevamento della temperatura esterna che consenta la regolazione della temperatura ambiente su due livelli sigillabili nell'arco delle 24 ore, elettropompa anticondensa, tubazioni in acciaio nero FM per collegamento dell'elettropompa anticondensa e dei collettori di mandata e di ritorno, rivestimento delle tubazioni con materiale isolante, n. 2 elettropompe (di cui una di riserva) per la circolazione dell'acqua, tubazione by-pass contro la chiusura totale delle valvole termostatiche sui corpi scaldanti, valvole ed accessori necessari alla corretta installazione e funzionamento, temperatura di mandata di progetto di 75℃, temperatura di ritorno di progetto di 65°C, impianto elettrico interno alla centrale termica realizzato nel rispetto della norma CEI 64-2 Appendice B del tipo AD-FT nella zona classificata C3Z2 ed impianto AD-FE1 nella zona classificata C3Z1 (zona a ventilazione impedita che si estende dal pavimento fino a 0,5 m al di sopra dello stesso), interruttore elettrico onnipolare di emergenza da posizionare all'esterno della centrale in prossimità dell'accesso alla stessa, apparecchiature, condutture, ecc. nella zona C3Z2 con grado di protezione IP40, nella zona C3Z1 con grado di protezione IP44, cavi non propaganti l'incendio secondo norma CEI 20-22, collegamento elettrico dei bruciatori all'impianto con condutture metalliche flessibili grado di protezione IP40, quadro di distribuzione protetto da portello che assicuri un grado di protezione almeno pari a IP40, installazione, nel caso fosse previsto l'utilizzo di acqua con durezza superiore ai 30° francesi, di un sistema di trattamento dell'acqua conforme alla norma UNI 8065/89. Nella fornitura e posa in opera dovranno essere comprese le opere murarie per il basamento per la caldaia, lo staffaggio ed il fissaggio delle tubazioni, l'assistenza muraria per l'impianto elettrico, la fornitura e posa in opera di almeno un estintore portatile di tipo approvato per fuochi delle classi «A», «B» e «C» con capacità estinguente non inferiore a «21A-89B-C».

Art. VIII Bruciatori

1) Bruciatore di gasolio monostadio per portate fino a 30 kg/h, motore 2800 litri/min, compreso il montaggio, gli allacci ed i collegamenti elettrici, eventuali opere murarie, con le seguenti specifiche:

Portata min/max kg/h	Press. in camera di combustione non inferiore a
1,6/3,0	0,65/0,20 mbar
2,3/5,0	0,70/0,10 mbar

4,5/10,0	0,80/0,30 mbar	
8,0/18,0	0,90/0,30 mbar	
11,0/20,0	1,80/0,60 mbar	
15,0/30,0	5,0/1,2 mbar	

2) Bruciatore di gasolio pluristadio per portate fino a 300 kg/h, motore 2800 litri/min, compreso il montaggio, gli allacci ed i collegamenti elettrici, eventuali opere murarie, con le seguenti specifiche:

Portata min/max kg/h	Press. in camera di combustione non inferiore a
15/30	5,5/1,3 mbar
16/45	7,5/0,0 mbar
30/60	6,8/0,0 mbar
45/90	10,0/0,0 mbar
70/130	12,8/0,0
100/200	13,3/3,4 mbar
150/300	15,0/4,2 mbar
225/450	16,0/4,5 mbar

3) Bruciatore di gas ad aria soffiata monostadio per potenze fino a 93 kW, motore 2800 litri/min, corredato di armatura gas a norma UNI EN 676/08, compreso il montaggio, gli allacci ed i collegamenti elettrici, eventuali opere murarie, con le seguenti specifiche:

Portata min/max kg/l	Press. in camera di combustione non inferiore a
12/34	0,6/0,2 mbar
20/46	0,8/0,3 mbar
35/93	1,4/0,7 mbar

4) Bruciatore di gas ad aria soffiata monostadio per potenze fino a 1050 kW, motore 2800 litri/min, corredato di armatura gas standard oppure a norma UNI EN 676/08, compreso il montaggio, gli allacci ed i collegamenti elettrici, eventuali opere murarie, con le seguenti specifiche:

Portata min/max kg/l	Press. in camera di combustione non inferiore a		
70/140	2,5/1,0 mbar		
80/210	4,3/0,0 mbar		
150/350	7,3/0,0 mbar		
185/465	8,3/0,8 mbar		
325/660	8,2/2,6 mbar		
525/1050	9,2/1,5 mbar		

Art. IX Generatori d'aria calda

1) Generatore d'aria calda a gas per installazione pensile costituito da bruciatore atmosferico, camera di combustione a circuito stagno e flusso forzato per estrazione fumi, ventilatore di mandata aria, griglia di diffusione, mobile di copertura, completo di accensione elettrica senza fiamma pilota e delle apparecchiature di controllo e sicurezza, compreso il gruppo di scarico dei fumi, la mensola di sostegno, il termostato ambiente, i collegamenti elettrici, il fissaggio, tutte le opere murarie, con:

Potenza termica utile massima	Portata aria
21 kW	1200 mc/h
26 kW	1600 mc/h
31 kW	2200 mc/h
35 kW	2600 mc/h
50 kW	3100 mc/h
60 kW	4500 mc/h
87 kW	6000 mc/h

2) Generatore d'aria calda per riscaldamento di grandi ambienti, idoneo per bruciatore ad aria soffiata a gas, gasolio od olio combustibile, costituito da camera di combustione e scambiatore di calore in acciaio, gruppo ventilante di mandata aria con pressione statica utile non inferiore a 150 Pa, apparecchiature elettriche di regolazione e sicurezza, griglia di aspirazione, plenum di mandata con relative bocchette, filtro aria e bruciatore, tutte le opere murarie necessarie, con:

Potenza termica utile massima	Portata aria
23 kW	1700 mc/h
35 kW	2600 mc/h
46 kW	3400 mc/h
58 kW	4300 mc/h
87 kW	6500 mc/h
116 kW	7600 mc/h
145 kW	9600 mc/h
174 kW	11400 mc/h
203 kW	13250 mc/h
232 kW	15200 mc/h
290 kW	19000 mc/h
349 kW	22800 mc/h
436 kW	26900 mc/h
523 kW	31650 mc/h
610 kW	37700 mc/h
727 kW	44000 mc/h

872 kW	55000 mc/h	
1017 kW	64000 mc/h	

Art. X Gruppi termici a gas

- 1) Gruppo termico murale a gas per solo riscaldamento con potenza termica di 14,0-23,3-29,0 kW, costituito da caldaia murale a tiraggio naturale per collegamento a canna fumaria, potenza tarabile, accensione piezoelettrica, rendimento minimo secondo la tabella «E» del D.P.R. 26 agosto 1993, n. 412⁶², completa di placca di raccordo, rubinetti di intercettazione e raccordo al camino, collegamenti elettrici, fissaggio e tutte le opere murarie richieste per il perfetto funzionamento.
- 2) Gruppo termico a gas ad alto rendimento per solo riscaldamento con potenza termica di 10,5-18,0-23,9-27,5 kW, costituito da caldaia murale a tiraggio naturale per collegamento a canna fumaria, potenza modulante, accensione elettronica senza fiamma pilota, rendimento minimo secondo la tabella «E» del D.P.R. 26 agosto 1993, n. 412, completa di placca di raccordo, sifone per valvole di sicurezza, rubinetti di intercettazione e raccordo al camino, collegamenti elettrici, fissaggio e tutte le opere murarie richieste per il perfetto funzionamento.
- 3) Gruppo termico a gas per riscaldamento e produzione di acqua calda sanitaria costituito da caldaia a tiraggio naturale per collegamento a canna fumaria, potenza tarabile per riscaldamento, potenza modulante per acqua calda, accensione piezoelettrica, rendimento minimo secondo la tabella «E» del D.P.R. 26 agosto 1993, n. 412, completa di placca di raccordo, rubinetti di intercettazione e raccordo al camino, collegamenti elettrici, fissaggio e tutte le opere murarie richieste per il perfetto funzionamento e le seguenti specifiche tecniche:
 - potenza termica per riscaldamento 9,3 kW produzione acqua calda sanitaria in servizio continuo da 15 a 40℃, di 13 litri/min;
 - potenza termica per riscaldamento 14 kW produzione acqua calda sanitaria in servizio continuo da 15 a 40°C, di 13 litri/min;
 - potenza termica per riscaldamento 23,3 kW produzione acqua calda sanitaria in servizio continuo da 15 a 40° C, di 13 litri/min;
 - potenza termica per riscaldamento 29 kW produzione acqua calda sanitaria in servizio continuo da 15 a $40 \, \text{C}$, di 16 litri/min.
- 4) Gruppo termico a gas ad alto rendimento per riscaldamento e produzione di acqua calda sanitaria, costituito da caldaia murale a tiraggio naturale per collegamento a canna fumaria, potenza modulante per riscaldamento e per acqua calda, accensione elettronica senza fiamma pilota, rendimento minimo secondo la tabella «E» del D.P.R. 26 agosto 1993, n. 412, completa di placca di raccordo, sifone per valvole di sicurezza, rubinetti di intercettazione e raccordo al camino, collegamenti elettrici, fissaggio e tutte le opere murarie richieste per il perfetto funzionamento e le seguenti specifiche tecniche:
 - potenza termica per riscaldamento 18 kW produzione acqua calda sanitaria in servizio continuo da 15 a 40°C, di 10,3 litri/min;
 - potenza termica per riscaldamento 23,9 kW produzione acqua calda sanitaria in servizio continuo da 15 a 40℃, di 13,7 litri/min;
 - potenza termica per riscaldamento 27,5 kW produzione acqua calda sanitaria in servizio continuo da 15 a 40%, di 15,8 litri/min.
- 5) Gruppo termico a gas ad alto rendimento per solo riscaldamento costituito da generatore di calore ad elementi di ghisa, potenza termica utile di 11,0-21,4-31,4-43,2-54,6-65,1-75,6 kW con

⁶² D.P.R. del 26 agosto 1993, n. 412 "Regolamento recante norme per la progettazione, l'installazione, l'esercizio e la manutenzione degli impianti termici degli edifici ai fini del contenimento dei consumi di energia, in attuazione dell'art. 4, comma 4, della legge 9 gennaio 1991, n. 10".

bruciatore atmosferico, rendimento minimo secondo la tabella «E» del D.P.R. 26 agosto 1993, n. 412, completo di termometro, termostati di regolazione per sicurezza, mantello di copertura e tutte le opere murarie.

- 6) Gruppo termico a gas ad alto rendimento per solo riscaldamento costituito da generatore di calore ad elementi di ghisa, potenza termica utile di kW 11,0-21,4-31,4, con bruciatore atmosferico, rendimento minimo secondo la tabella «E» del D.P.R. 26 agosto 1993, n. 412, completo di elettropompa di circolazione, vaso di espansione, gruppo di alimentazione impianto, valvola di sicurezza, manometro, termometro, termostati di regolazione e di sicurezza, mantello di copertura e tutte le opere murarie.
- 7) Gruppo termico a gas ad alto rendimento per riscaldamento e produzione acqua calda sanitaria costituito da caldaia murale a tiraggio forzato con circuito stagno di combustione, potenza tarabile per riscaldamento, rendimento minimo secondo la tabella «E» del D.P.R. 26 agosto 1993, n. 412, accensione elettronica a ionizzazione di fiamma, con bollitore di accumulo in acciaio inox coibentato con isolante di spessore determinato secondo la tabella «B» del D.P.R. 26 agosto 1993, n. 412, completo di placca di raccordo, rubinetti di intercettazione, tubo aspirazione/espulsione lungo 1 m, gomito di raccordo e potenza termica utile per riscaldamento non inferiore a 24,4 kW con produzione di acqua calda sanitaria in servizio continuo da 15 a 40°C non inferiore a 13,5 litri/min.
- 8) Gruppo termico a gas ad alto rendimento per riscaldamento e produzione acqua calda sanitaria costituito da generatore di calore ad elementi di ghisa con bruciatore atmosferico, rendimento minimo secondo la tabella «E» del D.P.R. 26 agosto 1993, n. 412, bollitore a scambio rapido, completo di elettropompa di circolazione per circuito di riscaldamento, elettropompa di circolazione per primario bollitore, vaso d'espansione, gruppo alimentazione, impianto valvola di sicurezza, manometro, termometro, termostati di regolazione e sicurezza, accensione elettronica, mantello di copertura e le seguenti specifiche tecniche:
 - potenza termica per riscaldamento 22,1 kW produzione acqua calda sanitaria in servizio continuo da 15 a 45℃ di 12 litri/min;
 - potenza termica per riscaldamento 31,7 kW produzione acqua calda sanitaria in servizio continuo da 15 a 45℃ di 18 litri/min;
 - potenza termica per riscaldamento 44,4 kW produzione acqua calda sanitaria in servizio continuo da 15 a 45℃ di 20 litri/min.

Art. XI Centrali frigorifere

- 1) Centrale frigorifera per produzione di acqua refrigerata per potenze frigorifere utili da 4,0 a 40 kW, costituita da refrigeratore d'acqua con condensazione in aria da installare direttamente all'aperto, elettropompa per circuito primario del refrigeratore, tubazioni in acciaio nero FM per il collegamento del refrigeratore e dell'elettropompa fino ai collettori di andata e ritorno escluse le derivazioni ai circuiti di utenza con relative elettropompe e termoregolazioni, rivestimento isolante dei tubi, valvole ed accessori necessari alla corretta installazione e funzionamento, impianto elettrico completo per il collegamento di tutte le apparecchiature descritte compreso il relativo quadro di comando. I valori di riferimento dell'impianto dovranno essere riferiti alla potenza utile ceduta all'acqua espressa in kW e valutata con acqua in uscita a 7℃, salto termico di 5℃, temperatura dell'aria esterna di 35℃.
 - Nella fornitura e posa in opera dovranno essere comprese le opere murarie quali l'apertura e la chiusura di tracce, il ripristino dell'intonaco e la rasatura, il posizionamento del refrigerante, lo staffaggio ed il fissaggio delle tubazioni, l'assistenza muraria per l'impianto elettrico.
- 2) Centrale frigorifera per produzione di acqua refrigerata per potenze frigorifere utili da 40 a 400 kW, costituita da uno o più refrigeratori d'acqua con condensazione in aria da installare direttamente all'aperto, serbatoio di acqua refrigerata per volano termico con capacità di 5 l/kW di potenza frigorifera utile, elettropompa per circuito primario di ciascun refrigeratore, tubazioni in acciaio nero FM per il collegamento dei refrigeratori e delle elettropompe fino ai collettori di andata e ritorno escluse le derivazioni ai circuiti di utenza con relative elettropompe e PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI"

termoregolazioni, rivestimento isolante dei tubi, valvole ed accessori necessari alla corretta installazione e funzionamento, impianto elettrico completo per il collegamento di tutte le apparecchiature descritte compreso il relativo quadro di comando. I valori di riferimento dell'impianto dovranno essere riferiti alla potenza utile ceduta all'acqua espressa in kW e valutata con acqua in uscita a 7° , salto termico di 5° , te mperatura dell'aria esterna di 35° .

Nella fornitura e posa in opera dovranno essere comprese le opere murarie quali l'apertura e la chiusura di tracce, il ripristino dell'intonaco e la rasatura, il posizionamento del refrigerante, lo staffaggio ed il fissaggio delle tubazioni, l'assistenza muraria per l'impianto elettrico.

Art. XII Serbatoi e accessori

1) Serbatoio in acciaio per gasolio, olio combustibile, acqua e liquidi in genere, di forma cilindrica, ricoperto esternamente con vetroresina spessore 3 mm previa sabbiatura, completo di passo d'uomo, coperchio flangiato, attacchi vari, tappo ermetico di scarico, tubo di sfiato con cuffia di protezione, tabella metrica, certificato di prova alla pressione interna di 1,0 bar, con tutte le opere di scavo e rinterro necessarie alla completa messa in opera. Le caratteristiche dei vari tipi di serbatoi dovranno essere conformi alle seguenti indicazioni:

Capacità (I)	Spess. lamiera (mm)	Diam Interno (m)
1500	3	1,10
3000	3/4	1,27
5000	3/4	1,56
8000	4/5	1,96
10000	4/5	2,01
15000	4/5	2,28

2) Impianto di adduzione gasolio dal serbatoio di stoccaggio al singolo bruciatore, costituito da gruppo di pescaggio completo di attacchi di andata e ritorno del gasolio, attacco per teleindicatore di livello, valvola di fondo, valvola a strappo, leva comando valvola a strappo completa di cassettina di protezione trasparente, guaina e cavo di comando, tubazioni in rame rivestito di PVC di diametro adeguato per andata e ritorno gasolio, filtro di linea a due vie per gasolio completo di rubinetto sull'andata, valvola di ritegno sul ritorno, 2 raccordi flessibili al bruciatore, comprese tutte le opere murarie ed i collegamenti.

Art. XIII Elettropompe

- 1) Elettropompa per acqua calda e refrigerata, esecuzione monoblocco in linea con rotore immerso, portata variabile, temperatura d'impiego da -10/+80℃, PN 6, completa di raccordi a tre pezzi oppure controflange con guarnizioni e bulloni, compresi i collegamenti idrici ed elettrici, dalle caratteristiche conformi al progetto e da sottoporre alla validazione della DL prima dell'installazione.
- 2) Elettropompa gemellare per acqua calda e refrigerata, esecuzione monoblocco in linea con tenuta meccanica, portata variabile, temperatura d'impiego da -10/+120°C, PN 6, completa di controflange con guarnizioni e bulloni, compresi i collegamenti idrici ed elettrici, dalle caratteristiche conformi al progetto e da sottoporre alla validazione della DL prima dell'installazione.

Art. XIV Circuiti di riscaldamento

1) *Impianto di riscaldamento autonomo a gas* dimensionato a norma di legge per un appartamento di medie dimensioni (100-150 mg) costituito da:

- caldaia a gas con rendimento superiore al 90% a camera stagna se posizionata all'interno degli ambienti abitati ovvero con carter di protezione dagli agenti atmosferici se posizionata all'esterno degli stessi ambienti, completa di bruciatore atmosferico, vaso di espansione chiuso, con boiler incorporato in acciaio inox per la produzione di acqua calda sanitaria, pompa di circolazione a due velocità, apparecchiature di controllo e sicurezza compreso by-pass contro la chiusura totale delle valvole termostatiche e gruppo di riempimento;
- raccordo a camino con sbocco sopra il tetto dell'edificio alla quota prescritta dalla norma UNI 7129:2008 restando vietato lo scarico dei fumi a parete secondo l'art. 5 del D.P.R. 26 agosto 1993. n. 412:
- punto di prelievo dei prodotti della combustione sul condotto tra la cassa dei fumi del generatore ed il camino per l'inserimento di sonde per la determinazione del rendimento di combustione e della composizione di gas di scarico;
- riduttore stabilizzatore di pressione in bronzo;
- collettore complanare semplice o componibile in bronzo completo di cassetta con telaio in lamiera verniciata per alloggiamento dello stesso collettore all'interno dell'alloggio;
- tubazioni in rame di diametro minimo interno 10 mm rivestite singolarmente con materiale isolante di spessore conforme al D.P.R. 26 agosto 1993, n. 412 (minimo pari a 13 mm, conduttività termica=0,030W/m℃);
- corpi scaldanti completi di detentore a doppio regolaggio, valvole termostatiche e valvoline sfogo aria manuale, emissione termica nominale certificata secondo norma UNI 442/04;
- sistema di termoregolazione con programmatore sigillabile che consenta la regolazione della temperatura degli ambienti sul valore di 20℃ con + 2℃ di tolleranza in condizioni di regime e di 16℃ con +2℃ di tolleranza in condizione di attenu azione notturna;
- funzionamento intermittente o in attenuazione notturna:
- temperatura di mandata di progetto 75℃;
- temperatura di ritorno di progetto 65℃;

dovranno essere, inoltre, comprese le opere murarie di apertura e chiusura tracce, il ripristino dell'intonaco, la rasatura e, ove presente, la tinteggiatura, la canna fumaria singola o collettiva ramificata e la tubazione di adduzione del gas e dell'acqua inclusi i relativi allacci alla centrale termica.

- 2) Circuito di riscaldamento a radiatori posti a valle della centrale termica per appartamento di media grandezza, 100-150 mg, dimensionato a norma di legge per garantire la temperatura interna di 20℃ con 2℃ di tolleranza, costituito da corpi sca Idanti a radiazione dotati di valvole termostatiche, detentori a squadro a doppio regolaggio e valvoline sfogo aria manuali, collettore complanare semplice o componibile in bronzo completo di cassetta con telaio in lamiera verniciata per alloggiamento del collettore stesso all'interno dell'alloggio, tubazioni in rame diametro minimo interno 10 mm rivestite singolarmente con materiale isolante di spessore conforme al D.P.R. 26 agosto 1993, n. 412 (minimo 13 mm con conduttività termica=0,030 W/m^ℂ), sistema di termoregolazione con programmato re sigillabile che consenta la regolazione della temperatura degli ambienti sul valore di 20℃ con 2℃ di tolleranza in condizioni di regime e di 16℃ con 2℃ di tolleranza in condizioni di even tuale attenuazione notturna, temperatura di mandata di progetto 75℃, temperatura di ritorno di progetto 65℃, predisposizione per l'inserimento di sistemi di contabilizzazione differenziata dei consumi per singolo circuito, con tutte le opere murarie di apertura e chiusura tracce, ripristino dell'intonaco, la rasatura e, ove presente, la tinteggiatura, la canna fumaria singola o collettiva ramificata e la tubazione di adduzione del gas e dell'acqua inclusi i relativi allacci alla centrale termica.
- 3) Circuito di riscaldamento a pannelli radianti esclusa la centrale termica dimensionato per garantire la temperatura interna di 20℃ con 2℃ di tolleranza, costituito da isolante in polistirolo estruso da 30 kg/mc e spessore mm 20, foglio di polietilene anticondensa, tubo in materiale

plastico steso su supporto di fissaggio ed annegato nel massetto del pavimento che dovrà ricoprire per almeno mm 30 il tubo, tubazioni di distribuzione a partire dai collettori di andata e ritorno installati nella centrale termica, verniciatura delle tubazioni in acciaio, rivestimento isolante delle tubazioni di distribuzione realizzato a norma di legge (D.P.R. 26 agosto 1993, n. 412) n. 2 elettropompe (di cui una di scorta) per ciascun circuito, termoregolazione costituita da valvola miscelatrice a 3 vie motorizzata, regolatore climatico con orologio programmatore, sonda esterna e sonda di mandata, valvole ed accessori necessari alla corretta installazione e funzionamento, impianto elettrico per il collegamento delle elettropompe e della termoregolazione compresa la quota parte del quadro di centrale termica, con tutte le opere murarie di apertura e chiusura tracce, ripristino dell'intonaco, la rasatura e la posa in opera del massetto, la canna fumaria singola o collettiva ramificata e la tubazione di adduzione del gas e dell'acqua inclusi i relativi allacci alla centrale termica.

- 4) Circuito di riscaldamento a pannelli radianti a soffitto esclusa la centrale termica, idoneo per ambienti di grandi dimensioni, progettato per garantire la temperatura interna di 18°C, costituito da termostrisce radianti installate a soffitto e rivestite con isolante termico nella parte superiore per impedire la dispersione del calore, scossaline anticonvettive e collettori di testa, tubazioni di distribuzione a partire dai collettori di andata e ritorno installati in centrale termica, verniciatura delle tubazioni in acciaio, rivestimento isolante delle tubazioni di distribuzione realizzato a norma di legge (D.P.R. 26 agosto 1993, n. 412) n. 2 elettropompe (di cui una di scorta) per ciascun circuito, termoregolazione costituita da valvola miscelatrice a 3 vie motorizzata, regolatore elettronico, sonda ambiente, valvole ed accessori necessari alla corretta installazione e funzionamento, impianto elettrico per il collegamento delle elettropompe e della termoregolazione compresa la quota parte del quadro di centrale termica, con tutte le opere murarie di apertura e chiusura tracce, ripristino dell'intonaco, la rasatura, il fissaggio delle termostrisce, la canna fumaria singola o collettiva ramificata e la tubazione di adduzione del gas e dell'acqua inclusi i relativi allacci alla centrale termica.
- 5) Circuito di riscaldamento a ventilconvettori esclusa la centrale termica, dimensionato per garantire la temperatura interna di 20°C, costituit o da ventilconvettori modello verticale oppure orizzontale con mobile a vista corredati ciascuno di variatore di velocità e termostato ambiente, tubazioni di distribuzione a partire dai collettori di andata e ritorno installati in centrale termica, verniciatura delle tubazioni in acciaio, rivestimento isolante delle tubazioni di distribuzione realizzato a norma di legge (D.P.R. 26 agosto 1993, n. 412) n. 2 elettropompe (di cui una di scorta) per ciascun circuito, eventuale termoregolazione costituita da valvola miscelatrice a 3 vie motorizzata, regolatore elettronico a punto fisso, sonda di mandata, valvole ed accessori necessari alla corretta installazione e funzionamento, impianto elettrico per il collegamento dei ventilconvettori, dei termostati ambiente, delle elettropompe e della termoregolazione compresa la quota parte del quadro di centrale termica, con tutte le opere murarie di apertura e chiusura tracce, ripristino dell'intonaco, la rasatura, il fissaggio dei ventilconvettori, la canna fumaria singola o collettiva ramificata e la tubazione di adduzione del gas e dell'acqua inclusi i relativi allacci alla centrale termica.
- 6) Circuito di riscaldamento ad aerotermi esclusa la centrale termica, idoneo per ambienti di grandi dimensioni, progettato per garantire la temperatura interna di 18°C, costituito da aerotermi a proiezione orizzontale con ventilatore elicoidale e motore trifase a 900 giri/min., installati a parete su apposite staffe, corredati ciascuno da salvamotore, termostato ambiente, termostato a contatto e valvole di intercettazione, tubazioni di distribuzione a partire dai collettori di andata e ritorno installati in centrale termica, verniciatura delle tubazioni in acciaio, rivestimento isolante delle tubazioni di distribuzione realizzato a norma di legge (D.P.R. 26 agosto 1993, n. 412) n. 2 elettropompe (di cui una di scorta) per ciascun circuito, valvole ed accessori necessari alla corretta installazione e funzionamento, impianto elettrico per il collegamento degli aerotermi con relativi termostati ambiente e delle elettropompe compresa la quota parte del quadro di centrale termica, con tutte le opere murarie di apertura e chiusura tracce, ripristino dell'intonaco, la rasatura, il fissaggio degli aerotermi, la canna fumaria singola o collettiva ramificata e la tubazione di adduzione del gas e dell'acqua inclusi i relativi allacci alla centrale termica.

7) Circuito di riscaldamento e raffreddamento a ventilconvettori esclusa la centrale termica e frigorifera, dimensionato per garantire la temperatura interna di 20℃ in inverno e 26℃ in estate, costituito da ventilconvettori modello verticale oppure orizzontale con mobile a vista corredati ciascuno di variatore di velocità, termostato ambiente e scarico condensa, tubazioni di distribuzione a partire dai collettori di andata e ritorno installati in centrale termica, verniciatura delle tubazioni in acciaio, rivestimento isolante delle tubazioni di distribuzione realizzato a norma di legge (D.P.R. 26 agosto 1993, n. 412) n. 2 elettropompe (di cui una di scorta) per ciascun circuito, eventuale termoregolazione costituita da valvola miscelatrice a 3 vie motorizzata, regolatore elettronico a punto fisso, sonda di mandata, valvole ed accessori necessari alla corretta installazione e funzionamento, impianto elettrico per il collegamento dei ventilconvettori, dei termostati ambiente, delle elettropompe e della termoregolazione compresa la quota parte del quadro di centrale termica, con tutte le opere murarie di apertura e chiusura tracce, ripristino dell'intonaco, la rasatura, il fissaggio dei ventilconvettori, la canna fumaria singola o collettiva ramificata e la tubazione di adduzione del gas e dell'acqua inclusi i relativi allacci alla centrale termica.

Art. XV Corpi scaldanti a radiazione

- Corpi scaldanti costituiti da piastre in acciaio stampato, spessore minimo 12/10 mm con trattamento superficiale e sgrassaggio, fosfatazione, doppia mano di verniciatura e cottura, completi di mensole di sostegno, viti, tasselli, collegamenti, eventuali opere murarie ed ogni onere di montaggio, con classificazione per Watt di emissione termica determinata a norma UNI 442/04
- 2) Pannello radiante a soffitto di tipo industriale idoneo per acqua calda fino a 100℃ con tubi FM di diametro non inferiore a DN 20 (3/4"), completo di piastra radiante in acciaio accoppiata ai tubi tramite gole autobloccanti, bordature laterali per contenimento dell'isolante, materassino di lana di roccia con spessore 50 mm e densità 40 kg/mc, verniciatura, traversini per il fissaggio, catene e tiranti necessari alla corretta installazione, coprigiunto tra pannello e pannello, scossaline anticonvettive per i due lati e collettori di testa, incluse tutte le opere murarie richieste per il montaggio. I pannelli da impiegare dovranno essere conformi al progetto e necessitano della approvazione della DL prima dell'installazione.
- 3) Pannello radiante a pavimento per funzionamento ad acqua calda a bassa temperatura, costituito da pannello isolante in polistirolo espanso con densità di 25 o 30 kg/mc, foglio di polietilene con funzione anticondensa, foglio di forassite o altro sistema equivalente per il fissaggio del tubo con relativi clips di ancoraggio, tubo in materiale plastico diametro esterno 20 mm ed interno 16 mm, additivo liquido per formazione di massetto (lo spessore del massetto deve superare di almeno 30 mm la generatrice superiore del tubo), compresa la formazione del massetto. L'installazione dovrà prevedere le seguenti specifiche:
 - spessore pannello isolante 20 mm, interasse tubo 100 mm;
 - spessore pannello isolante 20 mm, interasse tubo 150 mm;
 - spessore pannello isolante 20 mm, interasse tubo 200 mm;
 - spessore pannello isolante 30 mm, interasse tubo 100 mm;
 - spessore pannello isolante 30 mm, interasse tubo 150 mm;
 - spessore pannello isolante 30 mm, interasse tubo 200 mm
- 4) Corpi scaldanti costituiti da radiatori in ghisa del tipo a colonna o a piastra, completi di nipples di giunzione, tappi laterali, guarnizioni, mensole di sostegno, verniciatura, con classificazione per Watt di emissione termica determinata secondo le norme UNI vigenti, compresi l'allaccio di andata e ritorno dal collettore di distribuzione o dalla rete di distribuzione costituito da coppia di valvole in ottone cromato (detentore e valvola ad angolo con manopola), valvolina di sfiato aria manuale in ottone cromato, tubazioni di rame di diametro adeguato rivestite con guaina isolante in materiale sintetico espanso con spessore conforme al D.P.R. 26 agosto 1993, n. 412 ridotto per l'installazione all'interno di locali riscaldati e comprensivo di raccordi ed opere murarie.

- 5) Corpi scaldanti costituiti da radiatori in alluminio, completi di nipples di giunzione, tappi laterali, guarnizioni, mensole di sostegno, verniciatura (color avorio o a scelta), con classificazione per Watt di emissione termica determinata secondo le norme UNI vigenti, compresi l'allaccio di andata e ritorno dal collettore di distribuzione o dalla rete di distribuzione costituito da coppia di valvole in ottone cromato (detentore e valvola ad angolo con manopola), valvolina di sfiato aria manuale in ottone cromato, tubazioni di rame di diametro adeguato rivestite con guaina isolante in materiale sintetico espanso con spessore conforme al D.P.R. 26 agosto 1993, n. 412 ridotto per l'installazione all'interno di locali riscaldati e comprensivo di raccordi ed opere murarie.
- 6) Corpi scaldanti costituiti da radiatori con tubi verticali in acciaio verniciati a polveri epossidiche con colori vari, completi di tappi laterali, guarnizioni, mensole di sostegno, con classificazione per Watt di emissione termica determinata secondo le norme UNI vigenti, compresi l'allaccio di andata e ritorno dal collettore di distribuzione o dalla rete di distribuzione costituito da coppia di valvole in ottone cromato (detentore e valvola ad angolo con manopola), valvolina di sfiato aria manuale in ottone cromato, tubazioni di rame di diametro adeguato rivestite con guaina isolante in materiale sintetico espanso con spessore conforme all'art. 5 del D.P.R. 26 agosto 1993, n. 412 ridotto per l'installazione all'interno di locali riscaldati e comprensivo di raccordi ed opere murarie.

Art. XVI Corpi scaldanti a termoconvezione

Ventilconvettore per installazione a vista in posizione orizzontale o verticale, completo di mobile di copertura, pannello di comando velocità incorporato, bacinella di raccolta condensa, filtro aria, batteria per acqua calda o refrigerata, comprese le opere murarie per il fissaggio ed il collegamento elettrico. Potenzialità termica valutata alla velocità massima con acqua entrante a 70℃, DT=10℃, aria entrante a 20℃; potenzialità f rigorifera totale valutata alla velocità massima con acqua entrante a 7℃, DT=5℃, aria entrante a 2 7℃ b.s./19 b.u., compreso l'allaccio dal collettore di distribuzione o dalla rete di distribuzione costituito da coppia di valvole in ottone cromato (detentore e valvola ad angolo con manopola), tubazioni di rame di diametro adeguato rivestite con guaina isolante in materiale sintetico espanso con spessore conforme al D.P.R. 26 agosto 1993, n. 412 ridotto per l'installazione all'interno di locali riscaldati, eventuale tubazione di scarico condensa convogliata in rete fognaria acque bianche oppure in rete fognaria acque nere tramite pozzetto sifonato, e comprensivo di opere murarie. Le caratteristiche dovranno essere in accordo con quanto presente nel progetto, inoltre sarà necessaria l'approvazione da parte della DL prima di poter essere installati.

- 1) Ventilconvettore a gas per installazione verticale a parete, costituito da bruciatore atmosferico, camera di combustione a circuito stagno e flusso forzato per l'estrazione dei fumi, completo di accensione elettrica, apparecchiature di controllo e sicurezza, termostato ambiente, collegamenti elettrici, fissaggio ed opere murarie. Le caratteristiche dovranno essere in accordo con quanto presente nel progetto, inoltre sarà necessaria l'approvazione da parte della DL prima di poter essere installati.
- 2) Aerotermo per installazione a parete per funzionamento ad acqua calda, costituito da scambiatore a tubi alettati, involucro di contenimento in lamiera, ventilatore elicoidale con motore trifase a 6 poli (900 giri/min), alette deflettrici per orientare il flusso dell'aria, completo di staffaggi, collegamenti elettrici, fissaggio ed opere murarie. Le caratteristiche dovranno essere in accordo con quanto presente nel progetto, inoltre sarà necessaria l'approvazione da parte della DL prima di poter essere installati.

Art. XVII Produttori di acqua calda

1) Produttore di acqua calda costituito da bollitore verticale in acciaio zincato, pressione massima di esercizio 6,0 bar, con doppio scambiatore estraibile in acciaio idoneo per essere alimentato con acqua calda, acqua surriscaldata o vapore fino a 12 bar, corredato di anodo di magnesio e coibentazione in poliuretano rivestito in PVC, completo di collegamenti, fissaggi e raccordi. Le caratteristiche dovranno essere in accordo con quanto presente nel progetto, inoltre sarà necessaria l'approvazione da parte della DL prima di poter essere installati.

- 2) Produttore di acqua calda sanitaria costituito da bollitore verticale in acciaio inox AISI 316, pressione massima di esercizio 6,0 bar, con scambiatore a serpentino in acciaio inox idoneo per essere alimentato con acqua calda, corredato di termometro, di termostato di regolazione e con coibentazione di poliuretano rivestito in PVC; produzione di acqua calda sanitaria in servizio continuo da 15 a 45℃ con primario da 90 a 70℃. Le caratteristiche dovranno essere in accordo con quanto presente nel progetto, inoltre sarà necessaria l'approvazione da parte della DL prima di poter essere installati.
- 3) Produttore di acqua calda sanitaria costituito da bollitore verticale in acciaio inox AISI 316, pressione massima di esercizio 6,0 bar, con doppio scambiatore a serpentino in acciaio inox idoneo per essere alimentato con acqua calda, corredato di termometro, di termostato di regolazione e con coibentazione di poliuretano rivestito in PVC; produzione di acqua calda sanitaria in servizio continuo da 15 a 45℃ con pri mario da 90 a 70℃. Le caratteristiche dovranno essere in accordo con quanto presente nel progetto, inoltre sarà necessaria l'approvazione da parte della DL prima di poter essere installati.

Art. XVIII Impianti di condizionamento e trattamento dell'aria

Gli impianti di condizionamento dell'aria saranno realizzati ad una o più unità con camere di condizionamento (metalliche od in muratura, secondo le dimensioni) contenenti: filtri, un sistema di preraffreddamento, sistemi di lavaggio dell'aria, un sistema di raffreddamento e deumidificazione, un sistema di riscaldamento, sistemi di umidificazione, ecc.

Nel caso in cui il sistema di condizionamento sia destinato ad uso esclusivamente estivo od invernale, la camera di condizionamento verrà dotata delle sole apparecchiature necessarie all'uno od all'altro caso.

Le camere di condizionamento verranno completate, infine, da termometri, serrande di regolazione, elettropompe, tubazioni e relative valvole di intercettazione per la circolazione dell'acqua calda e fredda.

I ventilatori dovranno avere caratteristiche di silenziosità, bassa pressione e limitata velocità delle giranti.

I canali di distribuzione dell'aria saranno realizzati in lamiera e, dove indicato, dovranno essere isolati termicamente; la velocità massima dell'aria nei canali, salvo altre prescrizioni, dovrà essere di 7 m/sec.

Le bocchette di immissione dell'aria nei locali di destinazione dovranno essere posizionate in modo tale da non creare correnti e la velocità di afflusso dovrà essere compresa tra 0,2-1 m/sec. per bocchette in prossimità delle persone e non superiore a 5 m/sec. per bocchette distanti dalle persone.

La velocità dell'aria in prossimità delle bocchette di aspirazione dovrà essere non superiore a 0,3 m/sec. nel caso di bocchette in prossimità di persone e non superiore a 3 m/sec. per bocchette distanti da persone.

La regolazione della temperatura e dell'umidità avverrà per mezzo di termostati ed umidostati.

Nell'esecuzione e messa in opera dell'impianto, oltre alle prescrizioni progettuali ed a quelle previste dalla normativa vigente, si dovranno realizzare tutti quegli accorgimenti necessari alla riduzione delle vibrazioni delle apparecchiature (montaggio su supporti ammortizzanti, ecc.) in modo da limitare l'aumento del livello sonoro, negli ambienti condizionati, ad un valore non superiore a 3 phon rispetto a quello rilevabile ad impianto fermo.

Art. XIX Unità di condizionamento

 Condizionatore autonomo di ambiente per piccoli locali con condensatore raffreddato ad acqua, costituito da mobile metallico in acciaio verniciato, batteria evaporante, ventilatore centrifugo, termostato ambiente, compressore alternativo o rotativo, valvola pressostatica regolatrice della PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI"

- portata d'acqua di raffreddamento, incluse le opere murarie per il fissaggio ed i collegamenti elettrici. Questo tipo di condizionatore è predisposto anche per l'inserimento di una batteria di riscaldamento ad acqua calda oppure elettrica.
- 2) Condizionatore autonomo di ambiente a due sezioni per solo raffreddamento oppure a pompa di calore, costituito da un'unità esterna con ventilatore e compressore collegata tramite linea frigorifera precaricata ad un'unità interna che potrà essere della versione verticale, pensile o canalizzabile. Il condizionatore dovrà essere corredato dei dispositivi di regolazione e controllo con pannello di comando ed un'eventuale batteria di riscaldamento ad acqua calda con relativa sonda di temperatura o con una batteria di riscaldamento elettrica, o con un dispositivo per il funzionamento del raffreddamento a basse temperature esterne. L'alimentazione elettrica potrà essere monofase a 220 V oppure trifase a 380 V, la potenza di raffreddamento totale alla velocità massima con aria interna a 19℃ b.u. ed aria estern a a 35℃ non inferiore a 2,5 kW;
 - potenza di riscaldamento alla velocità massima nella versione pompa di calore con aria interna a 20℃ ed aria esterna a 6℃ non inferiore a 2,8 kW ;
 - potenza di riscaldamento alla velocità massima con batteria ad acqua calda a 70℃ ed aria interna a 20℃ non inferiore a 2,6 kW;
 - potenza di riscaldamento con batteria elettrica non inferiore a 1,7 kW. Portata aria dell'unità interna canalizzabile alla velocità massima non inferiore a 340 mc/h con prevalenza statica disponibile massima di 30 Pa, potenza elettrica massima assorbita (esclusa la batteria elettrica di riscaldamento) di 1,2 kW.
- 3) Condizionatore autonomo di ambiente a due sezioni per locali medi e grandi, costituito da un'unità interna di trattamento aria completa di mobile metallico, isolante termoacustico, filtro aria piano con griglia aspirazione, batteria evaporante, ventilatore centrifugo con trasmissione a cinghia e puleggia a diametro variabile e da un'unità esterna motocondensante completa di mobile metallico trattato con vernice idonea per esterno, compressore ermetico a gas, batteria condensante, ventilatore centrifugo. Le caratteristiche dovranno essere in accordo con quanto presente nel progetto, inoltre sarà necessaria l'approvazione da parte della DL prima di poter essere installati.
 - Il condizionatore dovrà essere corredato di termostato ambiente, pressostato doppio di sicurezza, pressostato differenziale olio e, in accordo con il progetto dell'impianto, il plenum di mandata con bocchette ad alette orientabili, la batteria di riscaldamento ad acqua, il dispositivo di regolazione sull'unità motocondensante per permettere il funzionamento a basse temperature, il quadro elettrico di comando con interruttore generale e sezionatore magnetotermico.
- 4) Condizionatore autonomo di ambiente a due sezioni per locali medi e grandi, costituito da un'unità interna di trattamento aria completa di mobile metallico, isolante termoacustico, filtro aria piano con griglia aspirazione, batteria evaporante, ventilatore centrifugo con trasmissione a cinghia e puleggia a diametro variabile e da un'unità esterna motocondensante completa di mobile metallico trattato con vernice idonea per esterno, compressore ermetico a gas, batteria condensante, ventilatore centrifugo. Le caratteristiche dovranno essere in accordo con quanto presente nel progetto, inoltre sarà necessaria l'approvazione da parte della DL prima di poter essere installati.
 - Il condizionatore dovrà essere corredato di termostato ambiente, pressostato doppio di sicurezza, pressostato differenziale olio e, in accordo con il progetto dell'impianto, il plenum di mandata con bocchette ad alette orientabili, la batteria di riscaldamento ad acqua, il dispositivo di regolazione sull'unità motocondensante per permettere il funzionamento a basse temperature, il quadro elettrico di comando con interruttore generale e sezionatore magnetotermico.

Art. XX Trattamento dell'aria

1) Unità termoventilante ad armadio con mobile metallico a vista per installazione verticale o pensile, batteria per acqua calda e fredda, ventilatore centrifugo di mandata con puleggia a diametro variabile, motore trifase, portata d'aria min/max 1600/2400 mc/h prevalenza utile minima 150 Pa.

- 2) Unità termoventilante ad armadio con mobile metallico a vista per installazione verticale o pensile, batteria per acqua calda e fredda, ventilatore centrifugo di mandata con puleggia a diametro variabile, motore trifase. Le caratteristiche dovranno essere in accordo con quanto presente nel progetto, inoltre sarà necessaria l'approvazione da parte della DL prima di poter essere installati.
- 3) Centrale di trattamento dell'aria a sezioni componibili realizzata con struttura portante in profilati di acciaio zincato e doppia pannellatura, portata d'aria in accordo con quanto previsto a progetto, con velocità frontale rispettivamente non superiore a 2,5 e 3,5 m/s, con efficienza dei filtri misurata secondo il metodo ASHRAE 52/76, composta da serrande, filtri, sezioni espulsioni e batteria, separatore e tutti gli altri componenti necessari al completo funzionamento inclusi i collegamenti elettrici e le eventuali opere murarie.

Art. XXI Distribuzione dell'aria

- Canalizzazioni per distribuzione dell'aria realizzate con canali in acciaio zincato a sezione rettangolare, con giunzione a flangia, complete di pezzi speciali, staffaggi, fissaggio ed eventuali opere murarie, nei seguenti spessori:
 - a) dimensione da 0 a 500 mm, spessore 6/10 di mm;
 - b) dimensione da 501 a 1.000 mm, spessore 8/10 di mm;
 - c) dimensione da 1.001 a 1.450 mm, spessore 10/10 di mm;
 - d) dimensione da 1.451 mm in poi, spessore 12/12 di mm

Art. XXII Ventilatori e silenziatori

- Silenziatore rettilineo a setti fonoassorbenti di lunghezza complessiva pari a 1.000 -1.500 mm idoneo per ridurre il livello di rumore negli impianti di trasporto dell'aria costituito da un involucro in lamiera zincata con flange di collegamento, setti fonoassorbenti in lana minerale ignifuga, larghezza setti 200 mm, larghezza passaggi aria 150 mm, larghezze involucro 250 - 700 -1.050 -1.400 - 1.750 - 2.100 mm, altezze disponibili dell'involucro 300 - 600 - 900 - 1.200 - 1.500 -1800 - 2.100 mm.
- 2) Torrino estrattore a scarico radiale con girante eliocentrifuga e motore direttamente accoppiato, idoneo per impianti di estrazione in cui sia richiesto lo sviluppo di pressione statica con un livello di rumorosità contenuto, costituito da un ventilatore eliocentrifugo in alluminio, base e cappello in resina poliestere, motore monofase o trifase con isolamento classe F e protezione IP54.

Art. XXIII Bocchette e griglie

- 1) Bocchetta in alluminio a barre orizzontali fisse inclinate a 0° oppure a 15°, completa di alette posteriori orientabili.
- 2) Bocchetta in alluminio a barre orizzontali fisse inclinate a 0° oppure a 15°, completa di alette posteriori orientabili e serranda di taratura.
- 3) Bocchetta in acciaio verniciato con doppio ordine di alette regolabili completa di serranda di taratura.
- 4) Griglia di passaggio aria in alluminio con alette parapioggia passo 25 mm completa di rete antivolatile.
- 5) Griglia di passaggio aria in acciaio zincato con alette parapioggia passo 100 mm completa di rete antivolatile.

Art. XXIV Rivestimenti isolanti per impianti

1) Isolante per tubazioni costituito da guaina flessibile o lastra in *elastomero espanso a cellule chiuse*, coefficiente di conducibilità termica a 40℃ non superiore a 0,050 W/m℃, comportamento al fuoco classe 2, campo d'impiego da -60℃ a +105℃, spessore determinato

secondo la tabella «B» del D.P.R. 26 agosto 1993, n. 412 comprensivo di eventuale collante e nastro coprigiunto con le seguenti caratteristiche:

```
a) diam est. tubo da isolare
                              17 mm (3/8")
                                               - spessore isolante 20 mm;
b) diam est, tubo da isolare
                                               - spessore isolante 20 mm;
                              22 mm (1/2")
c) diam est. tubo da isolare
                              27 mm (3/4")
                                               - spessore isolante 20 mm;
d) diam est. tubo da isolare
                              34 mm (1")
                                               - spessore isolante 20 mm;
e) diam est. tubo da isolare
                              42 mm (1"1/4)
                                               - spessore isolante 20 mm;
                              48 mm (1"1/2)
f) diam est. tubo da isolare
                                               - spessore isolante 20 mm;
g) diam est. tubo da isolare
                              60 mm (2")
                                               - spessore isolante 20 mm;
h) diam est. tubo da isolare
                              76 mm (2"1/2)
                                               - spessore isolante 20 mm;
i) diam est, tubo da isolare
                              89 mm (3")
                                               - spessore isolante 20 mm;
m) diam est. tubo da isolare
                              114 mm (4")
                                               - spessore isolante 20 mm;
n) diam est. tubo da isolare
                              140 mm (5")
                                               - spessore isolante 20 mm;
o) diam est. tubo da isolare
                              168 mm (6")
                                               - spessore isolante 20 mm (in lastra).
Le lastre saranno di spessore 6-9-13-20-25-32 mm.
```

2) Isolante per tubazioni destinate al riscaldamento costituito da guaina flessibile o lastra in elastomero sintetico estruso a cellule chiuse temperatura d'impiego +8℃/+108℃, classe 1 di reazione al fuoco, conducibilità termica a 40℃ non superiore a 0,050 W/m℃, spessore determinato secondo la tabella «B» del D.P.R. 26 agosto 1993, n. 412, compreso l'eventuale collante e nastro adesivo con le seguenti caratteristiche:

```
a) diam est. tubo da isolare
                              18 mm (3/8")
                                                - spessore isolante 9 mm;
b) diam est. tubo da isolare
                              22 mm (1/2")
                                                - spessore isolante 13 mm;
c) diam est. tubo da isolare
                              28 mm (3/4")
                                                - spessore isolante 13 mm;
d) diam est. tubo da isolare
                              35 mm (1")
                                                - spessore isolante 13 mm;
e) diam est. tubo da isolare
                              42 mm (1"1/4)
                                                - spessore isolante 14 mm;
                              48 mm (1"1/2)
f) diam est. tubo da isolare
                                                - spessore isolante 16 mm;
g) diam est. tubo da isolare
                              60 mm (2")
                                                - spessore isolante 17 mm;
h) diam est. tubo da isolare
                              76 mm (2"1/2)
                                                - spessore isolante 17 mm;
                                                - spessore isolante 17 mm;
i) diam est. tubo da isolare
                              88 mm (3")
                                                - spessore isolante 20 mm (in lastra);
i) diam est. tubo da isolare
                              114 mm (4")
                                                - spessore isolante 20 mm (in lastra);
k) diam est. tubo da isolare
                              140 mm (5")
I) diam est. tubo da isolare
                              168 mm (6")
                                                - spessore isolante 20 mm (in lastra).
Le lastre saranno di spessore 13-20-24-30 mm.
```

3) Isolante per tubazioni destinate al condizionamento e refrigerazione costituito da guaina flessibile o lastra in *elastomero sintetico estruso a cellule chiuse temperatura d'impiego -40℃/+105℃*, classe 1 di reazione al fuoco, conducibilità termica a 20℃ non superiore a 0,040 W/m℃, spessore nominale 19 mm, compreso l'eventuale collante e nastro adesivo con le seguenti caratteristiche:

```
a) diam est. tubo da isolare
                              18 mm (3/8")
                                                - spessore isolante 19 mm;
b) diam est. tubo da isolare
                              22 mm (1/2")
                                               - spessore isolante 20 mm;
c) diam est. tubo da isolare
                              28 mm (3/4")
                                               - spessore isolante 20 mm;
d) diam est. tubo da isolare
                              35 mm (1")
                                               - spessore isolante 21 mm;
e) diam est. tubo da isolare
                              42 mm (1"1/4)
                                               - spessore isolante 22 mm;
f) diam est. tubo da isolare
                              48 mm (1"1/2)
                                               - spessore isolante 23 mm;
g) diam est. tubo da isolare
                              60 mm (2")
                                                - spessore isolante 23 mm;
h) diam est. tubo da isolare
                              76 mm (2"1/2)
                                               - spessore isolante 24 mm;
i) diam est. tubo da isolare
                              88 mm (3")
                                               - spessore isolante 25,5 mm;
i) diam est. tubo da isolare
                              114 mm (4")
                                               - spessore isolante 26,5 mm (in lastra);
k) diam est. tubo da isolare
                              140 mm (5")
                                                - spessore isolante 27,5 mm (in lastra);
I) diam est. tubo da isolare
                              168 mm (6")
                                                - spessore isolante 32 mm (in lastra).
Le lastre saranno di spessore 10-12-16-19-25-32 mm.
```

PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO-

4) Isolante per tubazioni costituito da coppelle e curve in *poliuretano espanso rivestito esternamente* con guaina in PVC dotata di nastro autoadesivo longitudinale, comportamento al fuoco autoestinguente, coefficiente di conducibilità termica a 40℃ non superiore a 0,032W/m℃, spessori conformi alla tabella «B» del D.P.R. 26 agosto 1993, n. 412, compreso il nastro coprigiunto con le seguenti caratteristiche:

```
a) diam est. tubo da isolare
                                               - spessore isolante 20 mm;
                              17 mm (3/8")
b) diam est. tubo da isolare
                              22 mm (1/2")
                                               - spessore isolante 20 mm;
c) diam est. tubo da isolare
                              27 mm (3/4")
                                               - spessore isolante 20 mm;
d) diam est. tubo da isolare
                              34 mm (1")
                                               - spessore isolante 20 mm;
e) diam est. tubo da isolare
                              42 mm (1"1/4)
                                               - spessore isolante 22 mm;
f) diam est. tubo da isolare
                                               - spessore isolante 23 mm;
                              48 mm (1"1/2)
g) diam est. tubo da isolare
                              60 mm (2")
                                               - spessore isolante 25 mm;
h) diam est. tubo da isolare
                              76 mm (2"1/2)
                                               - spessore isolante 32 mm;
i) diam est. tubo da isolare
                              89 mm (3")
                                               - spessore isolante 33 mm;
I) diam est. tubo da isolare
                              114 mm (4")
                                               - spessore isolante 40 mm.
```

- 5) Rivestimento superficiale per ricopertura dell'isolamento di tubazioni, valvole ed accessori realizzato in:
 - foglio di PVC rigido con temperatura d'impiego -25 $^{\circ}$ C/+60 $^{\circ}$ C e classe 1 di reazione al fuoco, spessore 0,35 mm;
 - foglio di alluminio goffrato con temperature d'impiego -196 $^{\circ}$ C/+250 $^{\circ}$ C e classe 0 di reazione al fuoco spessore 0,2 mm;
 - foglio di alluminio liscio di forte spessore con temperature d'impiego -196℃/+250 \textdegree e classe 0 di reazione al fuoco spessore 0,6-0,8 mm.

Per gli impianti termici da installare negli edifici, tutte le tubazioni, comprese quelle montanti in traccia o situate nelle intercapedini delle tamponature a cassetta, anche quanto queste ultime sono isolate termicamente, devono essere installate e coibentate, secondo le seguenti modalità: gli spessori dell'isolante per il coibente di riferimento che abbia conducibilità (lambda) di 0,035 kcal/mh°C ovvero di 0,041 W/m°C, devono avere i val ori indicati nella tabella seguente:

Diametro	Tubazione		Temperatura dal fluido all'immissione nella rete di distribuzione		
convenzionale in pollici	esterno in mm	fino a 85℃ mm spess.	da 86 a 105℃ mm spess.	ol tre 105℃ mm spess.	
1/8	10,2	15	_	-	
1/4	13,5	15	_	_	
3/8	17,2	20	_	-	
1/2	21,3	25	30	40	
3/4	26,9	30	40	40	
1	33,7	30	40	50	
11/4	42,4	30	40	50	
11/2	48,3	30	40	50	
2	60,3	40	50	50	
21/2	76,1	40	50	50	
3	88,9	40	50	50	
31/2	101,6	50	50	50	
4	114,3	50	50	50	
6	168,3	50	60	60	
8	219,1	60	70	80	

10	273,0	60	70	80	
12 e oltre	323,9 e oltre	70	80	90	

Per valori di lambda diversi da quanto sopra, come indicato nell'Allegato B, tabella 1 pubblicata su G.U. n. 242 del 14 ottobre 1993, le tubazioni delle reti di distribuzione dei fluidi caldi in fase liquida o vapore degli impianti termici devono essere coibentate con materiale isolante il cui spessore minimo è fissato dalla tabella citata, che qui si riporta, in funzione del diametro della tubazione espresso in mm e della conduttività termica utile del materiale isolante espressa in W/m℃ alla temperatura di 40℃.

Conduttività termica		Diametro esterno delle tubazioni espresso in mm				
utile dell'isolante (W/m℃)	< 20	Da 20 a 39	Da 40 a 59	Da 60 a79	Da 80 a 99	> 100
0,030	13	19	26	33	37	40
0,032	14	21	29	36	40	44
0,034	15	23	31	39	44	48
0,036	17	25	34	43	47	52
0,038	18	28	37	46	51	56
0,040	20	30	40	50	55	60
0,042	22	32	43	54	59	64
0,044	24	35	46	58	63	69
0,046	26	38	50	62	68	74
0,048	28	41	54	66	72	79
0,050	30	44	58	71	77	84

I montanti verticali delle tubazioni devono essere posti al di qua dell'isolamento termico dell'involucro edilizio, verso l'interno del fabbricato ed i relativi spessori minimi tabellati, vanno moltiplicati per 0,5; per le tubazioni correnti entro strutture non affacciate né all'esterno né su locali non riscaldati, gli spessori tabellati devono essere moltiplicati per 0,3.

I materiali coibenti a contatto con le tubazioni devono presentare stabilità dimensionale e funzionale alle temperature di esercizio e per la durata dichiarata dal produttore; devono inoltre presentare un comportamento al fuoco idoneo, in relazione al loro inserimento nelle strutture e al tipo e destinazione dell'edificio, da dimostrare con documentazione di avvenuti accertamenti di laboratorio.

I canali dell'aria per la climatizzazione invernale posti in ambienti non riscaldati devono essere coibentati con uno spessore di isolante non inferiore agli spessori indicati in tabella per tubazioni di diametro esterno da 20 a 39 mm.

Art. XXV Giunti antivibranti

- 3) Giunto antivibrante in gomma idoneo ad interrompere la trasmissione dei rumori e per assorbire piccole vibrazioni, utilizzabile per acqua fredda e calda fino alla temperatura di 100℃, PN 10, completo di attacchi flangiati e controflange, bulloni e guarnizioni con diametri varianti dai 20 mm (3/4") ai 200 mm (8").
- 4) Giunto antivibrante in acciaio idoneo ad interrompere la trasmissione dei rumori e per assorbire piccole vibrazioni lungo le tubazioni, costituito da soffietto di acciaio e flange di gomma, utilizzabile per acqua fredda, calda e surriscaldata fino alla temperatura di 140℃, PN 10, completo di attacchi flangiati e controflange, bulloni e guarnizioni con diametri varianti dai 32 mm (1"1/4) ai 200 mm (8").

Art. XXVI Modalità di posa delle tubazioni

La posa delle tubazioni, giunti e pezzi speciali dovrà rispettare rigorosamente quanto indicato dal fornitore e dagli elaborati progettuali per i rispettivi tipi di materiale adottato.

Si dovrà aver cura ed osservare tutti i necessari accorgimenti per evitare danneggiamenti alle tubazioni già posate, predisponendo opportune protezioni delle stesse durante lo svolgimento dei lavori e durante i periodi di inattività del cantiere. I tubi che dovessero risultare danneggiati in modo tale che possa esserne compromessa la funzionalità dovranno essere sostituiti a carico dell'Appaltatore.

Le reti impiantistiche dovranno essere realizzate col massimo numero di tubi interi e di massima lunghezza commerciale in modo da ridurre al minimo il numero dei giunti. Sarà perciò vietato l'impiego di spezzoni di tubi, a meno che sia espressamente autorizzato dalla Direzione dei Lavori.

Sia prima che dopo la posa delle tubazioni dovrà essere accertato lo stato e l'integrità di eventuali rivestimenti protettivi; dopo le operazioni di saldatura dovranno essere ripristinati con cura i rivestimenti protettivi in analogia per qualità e spessori a quanto esistente di fabbrica lungo il resto della tubazione.

Ultimate le operazioni posa in opera, la rete dovrà essere sottoposta a prova idraulica, con pressione, durata e modalità stabilite in progetto e nel presente capitolato in funzione delle caratteristiche della tubazione (tipo di tubo e giunto, pressione di esercizio, classi di impiego). Durante tali operazioni, il Direttore dei Lavori potrà richiedere l'assistenza della ditta fornitrice dei tubi. La prova, eseguita a giunti scoperti sarà ritenuta d'esito positivo sulla scorta delle risultanze del grafico del manometro registratore ufficialmente tarato e dell'esame visivo dei giunti e sarà ripetuta in seguito al reinterro definitivo o alla chiusura delle tracce.

Art. XXVII Impianti per la produzione di acqua calda per usi igienici e sanitari63

La temperatura di erogazione dell'acqua calda per usi igienici e sanitari si intende misurata nel punto di immissione nella rete di distribuzione. Su tale temperatura è ammessa una tolleranza di + 5°C. Come temperatura di erogazione si intende la temperatura media dell'acqua in uscita dal bollitore, fluente durante l'intervallo di tempo e con la portata definita dalla norma di omologazione. Gli impianti termici che prevedono la produzione centralizzata mediante gli stessi generatori di acqua calda sia per il riscaldamento degli ambienti che per usi igienici e sanitari devono essere dimensionati per il solo fabbisogno termico per il riscaldamento degli ambienti. È ammesso l'uso di generatori di potenza maggiore, purché la loro potenza massima al focolare non sia superiore a 50.000 kcal/h (58.000 W) e siano dotati di dispositivi automatici di esclusione della fornitura contemporanea dei due servizi, che limitino la potenza termica erogabile per il riscaldamento degli ambienti a quella massima consentita, calcolata come indicato nell'art. 14 del D.P.R. 1052/77.

Gli impianti centralizzati di riscaldamento di acqua per usi igienici e sanitari, al servizio di due o più appartamenti, devono essere dotati di contatori divisionali.

Ai sensi dell'articolo 5 commi 6 e 7 del D.P.R. 412/93 negli impianti termici di nuova installazione e in quelli sottoposti a ristrutturazione, la produzione centralizzata dell'energia termica necessaria alla climatizzazione invernale degli ambienti ed alla produzione di acqua calda per usi igienici e sanitari per una pluralità di utenze, deve essere effettuata con generatori di calore separati, fatte salve eventuali situazioni per le quali si possa dimostrare che l'adozione di un unico generatore di calore non determini maggiori consumi di energia o comporti impedimenti di natura tecnica o economica. Gli elementi tecnico-economici che giustificano la scelta di un unico generatore vanno riportati nella relazione tecnica di cui all'art. 28 della legge 9 gennaio 1991, n. 10. L'applicazione della norma tecnica UNI 8065/89 relativa ai sistemi di trattamento dell'acqua, è prescritta, nei limiti e con le

⁶³ D.P.R. 28 giugno 1977, n. 1052 - Regolamento di esecuzione alla legge 30 aprile 1976,n. 373 , relativa al consumo energetico per usi termici negli edifici.

specifiche indicate nella norma stessa, per gli impianti termici di nuova installazione con potenza complessiva superiore o uguale a 350 kW.

Inoltre i generatori di calore destinati alla produzione centralizzata di acqua calda per usi igienici e sanitari per una pluralità di utenze di tipo abitativo devono essere dimensionati secondo le norme tecniche UNI 9182/08 e 806/08, devono disporre di un sistema di accumulo dell'acqua calda di capacità adeguata, coibentato in funzione del diametro dei serbatoi secondo le indicazioni valide per tubazioni di cui all'ultima colonna dell'allegato B e devono essere progettati e condotti in modo che la temperatura dell'acqua, misurata nel punto di immissione della rete di distribuzione, non superi i 48%, +5% di tolleranza.

Art. XXVIII Regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio di impianti termici alimentati da combustibili gassosi⁶⁴

GENERALITÀ

1.1. Termini, definizioni e tolleranze dimensionali

Ai fini delle presenti disposizioni si applicano i termini, le definizioni e le tolleranze dimensionali approvati con il D.M. 30 novembre 1983. Inoltre si definisce:

- j) apparecchio di tipo A: apparecchi previsto per non essere collegato ad un condotto o ad uno speciale dispositivo per l'evacuazione dei prodotti della combustione all'esterno del locale di installazione;
- k) apparecchio di tipo B: apparecchio previsto per essere collegato ad un condotto o ad un dispositivo di evacuazione dei prodotti della combustione verso l'esterno. L'aria comburente è prelevata direttamente dall'ambiente dove l'apparecchio è collocato;
- 1) apparecchio di tipo C: apparecchio con circuito di combustione a tenuta, che consente l'alimentazione di aria comburente al bruciatore con prelievo diretto dall'esterno e contemporaneamente assicura l'evacuazione diretta all'esterno di prodotti della combustione;
- m) condotte aerotermiche: condotte per il trasporto di aria trattata e/o per la ripresa dell'aria degli ambienti serviti e/o dell'aria esterna da un generatore d'aria calda;
- n) condotte del gas: insieme di tubi, curve, raccordi ed accessori uniti fra loro per la distribuzione del gas. Le condotte oggetto della presente regola tecnica sono comprese in una delle seguenti specie definite nel D.M. 24 novembre 1984⁶⁵:
 - 6ª specie: condotte per pressioni massime di esercizio maggiori di 0,04 fino a 0,5 bar;
- 7^a specie: condotte per pressioni massime di esercizio fino a 0,04 bar;
- o) gas combustibile: ogni combustibile che è allo stato gassoso alla temperatura di 15°C e alla pressione assoluta di 1013 mbar, come definito nella norma UNI EN 437/09;
- p) generatore di aria calda a scambio diretto: apparecchio destinato al riscaldamento dell'aria mediante produzione di calore in una camera di combustione con scambio termico attraverso pareti dello scambiatore, senza fluido intermediario, in cui il flusso dell'aria è mantenuto da uno o più ventilatori;
- q) impianto interno: complesso delle condotte compreso tra il punto di consegna del gas e gli apparecchi utilizzatori (questi esclusi);
- r) impianto termico: complesso dell'impianto interno, degli apparecchi e degli eventuali accessori destinato alla produzione di calore;

⁶⁵ Si veda anche il Decreto Ministeriale 16/11/1999 - Modificazione al decreto ministeriale 24 novembre 1984 recante: "Norme di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione di gas naturale con densità non superiore a 0,8" (Gazzetta ufficiale 23/11/1999 n. 275).

⁶⁴ D.M. 12 aprile 1996 - "Approvazione della regola tecnica di prevenzione incendi per la progettazione, la costruzione e l'esercizio degli impianti termici alimentati da combustibili gassosi" - Allegato.

- v) modulo a tubo radiante: apparecchio destinato al riscaldamento di ambienti mediante emanazione di calore per irraggiamento, costituito da un unità monoblocco composta dal tubo o dal circuito radiante, dall'eventuale riflettore e relative staffe di supporto, dall'eventuale scambiatore, dal bruciatore, dal ventilatore, dai dispositivi di sicurezza, dal pannello di programmazione e controllo, dal programmatore e dagli accessori relativi;
- w) locale esterno: locale ubicato su spazio scoperto, anche in adiacenza all'edificio servito, purché strutturalmente separato e privo di pareti comuni. Sono considerati locali esterni anche quelli ubicati sulla copertura piana dell'edificio servito, purché privi di pareti comuni;
- x) locale fuori terra: locale il cui piano di calpestio è a quota non inferiore a quella del piano di riferimento:
- y) locale interrato: locale in cui l'intradosso del solaio di copertura è a quota inferiore a + 0,6 m al di sopra del piano di riferimento;
- z) locale seminterrato: locale che non è definibile fuori terra né interrato;
- aa)piano di riferimento: piano della strada pubblica o privata o dello spazio scoperto sul quale è attestata la parete nella quale sono realizzate le aperture di aerazione;
- bb) portata termica nominale: quantità di energia termica assorbita nell'unità di tempo dall'apparecchio, dichiarata dal costruttore, espressa in kiloWatt (kW);
- cc)pressione massima di esercizio: pressione massima relativa del combustibile gassoso alla quale può essere esercito l'impianto interno;
- dd) punto di consegna del gas: punto di consegna del combustibile gassoso individuato in corrispondenza:
 - del raccordo di uscita del gruppo di misurazione;
 - del raccordo di uscita della valvola di intercettazione, che delimita la porzione di impianto di proprietà dell'utente, nel caso di assenza del gruppo di misurazione;
 - del raccordo di uscita del riduttore di pressione della fase gassosa nel caso di alimentazione da serbatoio;
- ee)serranda tagliafuoco: dispositivo di otturazione ad azionamento automatico destinato ad interrompere il flusso dell'aria nelle condotte aerotermiche ed a garantire la compartimentazione antincendio per un tempo prestabilito.
- 1.2. Luoghi di installazione degli apparecchi

Gli apparecchi possono essere installati:

- all'aperto;
- in locali esterni;
- in fabbricati destinati anche ad altro uso o in locali inseriti nella volumetria del fabbricato servito.

Gli apparecchi devono in ogni caso essere installati in modo tale da non essere esposti ad urti o manomissioni.

INSTALLAZIONI ALL'APERTO

2.1. Disposizioni comuni

Gli apparecchi installati all'aperto devono essere costruiti per tale tipo di installazione.

È ammessa l'installazione in adiacenza alle pareti dell'edificio servito alle seguenti condizioni: la parete deve possedere caratteristiche di resistenza al fuoco almeno REI 30 ed essere realizzata con materiale di classe 0 di reazione al fuoco, nonché essere priva di aperture nella zona che si estende, a partire dall'apparecchio, per almeno 0,5 m lateralmente e 1 m superiormente.

Qualora la parete non soddisfi in tutto o in parte tali requisiti:

gli apparecchi devono distare non meno di 0,6 m dalle pareti degli edifici, oppure

 deve essere interposta una struttura di caratteristiche non inferiori a REI 120 di dimensioni superiori di almeno 0,50 m della proiezione retta dell'apparecchio lateralmente ed 1 m superiormente.

2.2. Disposizioni particolari

2.2.1. Limitazioni per gli apparecchi alimentati con gas a densità maggiore di 0,8

Gli apparecchi devono distare non meno di 5 m da:

- cavità o depressioni, poste al piano di installazione degli apparecchi;
- aperture comunicanti con locali sul piano di posa degli apparecchi o con canalizzazioni drenanti.

Tale distanza può essere ridotta del 50% per gli apparecchi di portata termica inferiore a 116 kW.

2.2.2. Limitazioni per i generatori di aria calda installati all'aperto

Nel caso il generatore sia a servizio di locali di pubblico spettacolo o di locali soggetti ad affollamento superiore a 0,4 persone/mq, deve essere installata sulla condotta dell'aria calda all'esterno dei locali serviti, una serranda tagliafuoco di caratteristiche non inferiori a REI 30 asservita a dispositivo termico tarato a 80° C o a impianto automatico di rivelazione incendio. Inoltre, nel caso in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori o polveri suscettibili di dare luogo ad incendi o esplosioni, non è permesso il ricircolo dell'aria. Le condotte aerotermiche devono essere conformi al punto 4.5.3.

2.2.3. Tubi radianti installati all'aperto

È permessa l'installazione di moduli con la parte radiante posta all'interno dei locali ed il resto dell'apparecchio al di fuori di questi, purché la parete attraversata sia di classe 0 di reazione al fuoco per almeno 1 m dall'elemento radiante. Per la parte installata all'interno si applica quanto disposto al punto 4.6.

INSTALLAZIONE IN LOCALI ESTERNI

I locali devono essere ad uso esclusivo e realizzati in materiali di classe 0 di reazione al fuoco. Inoltre essi devono soddisfare i requisiti di ubicazione richiesti al Titolo II, di aerazione richiesti al punto 4.1.2. e di disposizione degli apparecchi al loro interno, richiesti al punto 4.1.3.

INSTALLAZIONE IN FABBRICATI DESTINATI ANCHE AD ALTRO USO O IN LOCALI INSERITI NELLA VOLUMETRIA DEL FABBRICATO SERVITO

4.1. Disposizioni comuni

4.1.1. Ubicazione

- c) Il piano di calpestio dei locali non può essere ubicato a quota inferiore a -5 m al di sotto del piano di riferimento. Nel caso dei locali di cui al punto 4.2.6. è ammesso che tale piano sia a quota più bassa e comunque non inferiore a -10 m dal piano di riferimento.
- d) Almeno una parete, di lunghezza non inferiore al 15% del perimetro, deve essere confinante con spazio scoperto o strada pubblica o privata scoperta o nel caso di locali interrati, con intercapedine ad uso esclusivo, di sezione orizzontale netta non inferiore a quella richiesta per l'aerazione e larga non meno di 0,6 m ed attestata superiormente su spazio scoperto o strada scoperta.
- 4.1.1.1. Limitazioni dell'ubicazione di apparecchi alimentati con gas a densità maggiore di 0,8

L'installazione è consentita esclusivamente in locali fuori terra, eventualmente comunicanti con locali anch'essi fuori terra. In entrambi i casi il piano di calpestio non deve presentare avvallamenti o affossamenti tali da creare sacche di gas che determinino condizioni di pericolo.

4.1.2. Aperture di aerazione

I locali devono essere dotati di una o più aperture permanenti di aerazione realizzate su pareti esterne di cui al punto 4.1.1. b); è consentita la protezione delle aperture di aerazione con grigliati metallici, reti e/o alette antipioggia a condizione che non venga ridotta la superficie netta di aerazione.

Le aperture di aerazione devono essere realizzate e collocate in modo da evitare la formazione di sacche di gas, indipendentemente dalla conformazione della copertura. Nel caso di coperture piane tali aperture devono essere realizzate nella parte più alta della parete di cui al punto 4.1.1., b).

Ai fini della realizzazione delle aperture di aerazione, la copertura è considerata parete esterna qualora confinante con spazio scoperto e di superficie non inferiore al 50% della superficie in pianta del locale, nel caso dei locali di cui al punto 4.2. e al 20% negli altri casi.

Le superfici libere minime, in funzione della portata termica complessiva non devono essere inferiori a ("Q" esprime la portata termica, in kW ed "S" la superficie, in cm²):

- d) locali fuori terra : S = Q x 10;
- e) locali seminterrati ed interrati, fino a quota -5 m dal piano di riferimento: S = Q x 15;
- f) locali interrati, a quota compresa tra -5 m e -10 m al di sotto del piano di riferimento, (consentiti solo per i locali di cui al punto 4.2.): S = Q x 20 (con un minimo di 5.000 cm2)

Alle serre non si applicano tali valori.

In ogni caso ciascuna apertura non deve avere superficie netta inferiore a 100 cm²

4.1.2.1. Limitazioni delle aperture di aerazione per gli apparecchi alimentati con gas a densità maggiore di 0,8

Almeno i 2/3 della superficie di aerazione devono essere realizzati a filo del piano di calpestio, con un'altezza minima di 0,2 m Le aperture di aerazione devono distare non meno di 2 m, per portate termiche non superiori a 116 kW e 4,5 m per portate termiche superiori, da cavità, depressioni o aperture comunicanti con locali ubicati al di sotto del piano di calpestio o da canalizzazioni drenanti.

4.1.3. Disposizione degli apparecchi all'interno dei locali

Le distanze tra un qualsiasi punto esterno degli apparecchi e le pareti verticali e orizzontali del locale, nonché le distanze fra gli apparecchi installati nello stesso locale devono permettere l'accessibilità agli organi di regolazione, sicurezza e controllo nonché la manutenzione ordinaria.

4.2. Locali di installazione di apparecchi per la climatizzazione di edifici ed ambienti, per la produzione centralizzata di acqua calda, acqua surriscaldata e/o vapore

I locali devono essere destinati esclusivamente agli impianti termici.

4.2.1. Ubicazione

I locali non devono risultare sottostanti o contigui a locali di pubblico spettacolo, ad ambienti soggetti ad affollamento superiore a 0,4 persone/m² o ai relativi sistemi di vie di uscita. Tale sottostanza o contiguità è tuttavia ammessa purché la parete confinante con spazio scoperto, strada pubblica o privata scoperta, o nel caso di locali interrati con intercapedine ad uso esclusivo, attestata superiormente su spazio scoperto o strada scoperta, si estenda per una lunghezza non inferiore al 20% del perimetro e la pressione di esercizio non superi i 0,04 bar.

4.2.2. Caratteristiche costruttive

I locali posti all'interno di fabbricati destinati anche ad altri usi devono costituire compartimento antincendio.

Le strutture portanti devono possedere i requisiti di resistenza al fuoco non inferiore a R 120, quelle di separazione da altri ambienti non inferiore a REI 120. Le strutture devono essere realizzate con materiale di classe 0 di reazione al fuoco. Nel caso di apparecchi di portata termica complessiva inferiore a 116 kW è ammesso che tali caratteristiche siano ridotte a R60 e REI 60. Ferme restando le limitazioni di cui al punto 4.2.4., l'altezza del locale di installazione deve rispettare le seguenti misure minime, in funzione della portata termica complessiva:

- non superiore a 116 kW: 2.00 m;
- superiore a 116 kW e sino a 350 kW: 2.30 m;
- superiore a 350 kW e sino a 580 kW: 2.60 m;
- superiore a 580 kW: 2.90 m

4.2.3. Aperture di aerazione

La superficie di aerazione, calcolata secondo quanto impartito nel punto 4.1.2., non deve essere in ogni caso inferiore di 3.000 cmg e nel caso di gas di densità maggiore di 0,8 a 5.000 cmg.

In caso di locali sottostanti o contigui a locali di pubblico spettacolo o soggetti ad affollamento superiore a 0,4 persone/mq o ai relativi sistemi di via di uscita, l'apertura di aerazione si deve estendere a filo del soffitto, nella parte più alta della parete attestata su spazio scoperto o su strada pubblica o privata scoperta o nel caso di locali interrati, su intercapedine ad uso esclusivo attestata superiormente su spazio scoperto o strada scoperta. La superficie netta di aerazione deve essere aumentata del 50% rispetto ai valori indicati al punto 4.1.2. ed in ogni caso deve estendersi lungo almeno il 70% della parete attestata sull'esterno, come sopra specificato, per una altezza, in ogni punto, non inferiore a 0,50 m Nel caso di alimentazione con gas a densità superiore a 0,8, tale apertura deve essere realizzata anche a filo del pavimento nel rispetto di quanto previsto al punto 4.1.2.1.

4.2.4. Disposizione degli impianti all'interno dei locali

Lungo il perimetro dell'apparecchio è consentito il passaggio dei canali da fumo e delle condotte aerotermiche, delle tubazioni dell'acqua, gas, vapore e dei cavi elettrici a servizio dell'apparecchio.

È consentita l'installazione a parete di apparecchi previsti per tale tipo di installazione.

È consentito che più apparecchi termici a pavimento o a parete, previsti per il particolare tipo di installazione, siano posti tra loro in adiacenza o sovrapposti, a condizione che tutti i dispositivi di sicurezza e di controllo siano facilmente raggiungibili.

Il posizionamento dei vari componenti degli impianti deve essere tale da evitare il rischio di formazione di sacche di gas in misura pericolosa.

4.2.5. Accesso

L'accesso può avvenire dall'esterno da:

- spazio scoperto;
- strada pubblica o privata scoperta;
- porticati;
- intercapedine antincendio di larghezza non inferiore a 0,9 m;

oppure dall'interno tramite disimpegno, realizzato in modo da evitare la formazione di sacche di gas, ed avente le seguenti caratteristiche:

- c) impianti di portata termica non superiore a 116 kW: resistenza al fuoco della struttura REI 30 e con porte REI 30:
- d) impianti di portata termica superiore a 116 kW:
 - superficie netta minima di 2 mq;
 - resistenza al fuoco della struttura REI 60 e con porte REI 60;
 - aerazione a mezzo di aperture di superficie complessiva non inferiore a 0,5 m² realizzate su parete attestata su spazio scoperto, strada pubblica o privata scoperta, intercapedine. Nel caso di alimentazione con gas a densità non superiore a 0,8, è consentito l'utilizzo di un camino di sezione non inferiore a 0,1 mg.

Nel caso di locali ubicati all'interno del volume di fabbricati destinati, anche parzialmente a pubblico spettacolo, caserme, attività comprese nei punti 51, 75, 84, 85, 86, 87, 89, 90, 92 e 94 (per altezza antincendio oltre 54 m), dell'allegato al D.M. 16 febbraio 1982 o soggetti ad affollamento superiore a 0,4 persone per mq, l'accesso deve avvenire direttamente dall'esterno o da intercapedine antincendio di larghezza non inferiore a 0,9 m

4.2.5.1. Porte

Le porte dei locali e dei disimpegni devono:

- essere apribili verso l'esterno e munite di congegno di autochiusura, di altezza minima di 2 m e larghezza minima 0,6 m Per impianti con portata termica complessiva inferiore a 116 kW il senso di apertura delle porte non è vincolato;
- possedere caratteristiche di resistenza al fuoco non inferiori a REI 60 o REI 30, per impianti di portata termica rispettivamente superiore o non a 116 kW. Alle porte di accesso diretto da spazio scoperto, strada pubblica o privata, scoperta, o da intercapedine antincendio non è richiesto tale requisito, purché siano in materiale di classe 0 di reazione al fuoco.
- 4.2.6. Limitazioni per l'installazione a quota inferiore a -5 m e sino a -10 m al di sotto del piano di riferimento
- d) Le aperture di aerazione e l'accesso devono essere ricavati su una o più intercapedini antincendio, attestate su spazio scoperto, non comunicanti con alcun locale e ad esclusivo uso del locale destinato agli apparecchi.
- e) All'esterno del locale ed in prossimità di questo deve essere installata, sulla tubazione di adduzione del gas, una valvola automatica del tipo normalmente chiuso asservita al funzionamento del bruciatore e al dispositivo di controllo della tenuta del tratto di impianto interno tra la valvola stessa e il bruciatore.
- f) La pressione di esercizio non deve essere superiore a 0,04 bar.
- 4.3. Locali per forni da pane, lavaggio biancheria, altri laboratori artigiani e sterilizzazione

Gli apparecchi devono essere installati in locali ad essi esclusivamente destinati o nei locali in cui si svolgono le lavorazioni.

4.3.1. Caratteristiche costruttive

Le strutture portanti devono possedere i requisiti di resistenza al fuoco non inferiore a R 60, quelle di separazione da altri ambienti non inferiore a REI 60. Per portate termiche complessive fino a 116 kW, sono consentite strutture R/REI 30.

4.3.2. Accesso e comunicazioni

L'accesso può avvenire:

- direttamente dall'esterno, tramite porta larga almeno 0,9 m realizzata in materiale di classe 0 di reazione al fuoco e/o;
- da locali attigui, purché pertinenti l'attività stessa, tramite porte larghe almeno 0,9 m, di resistenza al fuoco non inferiore a REI 30, dotate di dispositivo di autochiusura anche del tipo normalmente aperto purché asservito ad un sistema di rivelazione incendi.
- 4.4. Locali di installazione di impianti cucina e lavaggio stoviglie

I locali, fatto salvo quanto consentito nel successivo punto 4.4.3., devono essere esclusivamente destinati agli apparecchi.

4.4.1. Caratteristiche costruttive

Le strutture portanti devono possedere resistenza al fuoco non inferiore a R 120, quelle di separazione da altri ambienti non inferiore a REI 120. Per impianti di portata termica complessiva fino a 116 kW sono consentite caratteristiche R/REI 60.

4.4.2. Accesso e comunicazioni

L'accesso può avvenire direttamente:

- dall'esterno, tramite porta larga almeno 0,9 m in materiale di classe 0 di reazione al fuoco;
- e/o dal locale consumazione pasti, tramite porte larghe almeno 0,9 m di caratteristiche almeno REI 60 per portate termiche superiori a 116 kW e REI 30 negli altri casi, dotate di dispositivo di autochiusura anche del tipo normalmente aperto purché asservito ad un sistema di rivelazione incendi.

È consentita la comunicazione con altri locali, pertinenti l'attività servita dall'impianto, tramite disimpegno anche non aerato, con eccezione dei locali destinati a pubblico spettacolo, con i quali la comunicazione può avvenire esclusivamente tramite disimpegno avente le caratteristiche indicate al punto 4.2.5., b), indipendentemente dalla portata termica.

4.4.2.1. Ulteriori limitazioni per gli apparecchi alimentati con gas a densità maggiore di 0,8

La comunicazione con caserme, locali soggetti ad affollamento superiore a 0,4 persone/m², locali di pubblico spettacolo o destinati alle attività di cui ai punti 51, 75, 84, 85, 86, 87 e 89 dell'allegato al D.M. 16 febbraio 1982, può avvenire esclusivamente tramite disimpegno avente le caratteristiche indicate al punto 4.2.5. - b), indipendentemente dalla portata termica.

4.4.3. Installazione in locali in cui avviene anche la consumazione di pasti

L'installazione di apparecchi a servizio di cucine negli stessi locali di consumazione pasti, è consentita alle seguenti ulteriori condizioni:

- i) gli apparecchi utilizzati devono essere asserviti a un sistema di evacuazione forzata (p.e.: cappa munita di aspiratore meccanico);
- j) l'alimentazione del gas alle apparecchiature deve essere direttamente asservita al sistema di evacuazione forzata e deve interrompersi nel caso che la portata di questo scenda sotto i valori prescritti in seguito; la riammissione del gas alle apparecchiature deve potersi fare solo manualmente:
- k) l'atmosfera della zona cucina, durante l'esercizio, deve essere mantenuta costantemente in depressione rispetto a quella della zona consumazione pasti;
- 1) il sistema di evacuazione deve consentire l'aspirazione di un volume almeno uguale a 1 mc/min di fumi per ogni kW di potenza assorbita dagli apparecchi ad esso asserviti;
- m) le cappe o i dispositivi similari devono essere costruiti in materiale di classe 0 di reazione al fuoco e dotati di filtri per grassi e di dispositivi per la raccolta delle eventuali condense;
- n) tra la zona cucina e la zona consumazione pasti deve essere realizzata una separazione verticale, pendente dalla copertura fino a quota 2,2 m dal pavimento, atta ad evitare l'espandersi dei fumi e dei gas caldi in senso orizzontale all'interno del locale, in materiale di classe 0 di reazione al fuoco ed avente adequata resistenza meccanica, particolarmente nel vincolo;
- o) le comunicazioni dei locali con altri, pertinenti l'attività servita, deve avvenire tramite porte REI 30 con dispositivo di autochiusura;
- p) il locale consumazione pasti, in relazione all'affollamento previsto, deve essere servito da vie di circolazione ed uscite, tali da consentire una rapida e sicura evacuazione delle persone presenti in caso di emergenza.
- 4.5. Locali di installazione di generatori di aria calda a scambio diretto
- 4.5.1. Locali destinati esclusivamente ai generatori

I locali e le installazioni devono soddisfare i requisiti richiesti al punto 4.2. È tuttavia ammesso che i locali comunichino con gli ambienti da riscaldare attraverso le condotte aerotermiche, che devono essere conformi al successivo punto 4.5.3. Inoltre:

- nel caso in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori o polveri suscettibili di dare luogo ad incendi o esplosioni non è permesso il ricircolo dell'aria;
- l'impianto deve essere munito di dispositivo automatico che consenta, in caso di intervento della serranda tagliafuoco, l'espulsione all'esterno dell'aria calda proveniente dall'apparecchio;
- l'intervento della serranda tagliafuoco deve determinare automaticamente lo spegnimento del bruciatore.

4.5.2. Locali di installazione destinati ad altre attività

È vietata l'installazione all'interno di: locali di pubblico spettacolo, locali soggetti ad affollamento superiore a 0,4 persone/mq, locali in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori o polveri suscettibili di dare luogo ad incendi o esplosioni.

All'interno di autorimesse ed autofficine potranno essere consentiti solo gli apparecchi rispondenti alle specifiche norme tecniche armonizzate.

4.5.2.1. Caratteristiche dei locali

Le pareti alle quali siano addossati, eventualmente, gli apparecchi devono possedere caratteristiche almeno REI 30 ed in classe 0 di reazione al fuoco.

Qualora non siano soddisfatti i requisiti di incombustibilità o di resistenza al fuoco, l'installazione all'interno deve avvenire nel rispetto delle seguenti distanze:

- 0,60 m tra l'involucro dell'apparecchio e le pareti;
- 1,00 m tra l'involucro dell'apparecchio ed il soffitto.

Se tali distanze non sono rispettate, deve essere interposta una struttura di caratteristiche non inferiori a REI 120 di dimensioni superiori di almeno 0,50 m della proiezione retta dell'apparecchio. Inoltre le pareti attraversate, in corrispondenza della condotta di scarico dei prodotti della combustione, devono essere adeguatamente protette. Nel caso di installazione in ambienti soggetti a depressione o nei quali le lavorazioni comportano lo sviluppo di apprezzabili quantità di polveri incombustibili, gli apparecchi con bruciatore atmosferico devono essere di tipo C (come modificato dall'articolo unico del D.M. 16 novembre 1999).

4.5.2.2. Disposizione degli apparecchi

La distanza fra la superficie esterna del generatore di aria calda e della condotta di evacuazione dei gas combusti da eventuali materiali combustibili in deposito deve essere tale da impedire il raggiungimento di temperature pericolose ed in ogni caso non inferiore a 4 m Tali prescrizioni non si applicano agli apparecchi posti ad un'altezza non inferiore a 2,5 m dal pavimento per i quali sono sufficienti distanze minime a 1,5 m

Gli apparecchi possono essere installati a pavimento od a una altezza inferiore a 2,5 m, se protetti da una recinzione metallica fissa di altezza non inferiore a 1,5 m e distante almeno 0,6 m e comunque posta in modo da consentire le operazioni di manutenzione e di controllo.

4.5.3. Condotte aerotermiche

Le condotte devono essere realizzate in materiale di classe 0 di reazione al fuoco. I giunti antivibranti devono essere di classe di reazione al fuoco non superiore a 2.

Negli attraversamenti di pareti e solai, lo spazio attorno alle condotte deve essere sigillato con materiale in classe 0 di reazione al fuoco, senza tuttavia ostacolare le dilatazioni delle condotte stesse.

Le condotte non possono attraversare luoghi sicuri (che non siano spazi scoperti), vani scala, vani ascensore e locali in cui le lavorazioni o i materiali in deposito comportano il rischio di esplosione e/o incendio. L'attraversamento dei soprarichiamati locali può tuttavia essere ammesso se le condotte o

le strutture che le racchiudono hanno una resistenza al fuoco non inferiore alla classe del locale attraversato ed in ogni caso non inferiore a REI 30.

Qualora le condotte attraversino strutture che delimitano compartimenti antincendio, deve essere installata, in corrispondenza dell'attraversamento, almeno una serranda, avente resistenza al fuoco pari a quella della struttura attraversata, azionata automaticamente e direttamente da:

- rivelatori di fumo, installati nelle condotte, qualora gli apparecchi siano a servizio di più di un compartimento antincendio e si effettui il ricircolo dell'aria;
- dispositivi termici, tarati a 80°C, posti in corr ispondenza delle serrande stesse negli altri casi.

In ogni caso l'intervento della serranda deve determinare automaticamente lo spegnimento del bruciatore.

4.6. Locali di installazione di moduli a tubi radianti

È vietata l'installazione all'interno di locali di pubblico spettacolo, locali soggetti ad affollamento superiore a 0,4 persone/m², locali in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di vapori e/o polveri suscettibili di dare luogo ad incendi e/o esplosioni.

4.6.1. Caratteristiche dei locali

Le strutture verticali e/o orizzontali su cui sono installati i moduli a tubi radianti devono essere almeno REI 30 e in classe 0 di reazione al fuoco. I moduli devono essere installati a non meno di 0,6 m dalle pareti.

4.6.2. Disposizione dei moduli all'interno dei locali

La distanza tra la superficie esterna del modulo ed eventuali materiali combustibili in deposito ed il piano calpestabile deve essere tale da impedire il raggiungimento di temperature pericolose ed in ogni caso non inferiore a 4 m

4.7. Installazione all'interno di serre

L'installazione all'interno di serre deve avvenire nel rispetto delle seguenti distanze minime da superfici combustibili:

- 0,60 m tra l'involucro dell'apparecchio e le pareti;
- 1,00 m tra l'involucro dell'apparecchio ed il soffitto.

Se tali distanze non sono rispettate, deve essere interposta una struttura di caratteristiche non inferiori a REI 120 di dimensioni superiori di almeno 0,50 m della proiezione retta dell'apparecchio.

L'aerazione deve essere assicurata da almeno un'apertura di superficie non inferiore a 100 cmq.

IMPIANTO INTERNO DI ADDUZIONE DEL GAS

5.1. Generalità

Il dimensionamento delle tubazioni e degli eventuali riduttori di pressione deve essere tale da garantire il corretto funzionamento degli apparecchi di utilizzazione. L'impianto interno ed i materiali impiegati devono essere conformi alla legislazione tecnica vigente.

5.2. Materiali delle tubazioni

Possono essere utilizzati esclusivamente tubi idonei. Sono considerati tali quelli rispondenti alle caratteristiche di seguito indicate e realizzati in acciaio, in rame o in polietilene.

5.2.1. Tubi di acciaio

 c) I tubi di acciaio possono essere senza saldatura oppure con saldatura longitudinale e devono avere caratteristiche qualitative e dimensionali non inferiori a quelle indicate dalla norma UNI EN 10225/09; d) i tubi in acciaio con saldatura longitudinale, se interrati, devono avere caratteristiche qualitative e dimensionali non inferiori a quelle indicate dalla norma UNI EN 10208-1/09 e 10208-2/09.

5.2.2. Tubi di rame

I tubi di rame, da utilizzare esclusivamente per le condotte del gas della VII specie (pressione di esercizio non superiore a 0,04 bar) devono avere caratteristiche qualitative e dimensionali non minori di quelle indicate dalla norma UNI EN 1057/06. Nel caso di interramento lo spessore non può essere minore di 2.0 mm

5.2.3. Tubi di polietilene

I tubi di polietilene, ammessi unicamente per l'interramento all'esterno di edifici, devono avere caratteristiche qualitative e dimensionali non minori di quelle indicate dalla norma UNI EN 1555/04, con spessore minimo di 3 mm

5.3. Giunzioni, raccordi e pezzi speciali, valvole

5.3.1. tubazioni in acciaio

- f) L'impiego di giunti a tre pezzi è ammesso esclusivamente per i collegamenti iniziale e finale dell'impianto interno;
- g) le giunzioni dei tubi di acciaio devono essere realizzate mediante raccordi con filettature o a mezzo saldatura di testa per fusione o a mezzo di raccordi flangiati;
- h) nell'utilizzo di raccordi con filettatura è consentito l'impiego di mezzi di tenuta, quali ad esempio canapa con mastici adatti (tranne per il gas con densità maggiore di 0,8), nastro di tetrafluoroetilene, mastici idonei per lo specifico gas. È vietato l'uso di biacca, minio o altri materiali simili;
- i) tutti i raccordi ed i pezzi speciali devono essere realizzati di acciaio oppure di ghisa malleabile;
 quelli di acciaio con estremità filettate o saldate, quelli di ghisa malleabile con estremità unicamente filettate;
- j) le valvole devono essere di facile manovrabilità e manutenzione e con possibilità di rilevare facilmente le posizioni di aperto e di chiuso. Esse devono essere di acciaio, di ottone o di ghisa sferoidale con sezione libera di passaggio non minore del 75% di quella del tubo sul quale vengono inserite. Non è consentito l'uso di ghisa sferoidale nel caso di gas con densità maggiore di 0.8.

5.3.2. Tubazioni in rame

- e) Le giunzioni dei tubi di rame devono essere realizzate mediante brasatura capillare forte;
- f) i collegamenti mediante raccordi metallici a serraggio meccanico sono ammessi unicamente nel caso di installazioni fuori terra e a vista o ispezionabili. Non sono ammessi raccordi meccanici con elementi di materiale non metallico. I raccordi ed i pezzi speciali possono essere di rame, di ottone o di bronzo. Le giunzioni miste, tubo di rame con tubo di acciaio, devono essere realizzate mediante brasatura forte o raccordi filettati;
- g) non è ammesso l'impiego di giunti misti all'interno degli edifici, ad eccezione del collegamento della tubazione in rame con l'apparecchio utilizzatore;
- h) le valvole per i tubi di rame devono essere di ottone, di bronzo o di acciaio, con le medesime caratteristiche di cui al punto 5.3.1. lettera e).

5.3.3. Tubazioni in polietilene

- d) I raccordi ed i pezzi speciali devono essere realizzati in polietilene; le giunzioni devono essere realizzate mediante saldatura di testa per fusione a mezzo di elementi riscaldanti o mediante saldatura per elettrofusione o saldatura mediante appositi raccordi elettrosaldabili;
- e) le giunzioni miste, tubo di polietilene con tubo metallico, devono essere realizzate mediante raccordi speciali (giunti di transizione) polietilene-metallo idonei per saldatura o raccordi metallici filettati o saldati. Sono altresì ammesse giunzioni flangiate;

PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO-

f) le valvole per tubi di polietilene possono essere, oltre che dello stesso polietilene, anche con il corpo di ottone, di bronzo o di acciaio, sempre con le medesime caratteristiche di cui al punto 5.3.1. lettera e).

5.4. Posa in opera

5.4.1. Percorso delle tubazioni

Il percorso tra punto di consegna ed apparecchi utilizzatori deve essere il più breve possibile ed è ammesso:

- c) all'esterno dei fabbricati:
 - interrato;
 - in vista:
 - in canaletta;
- d) all'interno dei fabbricati:
 - in appositi alloggiamenti, in caso di edifici o locali destinati ad uso civile o ad attività soggette ai controlli dei Vigili del Fuoco;
 - in guaina d'acciaio in caso di attraversamento di locali non ricompresi nei punti precedenti, di androni permanentemente aerati, di intercapedini, a condizione che il percorso sia ispezionabile.

Nei locali di installazione degli apparecchi il percorso delle tubazioni è consentito in vista.

Per le installazioni a servizio di locali o edifici adibiti ad attività industriali si applicano le disposizioni previste dal D.M. 24 novembre 1984.

5.4.2. Generalità

- j) Le tubazioni devono essere protette contro la corrosione e collocate in modo tale da non subire danneggiamenti dovuti ad urti;
- k) è vietato l'uso delle tubazioni del gas come dispersori, conduttori di terra o conduttori di protezione di impianti e apparecchiature elettriche, telefono compreso;
- 1) è vietata la collocazione delle tubazioni nelle canne fumarie, nei vani e cunicoli destinati a contenere servizi elettrici, telefonici, ascensori o per lo scarico delle immondizie;
- m) eventuali riduttori di pressione o prese libere dell'impianto interno devono essere collocati all'esterno degli edifici o, nel caso delle prese libere, anche all'interno dei locali, se destinati esclusivamente all'installazione degli apparecchi. Queste devono essere chiuse o con tappi filettati o con sistemi equivalenti;
- n) è vietato l'utilizzo di tubi, rubinetti, accessori, ecc., rimossi da altro impianto già funzionante;
- o) all'esterno dei locali di installazione degli apparecchi deve essere installata, sulla tubazione di adduzione del gas, in posizione visibile e facilmente raggiungibile una valvola di intercettazione manuale con manovra a chiusura rapida per rotazione di 90° ed arresti di fine corsa nelle posizioni di tutto aperto e di tutto chiuso;
- p) per il collegamento dell'impianto interno finale, e iniziale (se alimentato tramite contatore), devono essere utilizzati tubi metallici flessibili continui:
- q) nell'attraversamento di muri la tubazione non deve presentare giunzioni o saldature e deve essere protetta da guaina murata con malta di cemento. Nell'attraversamento di muri perimetrali esterni, l'intercapedine fra guaina e tubazione gas deve essere sigillata con materiali adatti in corrispondenza della parte interna del locale, assicurando comunque il deflusso del gas proveniente da eventuali fughe mediante almeno uno sfiato verso l'esterno;
- r) è vietato l'attraversamento di giunti sismici;
- n) le condotte, comunque installate, devono distare almeno 2 cm dal rivestimento della parete o dal filo esterno del solaio:

o) fra le condotte ed i cavi o tubi di altri servizi deve essere adottata una distanza minima di 10 cm; nel caso di incrocio, quando tale distanza minima non possa essere rispettata, deve comunque essere evitato il contatto diretto interponendo opportuni setti separatori con adeguate caratteristiche di rigidità dielettrica e di resistenza meccanica; qualora, nell'incrocio, il tubo del gas sia sottostante a quello dell'acqua, esso deve essere protetto con opportuna guaina impermeabile in materiale incombustibile o non propagante la fiamma.

5.4.3. Modalità di posa in opera all'esterno dei fabbricati

5.4.3.1. Posa in opera interrata

- f) Tutti i tratti interrati delle tubazioni metalliche devono essere provvisti di un adeguato rivestimento protettivo contro la corrosione ed isolati, mediante giunti dielettrici, da collocarsi fuori terra, nelle immediate prossimità delle risalite della tubazione;
- g) le tubazioni devono essere posate su un letto di sabbia lavata, di spessore minimo 100 mm, e ricoperte, per altri 100 mm, di sabbia dello stesso tipo. Per le tubazioni in polietilene è inoltre necessario prevedere, a circa 300 mm sopra la tubazione, la sistemazione di nastri di segnalazione;
- h) l'interramento della tubazione, misurato fra la generatrice superiore del tubo ed il livello del terreno, deve essere almeno pari a 600 mm Nei casi in cui tale profondità non possa essere rispettata occorre prevedere una protezione della tubazione con tubi di acciaio, piastre di calcestruzzo o con uno strato di mattoni pieni;
- i) le tubazioni interrate in polietilene devono essere collegate alle tubazioni metalliche prima della fuoriuscita dal terreno e prima del loro ingresso nel fabbricato;
- j) le tubazioni metalliche interrate devono essere protette con rivestimento esterno pesante, di tipo bituminoso oppure di materiali plastici, e devono essere posate ad una distanza reciproca non minore del massimo diametro esterno delle tubazioni (ivi compresi gli spessori delle eventuali guaine). Nel caso di parallelismi, sovrappassi e sottopassi tra i tubi del gas e altre canalizzazioni preesistenti, la distanza minima, misurata fra le due superfici affacciate, deve essere tale da consentire gli eventuali interventi di manutenzione su entrambi i servizi.

5.4.3.2. Posa in opera in vista

- 3) Le tubazioni installate in vista devono essere adeguatamente ancorate per evitare scuotimenti, vibrazioni ed oscillazioni. Esse devono essere collocate in posizione tale da impedire urti e danneggiamenti e ove necessario, adeguatamente protette.
- 4) Le tubazioni di gas di densità non superiore a 0,8 devono essere contraddistinte con il colore giallo, continuo o in bande da 20 cm, poste ad una distanza massima di 1 m l'una dall'altra. Le altre tubazioni di gas devono essere contraddistinte con il colore giallo, a bande alternate da 20 cm di colore arancione. All'interno dei locali serviti dagli apparecchi le tubazioni non devono presentare giunti meccanici.

5.4.3.3. Posa in opera in canaletta

Le canalette devono essere:

- ricavate nell'estradosso delle pareti;
- rese stagne verso l'interno delle pareti nelle quali sono ricavate mediante idonea rinzaffatura di malta di cemento;
- nel caso siano chiuse, dotate di almeno due aperture di ventilazione verso l'esterno di almeno 100 cmq cadauna, poste nella parte alta e nella parte bassa della canaletta. L'apertura alla quota più bassa deve essere provvista di rete tagliafiamma e, nel caso di gas con densità superiore a 0,8, deve essere ubicata a quota superiore del piano di campagna;
- ad esclusivo servizio dell'impianto.
- 5.4.4. Modalità di posa in opera all'interno dei fabbricati

5.4.4.1. Posa in opera in appositi alloggiamenti

L'installazione in appositi alloggiamenti è consentita a condizione che:

- gli alloggiamenti siano realizzati in materiale incombustibile, di resistenza al fuoco pari a quella richiesta per le pareti del locale o del compartimento attraversato ed in ogni caso non inferiore a REI 30;
- le canalizzazioni non presentino giunti meccanici all'interno degli alloggiamenti non ispezionabili;
- le pareti degli alloggiamenti siano impermeabili ai gas;
- siano ad esclusivo servizio dell'impianto interno;
- gli alloggiamenti siano permanentemente aerati verso l'esterno con apertura alle due estremità;
 l'apertura di aerazione alla quota più bassa deve essere provvista di rete tagliafiamma e, nel caso di gas con densità maggiore di 0,8, deve essere ubicata a quota superiore al piano di campagna, ad una distanza misurata orizzontalmente di almeno 10 metri da altre aperture alla stessa quota o quota inferiore.

5.4.4.2. Posa in opera in guaina

Le guaine devono essere:

- in vista;
- di acciaio di spessore minimo di 2 mm e di diametro superiore di almeno 2 cm a quello della tubazione del gas;
- le guaine devono essere dotate di almeno uno sfiato verso l'esterno. Nel caso una estremità della guaina sia attestata verso l'interno, questa dovrà essere resa stagna verso l'interno tramite sigillatura in materiale incombustibile;
- le tubazioni non devono presentare giunti meccanici all'interno delle guaine;
- sono consentite guaine metalliche o di plastica, non propagante la fiamma, nell'attraversamento di muri o solai esterni. Nell'attraversamento di elementi portanti orizzontali, il tubo deve essere protetto da una guaina sporgente almeno 20 mm dal pavimento e l'intercapedine fra il tubo e il tubo guaina deve essere sigillata con materiali adatti (ad esempio asfalto, cemento plastico e simili). È vietato l'impiego di gesso.

Nel caso di androni fuori terra e non sovrastanti piani cantinati è ammessa la posa in opera delle tubazioni sotto pavimento, protette da guaina corredata di sfiati alle estremità verso l'esterno. Nel caso di intercapedini superiormente ventilate ed attestate su spazio scoperto non è richiesta la posa in opera in guaina, purché le tubazioni siano in acciaio con giunzioni saldate.

5.5. Gruppo di misurazione

Il contatore del gas deve essere installato all'esterno in contenitore o nicchia areata oppure all'interno in locale o in nicchia entrambi areati direttamente dall'esterno.

5.6. Prova di tenuta dell'impianto interno

La prova di tenuta deve essere eseguita prima di mettere in servizio l'impianto interno e di collegarlo al punto di consegna e agli apparecchi. Se qualche parte dell'impianto non è in vista, la prova di tenuta deve precedere la copertura della tubazione. La prova dei tronchi in guaina contenenti giunzioni saldate deve essere eseguita prima del collegamento alle condotte di impianto.

La prova va effettuata adottando gli accorgimenti necessari per l'esecuzione in condizioni di sicurezza e con le seguenti modalità:

- g) si tappano provvisoriamente tutti i raccordi di collegamento agli apparecchi e al contatore;
- h) si immette nell'impianto aria od altro gas inerte, fino a che sia raggiunta una pressione pari a:
 - impianti di 6^a specie: 1 bar;
 - impianti di 7^a specie: 0,1 bar (tubazioni non interrate), 1 bar (tubazioni interrate);

- i) dopo il tempo di attesa necessario per stabilizzare la pressione (comunque non minore di 15 min), si effettua una prima lettura della pressione, mediante un manometro ad acqua od apparecchio equivalente, di idonea sensibilità minima;
- j) la prova deve avere la durata di:
 - 24 ore per tubazioni interrate di 6^a specie;
 - 4 ore per tubazioni non interrate di 6ª specie;
 - 30 min per tubazioni di 7^a specie.

Al termine della prova non devono verificarsi cadute di pressione rispetto alla lettura iniziale;

- k) se si verificassero delle perdite, queste devono essere ricercate con l'ausilio di soluzione saponosa o prodotto equivalente ed eliminate; le parti difettose devono essere sostituite e le guarnizioni rifatte. È vietato riparare dette parti con mastici, ovvero cianfrinarle. Eliminate le perdite, occorre eseguire di nuovo la prova di tenuta dell'impianto;
- 1) la prova è considerata favorevole quando non si verifichino cadute di pressione. Per ogni prova a pressione deve essere redatto relativo verbale di collaudo.

DISPOSIZIONI COMPLEMENTARI

6.1. Impianto elettrico

L'impianto elettrico deve essere realizzato in conformità alla legge n. 186 del 1° marzo 1968 e tale conformità deve essere attestata secondo le procedure previste dal D.M. 37/08.

L'interruttore generale nei locali di cui al punto 4.2. deve essere installato all'esterno dei locali, in posizione segnalata ed accessibile. Negli altri casi deve essere collocato lontano dall'apparecchio utilizzatore, in posizione facilmente raggiungibile e segnalata.

6.2. Mezzi di estinzione degli incendi

In ogni locale e in prossimità di ciascun apparecchio deve essere installato un estintore di classe 21A 89BC. I mezzi di estinzione degli incendi devono essere idonei alle lavorazioni o ai materiali in deposito nei locali ove questi sono consentiti.

6.3. Segnaletica di sicurezza

La segnaletica di sicurezza deve richiamare l'attenzione sui divieti e sulle limitazioni imposti e segnalare la posizione della valvola esterna di intercettazione generale del gas e dell'interruttore elettrico generale.

6.4. Esercizio e manutenzione

- 1. Si richiamano gli obblighi di cui all'art. 11 del D.P.R. 26 agosto 1993, n. 412 (S.O.G.U. n. 242 del 14 ottobre 1993).
- 2. Nei locali di cui al punto 4.2. è vietato depositare ed utilizzare sostanze infiammabili o tossiche e materiali non attinenti all'impianto e devono essere adottate adeguate precauzioni affinché, durante qualunque tipo di lavoro, l'eventuale uso di fiamme libere non costituisca fonte di innesco.

IMPIANTI ESISTENTI

- 7.1. Gli impianti esistenti devono essere resi conformi alle presenti disposizioni. È tuttavia ammesso che:
- la superficie di aerazione sia inferiore a quella richiesta al punto 4.1.2., purché non inferiore a quella risultante dalla formula:
 - S > 8,6 Q (locali fuori terra);
 - S > 12,9 Q (locali seminterrati ed interrati fino a quota -5 m);
 - S > 17,2 Q (locale interrato fra quota compresa tra -5 e -10 metri al di sotto del piano di riferimento).

È consentito che l'altezza dei locali sia inferiore a quella prevista nella precedente normativa, nel rispetto dei punti 4.1.3. e 4.2.4. Per impianti di portata termica superiore a 350 kW l'altezza non deve essere comunque inferiore a 2,5 m

Art. XXIX Regola tecnica di prevenzione incendi per la progettazione, la costruzione e l'esercizio degli impianti termici alimentati da combustibili liquidi. ⁶⁶

GENERALITÀ

- 1.1. Termini, definizioni e tolleranze dimensionali
- 1. Ai fini delle presenti disposizioni si applicano i termini, le definizioni e le tolleranze dimensionali approvati con il decreto ministeriale 30 novembre 1983 (Gazzetta Ufficiale n. 339 del 12 dicembre 1983). Inoltre, si definisce:
- a) apparecchio: l'insieme costituito da un generatore di calore e relativo/i bruciatore/i;
- b) camino: condotto subverticale avente lo scopo di disperdere, a conveniente altezza dal suolo, i prodotti della combustione, realizzato con materiali incombustibili, impermeabili ai gas, resistenti ai fumi ed al calore e tali, in ogni caso, da garantire che la temperatura della superficie esterna non costituisca elemento di pericolo per gli ambienti e le strutture attraversate;
- c) canale da fumo: condotto di raccordo posto tra l'uscita dei fumi dall'apparecchio ed il camino, rispondente ai medesimi requisiti costruttivi previsti per il camino;
- d) capacità di un serbatoio: volume geometrico interno del serbatoio;
- e) condotte aerotermiche: condotte per il trasporto di aria trattata e/o per la ripresa dell'aria dagli ambienti serviti e/o dell'aria esterna da un generatore d'aria calda;
- f) condotte di adduzione del combustibile liquido: insieme di tubazioni rigide e flessibili, curve, raccordi ed accessori uniti fra loro per la distribuzione del combustibile liquido;
- g) combustibile liquido: combustibile derivato dal petrolio (olio combustibile o gasolio) o di origine vegetale;
- h) generatore di aria calda a scambio diretto: apparecchio destinato al riscaldamento dell'aria mediante produzione di calore in una camera di combustione con scambio termico attraverso pareti dello scambiatore, senza fluido intermediario, in cui il flusso dell'aria è mantenuto da uno o più ventilatori:
- i) impianto termico: complesso comprendente le condotte di adduzione del combustibile liquido, gli apparecchi e gli eventuali accessori destinati alla produzione di calore;
- j) locale esterno: locale ubicato su spazio scoperto, anche in adiacenza all'edificio servito, purché strutturalmente separato e privo di pareti comuni;
- k) locale fuori terra: locale il cui piano di calpestio è a quota non inferiore a quello del piano di riferimento;
- I) locale interrato: locale in cui l'intradosso del solaio di copertura è a quota inferiore a + 0,6 m al di sopra del piano di riferimento;
- m) locale seminterrato: locale che non è definibile fuori terra né interrato;
- n) modulo a tubo radiante: apparecchio destinato al riscaldamento di ambienti mediante emanazione di calore per irraggiamento, costituito da una unità monoblocco composta dal tubo o dal circuito radiante, dall'eventuale riflettore e relative staffe di supporto, dall'eventuale scambiatore, dal bruciatore, dal ventilatore, dai dispositivi di sicurezza, dal pannello di programmazione e controllo, dal programmatore e dagli accessori relativi;

⁶⁶ D.M. 28 aprile 2005 - "Approvazione della regola tecnica di prevenzione incendi per la progettazione, la costruzione e l'esercizio degli impianti termici alimentati da combustibili liquidi" - Allegato.

- o) nastro radiante: apparecchio destinato al riscaldamento di ambienti mediante emanazione di calore per irraggiamento costituito da una unità termica e da un circuito di condotte radianti per la distribuzione del calore stesso. L'unita' termica è composta da un bruciatore, da un ventilatore-aspiratore, da una camera di combustione, da una camera di ricircolo, dal condotto di espulsione fumi, dai dispositivi di controllo e sicurezza, dal pressostato differenziale ed eventualmente dal termostato di sicurezza positiva a riarmo manuale. Le condotte radianti, la cui temperatura superficiale massima deve essere minore di 300 °C, devono essere realizzate con materiale resistente alle alte temperature e isolate termicamente nella parte superiore e laterale, devono essere a tenuta ed esercite costantemente in depressione; tali condotte sono parte integrante dell'apparecchio;
- p) piano di riferimento: piano della strada pubblica o privata o dello spazio scoperto sul quale è attestata la parete nella quale sono realizzate le aperture di aerazione;
- q) portata termica: quantità di energia termica assorbita nell'unita' di tempo dall'apparecchio, dichiarata dal costruttore, espressa in kiloWatt (kW);
- r) serbatoio: recipiente idoneo al contenimento del combustibile liquido;
- s) serranda tagliafuoco: dispositivo di otturazione ad azionamento automatico destinato ad interrompere il flusso dell'aria nelle condotte aerotermiche ed a garantire la compartimentazione antincendio per un tempo prestabilito.
- 1.2 Luoghi di installazione degli apparecchi
- 1. Gli apparecchi possono essere installati: all'aperto; in locali esterni; in fabbricati destinati anche ad altro uso o in locali inseriti nella volumetria del fabbricato servito; in serre.
- 2. Gli apparecchi devono in ogni caso essere installati in modo tale da non essere esposti ad urti o manomissioni.
- 1.2.1 Disposizioni comuni.
- 1. Nel caso in cui l'asse del bruciatore è ubicato a quota maggiore della generatrice superiore del serbatoio non è necessario prevedere bacini di contenimento o soglie rialzate.

INSTALLAZIONE ALL'APERTO

- 2.1 Disposizioni comuni
- 1. Gli apparecchi installati all'aperto, in luogo avente le caratteristiche di spazio scoperto, devono essere costruiti per tale tipo di installazione oppure adeguatamente protetti dagli agenti atmosferici, secondo quanto stabilito dal costruttore.
- 2. È ammessa l'installazione in adiacenza alle pareti dell'edificio servito alle seguenti condizioni: la parete deve possedere caratteristiche di resistenza al fuoco almeno REI 30 ed essere realizzata con materiale incombustibile.
- 3. Qualora la parete non soddisfi in tutto o in parte tali requisiti gli apparecchi devono distare almeno 0,6 m dalle pareti degli edifici, oppure, deve essere interposta una struttura avente caratteristiche non inferiori a REI 120 di dimensioni superiori di almeno 0,5 m della proiezione retta dell'apparecchio lateralmente ed 1 m superiormente.
- 4. Qualora la generatrice superiore del serbatoio si trovi a quota maggiore rispetto all'asse del bruciatore, deve essere previsto un idoneo bacino di contenimento avente altezza minima pari a 0,20 m e realizzato in modo tale da evitare l'accumulo delle acque meteoriche.
- 2.2 Disposizioni particolari
- 2.2.1 Limitazioni per i generatori di aria calda installati all'aperto.
- 1. Nel caso il generatore sia a servizio di locali di pubblico spettacolo o di locali soggetti ad affollamento superiore a 0,4 persone/mq, deve essere installata sulla condotta dell'aria calda all'esterno dei locali serviti, una serranda tagliafuoco di caratteristiche non inferiori a REI 30 asservita a dispositivo termico tarato a 80~% o a impianto automatico di rivelazione incendio.

Inoltre, nel caso in cui le lavorazioni o i materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori o polveri suscettibili di dar luogo ad incendi e/o esplosioni, non è permesso il ricircolo dell'aria. Le condotte aerotermiche devono essere conformi al punto 4.5.3.

- 2.2.2 Tubi e nastri radianti installati all'aperto.
- 1. È ammessa l'installazione di tubi e nastri con la parte radiante posta all'interno dei locali ed il resto dell'apparecchio al di fuori di questi, purché la parete attraversata sia realizzata in materiale incombustibile per almeno 1 m dall'elemento radiante. Per la parte installata all'interno si applica quanto disposto al punto 4.6 per i moduli a tubi radianti e al punto 4.7 per i nastri radianti.

INSTALLAZIONE IN LOCALI ESTERNI

1. I locali devono essere ad uso esclusivo e realizzati in materiali incombustibili. Inoltre essi devono soddisfare i requisiti di ubicazione richiesti al Titolo II, di aerazione richiesti al punto 4.1.2 e di disposizione degli apparecchi al loro interno, richiesti al punto 4.1.3.

INSTALLAZIONE IN FABBRICATI DESTINATI ANCHE AD ALTRO USO O IN LOCALI INSERITI NELLA VOLUMETRIA DEL FABBRICATO SERVITO

- 4.1 Disposizioni comuni.
- 4.1.1 Ubicazione.
- 1. Gli impianti termici possono essere installati in un qualsiasi locale del fabbricato che abbia almeno una parete, di lunghezza non inferiore al 15% del perimetro, confinante con spazio scoperto o strada pubblica o privata scoperta o, nel caso di locali interrati, con intercapedine ad uso esclusivo, di sezione orizzontale netta non inferiore a quella richiesta per l'aerazione, larga almeno 0,6 m ed attestata superiormente su spazio scoperto o strada scoperta.
- 4.1.2 Aperture di aerazione.
- 1. I locali devono essere dotati di una o più aperture permanenti di aerazione realizzate su pareti esterne di cui al punto 4.1.1; è consentita la protezione delle aperture di aerazione con grigliati metallici, reti e/o alette antipioggia a condizione che non venga ridotta la superficie netta di aerazione. Ai fini della realizzazione delle aperture di aerazione, la copertura è considerata parete esterna qualora confinante con spazio scoperto e di superficie non inferiore al 50% della superficie in pianta del locale, nel caso dei locali di cui al punto 4.2, e al 20% negli altri casi.
- 2. Fatto salvo quanto previsto dal regolamento per l'esecuzione della legge 13 luglio 1966, n. 615, contro l'inquinamento atmosferico, approvato con decreto del Presidente della Repubblica 22 dicembre 1970, n. 1391 (S.O. alla Gazzetta Ufficiale n. 59 dell'8 marzo 1971), le superfici libere minime, in funzione della portata termica complessiva, non devono essere inferiori a quanto di seguito riportato («Q» esprime la portata termica, in kW, e «S» la superficie, in cm2):
- a) locali fuori terra: $S >= Q \times 6$;
- b) locali seminterrati ed interrati, fino a quota -5 m dal piano di riferimento: $S \ge Q \times 9$;
- c) locali interrati, a quota inferiore a -5 m al di sotto del piano di riferimento: $S >= Q \times 12$ con un minimo di 3.000 cmq.

In ogni caso ciascuna apertura non deve avere superficie netta inferiore a 100 cmq.

- 3. Alle serre si applica quanto previsto al successivo Titolo V.
- 4.1.3 Disposizione degli apparecchi all'interno dei locali.
- 1. Le distanze tra un qualsiasi punto esterno degli apparecchi e le pareti verticali e orizzontali del locale, nonché le distanze fra gli apparecchi installati nello stesso locale, devono permettere l'accessibilità agli organi di regolazione, sicurezza e controllo nonché la manutenzione ordinaria secondo quanto prescritto dal costruttore dell'apparecchio.

- 4.2 Locali di installazione di apparecchi per la climatizzazione di edifici ed ambienti, per la produzione centralizzata di acqua calda, acqua surriscaldata e/o vapore.
- 1. I locali devono essere destinati esclusivamente agli impianti termici.
- 4.2.1 Caratteristiche costruttive.
- 1. I locali posti all'interno di fabbricati destinati anche ad altri usi devono costituire compartimento antincendio.
- 2. Le strutture portanti devono possedere requisiti di resistenza al fuoco non inferiori a R 120, quelle di separazione da altri ambienti non inferiori a REI 120. Nel caso di apparecchi di portata termica complessiva inferiore a 116 kW è ammesso che tali caratteristiche siano ridotte a R 60 e REI 60. Le strutture devono essere realizzate con materiali incombustibili.
- 3. Ferme restando le limitazioni di cui al punto 4.1.3 ed al successivo punto 4.2.3, l'altezza del locale di installazione deve rispettare le seguenti misure minime, in funzione della portata termica complessiva:

non superiore a 116 kW: 2,00 m;

superiore a 116 kW e sino a 350 kW: 2,30 m;

superiore a 350 kW: 2,50 m

- 4. Qualora la generatrice superiore del serbatoio si trovi a quota maggiore rispetto all'asse del bruciatore, la soglia del locale deve essere rialzata di almeno 0,20 m rispetto al pavimento. Inoltre il pavimento ed una fascia di almeno 0,20 m di altezza delle pareti perimetrali, devono essere resi impermeabili al combustibile utilizzato in modo che si possa determinare un bacino di contenimento in caso di fuoriuscita accidentale di combustibile.
- 4.2.2 Aperture di aerazione.
- 1. La superficie di aerazione, calcolata e realizzata secondo le modalità riportate al punto 4.1.2, non deve essere in ogni caso inferiore a 2.500 cmq.
- 4.2.3 Disposizione degli apparecchi all'interno dei locali.
- 1. Lungo il perimetro dell'apparecchio è consentito il passaggio dei canali da fumo e delle condotte aerotermiche, delle tubazioni dell'acqua, del combustibile, del vapore e dei cavi elettrici a servizio dell'apparecchio.
- 2. È consentita l'installazione a parete di apparecchi previsti per tale tipo di installazione.
- 3. È consentito che più apparecchi termici a pavimento o a parete, previsti per il particolare tipo di installazione, siano posti tra loro in adiacenza o sovrapposti, a condizione che tutti i dispositivi di sicurezza e di controllo siano facilmente raggiungibili.
- 4.2.4 Accesso.
- 1. L'accesso può avvenire dall'esterno da:

spazio scoperto;

strada pubblica o privata scoperta;

porticati;

intercapedine antincendio di larghezza non inferiore a 0,9 m

- 2. L'accesso dall'interno può avvenire solo tramite disimpegno avente le seguenti caratteristiche:
- a) impianti di portata termica non superiore a 116 kW: resistenza al fuoco delle strutture e delle porte REI 30:
- b) impianti di portata termica superiore a 116 kW: superficie in pianta netta minima di 2 mq; resistenza al fuoco delle strutture e delle porte REI 60; aerazione a mezzo di aperture di superficie complessiva non inferiore a 0,5 m2 realizzate su parete attestata su spazio scoperto, strada

pubblica o privata scoperta o su intercapedine. Nel caso in cui l'aerazione non sia realizzabile come sopra specificato è consentito l'utilizzo di un condotto in materiale incombustibile di sezione non inferiore a 0,1 mg sfociante al di sopra della copertura dell'edificio.

3. Nel caso di locali ubicati all'interno del volume di fabbricati destinati, anche parzialmente a pubblico spettacolo, caserme, attività comprese nei punti 51, 75, 84, 85, 86, 87, 89, 90, 92 e 94 (per edifici aventi altezza antincendio superiore a 54 m) dell'allegato al decreto ministeriale 16 febbraio 1982 (Gazzetta Ufficiale n. 98 del 9 aprile 1982) o soggetti ad affollamento superiore a 0,4 persone per m2, l'accesso deve avvenire direttamente dall'esterno o da intercapedine antincendio di larghezza non inferiore a 0,9 m

4.2.4.1 Porte.

1. Le porte dei locali e dei disimpegni devono:

avere altezza minima di 2 m e larghezza minima di 0,8 m;

essere munite di dispositivo di autochiusura. Inoltre:

- a) per impianti con portata termica complessiva non superiore a 116 kW: possedere caratteristiche di resistenza al fuoco non inferiori a REI 30;
- b) per impianti con portata termica complessiva superiore a 116 kW: essere apribili verso l'esterno; possedere caratteristiche di resistenza al fuoco non inferiori a REI 60.
- 2. Alle porte di accesso diretto da spazio scoperto, strada pubblica o privata scoperta, o da intercapedine antincendio non è richiesto il requisito della resistenza al fuoco, purché siano realizzate in materiale incombustibile.
- 4.3 Locali per forni da pane, lavaggio biancheria, altri laboratori artigiani e sterilizzazione.
- 1. Gli apparecchi devono essere installati in locali ad essi esclusivamente destinati o nei locali in cui si svolgono le lavorazioni.
- 4.3.1 Caratteristiche costruttive.
- 1. Le strutture portanti devono possedere requisiti di resistenza al fuoco non inferiori a R 60, quelle di separazione da altri ambienti non inferiori a REI 60. Per portate termiche complessive fino a 116 kW, sono consentite caratteristiche di resistenza al fuoco R/REI 30.
- 4.3.2. Accesso e comunicazioni.
- 1. L'accesso può avvenire:

direttamente dall'esterno, tramite porta larga almeno 0,8 m realizzata in materiale incombustibile;

da locali attigui, purché pertinenti l'attività stessa, tramite porte larghe almeno 0,8 m, di resistenza al fuoco non inferiore a REI 30, dotate di dispositivo di autochiusura anche del tipo normalmente aperto purché asservito ad un sistema di rivelazione incendi.

- 4.4 Locali di installazione di impianti cucina e lavaggio stoviglie.
- 1. I locali, fatto salvo quanto consentito nel successivo punto 4.4.3, devono essere esclusivamente destinati agli apparecchi.
- 4.4.1 Caratteristiche costruttive.
- 1. Le strutture portanti devono possedere requisiti di resistenza al fuoco non inferiori a R 120, quelle di separazione da altri ambienti non inferiori a REI 120. Per impianti di portata termica complessiva fino a 116 kW sono consentite caratteristiche R/REI 60.
- 4.4.2. Accesso e comunicazioni.
- 1. L'accesso può avvenire:

direttamente dall'esterno, tramite porta larga almeno 0,8 m realizzata in materiale incombustibile;

dal locale consumazione pasti, tramite porte larghe almeno 0,8 m, di resistenza al fuoco non inferiore a REI 60 per portate termiche superiori a 116 kW e REI 30 negli altri casi, dotate di dispositivo di autochiusura anche del tipo normalmente aperto purché asservito ad un sistema di rivelazione incendi.

- 2. È consentita la comunicazione con altri locali, pertinenti l'attività servita dall'impianto, tramite disimpegno anche non aerato, con eccezione dei locali destinati a pubblico spettacolo, con i quali la comunicazione può avvenire esclusivamente tramite disimpegno avente le caratteristiche indicate al punto 4.2.4, comma 2, lettera b), indipendentemente dalla portata termica.
- 4.4.3 Installazioni in locali in cui avviene anche la consumazione di pasti.
- 1. L'installazione di apparecchi di cottura è consentita, negli stessi locali di consumazione pasti, alle sequenti ulteriori condizioni:
- a) gli apparecchi utilizzati devono essere corredati di un efficace sistema di evacuazione dei fumi e dei vapori di cottura (p.e.: cappa aspirante);
- b) le cappe o i dispositivi similari devono essere costruiti in materiale incombustibile e dotati di filtri per grassi e di dispositivi per la raccolta delle eventuali condense;
- c) le comunicazioni dei locali con altri, pertinenti l'attività servita, deve avvenire tramite porte REI 30 con dispositivo di autochiusura;
- d) il locale consumazione pasti, in relazione all'affollamento previsto, deve essere servito da vie di esodo ed uscite, tali da consentire una rapida e sicura evacuazione delle persone presenti in caso di emergenza.
- 4.5 Locali di installazione di generatori di aria calda a scambio diretto.
- 4.5.1 Locali destinati esclusivamente ai generatori.
- 1. I locali e le installazioni devono soddisfare i requisiti richiesti al punto 4.2. È tuttavia ammesso che i locali comunichino con gli ambienti da riscaldare attraverso le condotte aerotermiche, che devono essere conformi al successivo punto 4.5.3.

Inoltre: nel caso in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori o polveri suscettibili di dar luogo ad incendi e/o esplosioni, non è permesso il ricircolo dell'aria; l'impianto deve essere munito di dispositivo automatico che consenta, in caso di intervento della serranda tagliafuoco, l'espulsione all'esterno dell'aria calda proveniente dall'apparecchio; l'intervento della serranda tagliafuoco deve determinare automaticamente lo spegnimento del bruciatore.

- 4.5.2 Locali di installazione destinati ad altre attività.
- 1. È vietata l'installazione all'interno di locali di pubblico spettacolo, locali soggetti ad affollamento superiore a 0,4 persone/mq, locali in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori o polveri suscettibili di dar luogo ad incendi e/o esplosioni.
- 4.5.2.1 Caratteristiche dei locali.
- 1. Le pareti alle quali sono addossati, eventualmente, gli apparecchi devono possedere caratteristiche almeno REI 30 ed essere realizzate in materiale incombustibile.

 2. Qualora non siano soddisfatti i suddetti requisiti di comportamento al fuoco, devono essere rispettate le seguenti distanze:
- 0,60 m tra l'involucro dell'apparecchio e le pareti;
- 1,00 m tra l'involucro dell'apparecchio ed il soffitto.
- 3. Se tali distanze non sono rispettate deve essere interposta una struttura di schermo, avente caratteristiche non inferiori a REI 120 e dimensioni superiori di almeno 0,50 m della proiezione retta dell'apparecchio.
- 4.5.2.2 Disposizione degli apparecchi.

- 1. La distanza fra la superficie esterna del generatore di aria calda, del canale da fumo e del camino da eventuali materiali combustibili in deposito deve essere tale da impedire il raggiungimento, sulla superficie di detti materiali, di temperature pericolose per lo sviluppo di incendi e/o alterazioni o reazioni chimiche e, in ogni caso, non inferiore a 4 m Tale limitazione non si applica agli apparecchi posti ad un'altezza non inferiore a 2,5 m dal pavimento per i quali sono sufficienti distanze minime pari a 1,5 m
- 2. Gli apparecchi installati a pavimento od ad una altezza inferiore a 2,5 m, devono essere protetti da una recinzione metallica fissa di altezza non inferiore a 1,5 m, distante almeno 0,6 m dall'apparecchio e comunque posta in modo da consentire le operazioni di manutenzione e di controllo.
- 4.5.3. Condotte aerotermiche.
- 1. Le condotte devono essere realizzate in conformità a quanto previsto dal decreto ministeriale 31 marzo 2003 (Gazzetta Ufficiale n. 86 del 12 aprile 2003) recante: «Requisiti di reazione al fuoco dei materiali costituenti le condotte di distribuzione e ripresa aria degli impianti di condizionamento e ventilazione».
- 2. Negli attraversamenti di pareti e solai, lo spazio attorno alle condotte deve essere sigillato con materiale incombustibile, senza tuttavia ostacolare le dilatazioni delle condotte stesse.
- 3. Le condotte non possono attraversare luoghi sicuri (che non siano spazi scoperti), vani scala, vani ascensore e locali in cui le lavorazioni o i materiali in deposito comportano il rischio di esplosione e/o incendio. L'attraversamento dei sopra richiamati locali può tuttavia essere ammesso se le condotte o le strutture che le racchiudono hanno una resistenza al fuoco non inferiore alla classe del locale attraversato ed in ogni caso non inferiore a REI 30.
- 4. Qualora le condotte attraversino strutture che delimitano compartimenti antincendio, deve essere installata, in corrispondenza dell'attraversamento, almeno una serranda, avente resistenza al fuoco pari a quella della struttura attraversata, azionata automaticamente e direttamente da: rivelatori di fumo, installati nelle condotte, qualora gli apparecchi siano a servizio di più di un compartimento antincendio e si effettui il ricircolo dell'aria; dispositivi termici, tarati a 80°C, p osti in corrispondenza delle serrande stesse, negli altri casi.
- 5. L'intervento della serranda deve determinare automaticamente lo spegnimento del bruciatore.
- 4.6. Locali di installazione di moduli a tubi radianti.
- 1. È vietata l'installazione all'interno di locali di pubblico spettacolo, locali soggetti ad affollamento superiore a 0,4 persone/mq, locali in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori o polveri suscettibili di dar luogo ad incendi e/o esplosioni.
- 4.6.1 Caratteristiche dei locali.
- 1. Le strutture orizzontali e/o verticali alle quali sono addossati i bruciatori dei moduli a tubi radianti, devono possedere caratteristiche di resistenza al fuoco almeno R/REI 30 e realizzate in materiale incombustibile.
- 2. Qualora non siano soddisfatti i suddetti requisiti di comportamento al fuoco, l'installazione deve avvenire nel rispetto delle seguenti distanze:
- 0,60 m tra l'involucro dei bruciatori e le pareti;
- 1,00 m tra l'involucro dei bruciatori ed il soffitto.
- 3. Se tali distanze non sono rispettate, deve essere interposta una struttura di caratteristiche non inferiori a REI 120 avente dimensioni lineari maggiori di almeno 0,50 m rispetto a quelle della proiezione retta del bruciatore lateralmente, e 1,0 m rispetto a quelle della proiezione retta del bruciatore superiormente.
- 4.6.2 Disposizione dei moduli all'interno dei locali.

- 1. La distanza tra la superficie esterna del modulo ed eventuali materiali combustibili in deposito ed il piano calpestabile deve essere tale da impedire il raggiungimento di temperature pericolose ed in ogni caso non inferiore a 4 m.
- 2. Il circuito radiante deve essere installato in modo da garantire, sulla base di specifiche istruzioni tecniche fornite dal costruttore, che la temperatura delle strutture verticali e orizzontali alle quali è addossato il circuito medesimo non superi i 50°C, prevedendo, ove necessario, l'interposizione di idonee schermature di protezione.
- 4.7. Locali di installazione di nastri radianti.
- 1. I nastri radianti devono essere installati rispettando una distanza minima di 4 metri tra il piano di calpestio e il filo inferiore del circuito radiante dell'apparecchio.
- 2. Fatto salvo quanto previsto nelle specifiche regole tecniche di prevenzione incendi, è in ogni caso vietata l'installazione dei suddetti apparecchi:

all'interno di locali di intrattenimento e di pubblico spettacolo;

in locali soggetti a densità di affollamento maggiore di 0,4 persone/mq;

in locali interrati;

in locali in cui le lavorazioni o le concentrazioni dei materiali in deposito negli ambienti da riscaldare comportino la formazione di gas, vapori e/o polveri suscettibili di dare luogo ad incendi e/o esplosioni.

- 3. Negli impianti sportivi e nei locali soggetti ad affollamento con densità maggiore di 0,1 persone/m2, è ammessa l'installazione di nastri radianti, a condizione che l'unita' termica sia posizionata all'aperto.
- 4.7.1 Caratteristiche dei locali.
- 4.7.1.1 Unità termica posizionata all'aperto.
- 1. L'installazione deve essere conforme alle disposizioni di cui al punto 2.1.
- 4.7.1.2 Unità termica posizionata all'interno dei locali.
- 1. Le strutture orizzontali e/o verticali alle quali sono addossate le unità termiche, devono possedere caratteristiche di resistenza al fuoco almeno R/REI 30 e realizzate in materiale incombustibile.
- 2. Qualora non siano soddisfatti i suddetti requisiti di comportamento al fuoco, l'installazione all'interno deve avvenire nel rispetto delle seguenti distanze:
- 0,60 m tra l'involucro dell'unita' termica e le pareti;
- 1,00 m tra l'involucro dell'unita' termica ed il soffitto.
- 3. Se tali distanze non sono rispettate, deve essere interposta una struttura di caratteristiche non inferiori a REI 120 avente dimensioni lineari maggiori di almeno 0,50 m rispetto a quelle della proiezione retta dell'unita' termica lateralmente, e 1,0 m rispetto a quelle della proiezione retta dell'unita' termica superiormente.
- 4.7.2 Disposizione delle condotte radianti all'interno dei locali.
- 1. La distanza tra la superficie esterna delle condotte radianti ed eventuali materiali combustibili in deposito deve essere tale da impedire il raggiungimento di temperature pericolose sulla superficie dei materiali stessi ai fini dello sviluppo di eventuali incendi e/o reazioni di combustione, ed in ogni caso non minore di 1,5 m
- 2. Le condotte radianti devono essere installate in modo da garantire, sulla base di specifiche istruzioni tecniche fornite dal costruttore, che la temperatura delle strutture verticali e orizzontali alle quali sono addossate le condotte medesime non superi i 50° C, prevedendo, ove necessario, l'interposizione di idonee schermature di protezione.
- 4.7.3 Aperture di aerazione.

- 1. Qualora l'unita' termica sia installata all'interno dei locali, deve essere realizzata una superficie permanente di aerazione di sezione almeno pari a quanto prescritto al punto 4.1.2.
- 2. La medesima superficie permanente di aerazione deve essere prevista nel caso di installazione dell'unita termica all'aperto, qualora il rapporto fra il volume del locale ove sono installate le condotte radianti ed il volume interno del circuito di condotte radianti, sia minore di 150.

INSTALLAZIONE DI APPARECCHI ALL'INTERNO DI SERRE

- 1. L'installazione di apparecchi all'interno di serre deve avvenire nel rispetto delle seguenti distanze minime da superfici combustibili:
- 0,60 m tra l'involucro dell'apparecchio e le pareti;
- 1,00 m tra l'involucro dell'apparecchio ed il soffitto.
- 2. Se tali distanze non sono rispettate, deve essere interposta una struttura di schermo avente caratteristiche non inferiori a REI 120 e dimensioni superiori di almeno 0,50 m della proiezione retta dell'apparecchio.
- 3. L'aerazione deve essere assicurata da almeno un'apertura di superficie non inferiore a 100 cmg.

DEPOSITO DI COMBUSTIBILE LIQUIDO

- 6.1 Ubicazione.
- 1. Il deposito, costituito da uno o più serbatoi, può essere ubicato all'esterno o all'interno dell'edificio nel quale è installato l'impianto termico o all'interno di serre.
- 2. Nel caso di deposito ubicato all'esterno, i serbatoi possono essere interrati sotto cortile, giardino o strada oppure installati a vista in apposito e distinto locale oppure all'aperto.
- 3. Nel caso di deposito ubicato all'interno dell'edificio, i serbatoi possono essere interrati sotto pavimento, oppure installati a vista, in locali aventi caratteristiche di ubicazione di cui al punto 4.1.1.
- 4. I locali devono essere destinati esclusivamente a deposito di combustibile liquido a servizio dell'impianto.

6.2 Capacità

- 1. La capacità di ciascun serbatoio non deve essere maggiore di 25 mc
- 2. In relazione all'ubicazione dei serbatoi la capacità complessiva del deposito deve osservare i seguenti limiti:
- a) 100 mc, per serbatoi ubicati all'esterno del fabbricato;
- b) 50 mc, per serbatoi interrati all'interno del fabbricato;
- c) 25 mc, per serbatoi installati a vista all'interno del fabbricato.
- 6.3 Modalità di installazione.
- 1. I serbatoi devono essere saldamente ancorati al terreno. In base alle modalità di installazione dei serbatoi si distinguono le seguenti tipologie di deposito:
- A) deposito all'esterno con serbatoi interrati: i serbatoi devono essere installati in modo tale da non essere danneggiati da eventuali carichi mobili o fissi gravanti sul piano di calpestio;
- B1) deposito con serbatoi fuori terra in apposito locale esterno: i serbatoi devono essere installati in apposito locale realizzato in materiale incombustibile, posizionati ad una distanza reciproca nonché dalle pareti verticali ed orizzontali del locale, tale da garantire l'accessibilità per le operazioni di manutenzione ed ispezione. La porta di accesso deve avere, in ogni caso, la soglia interna sopraelevata, onde il locale possa costituire bacino di contenimento impermeabile, di volume non inferiore alla metà della capacità complessiva dei serbatoi;
- B2) deposito all'aperto con serbatoi fuori terra: i serbatoi devono essere dotati di tettoia di protezione dagli agenti atmosferici realizzata in materiale incombustibile e di bacino di contenimento

impermeabile realizzato in muratura, cemento armato, o altro materiale idoneo allo scopo, avente capacità pari ad almeno un quarto della capacità complessiva dei serbatoi. È vietata l'installazione su rampe carrabili e su terrazze;

- C) deposito con serbatoi interrati all'interno di un edificio: le pareti ed i solai del locale devono presentare caratteristiche di resistenza al fuoco almeno REI 90;
- D) deposito con serbatoi fuori terra all'interno di un edificio: i serbatoi devono essere installati in apposito locale avente caratteristiche di resistenza al fuoco almeno REI 120, su apposite selle di resistenza al fuoco R 120, posizionati ad una distanza reciproca nonché dalle pareti verticali ed orizzontali del locale, tale da garantire l'accessibilità' per le operazioni di manutenzione ed ispezione. La porta di accesso deve avere, in ogni caso, la soglia interna sopraelevata, onde il locale possa costituire bacino di contenimento impermeabile, di volume almeno pari alla capacità complessiva dei serbatoi;
- E) deposito all'interno di serre: i depositi possono essere ubicati all'interno di serre secondo le seguenti modalità:

in serbatoi interrati, installati in modo tale da non essere danneggiati da eventuali carichi mobili o fissi gravanti sul piano di calpestio;

in serbatoi ricoperti di terra (tumulati);

in serbatoi fuori terra su apposite selle; in questo caso, se le serre sono realizzate in materiale combustibile, devono osservarsi le seguenti distanze minime:

0,60 m tra il perimetro del serbatoio e le pareti della serra;

1,00 m tra il perimetro del serbatoio e il soffitto della serra.

Se tali distanze non sono rispettate deve essere interposta una struttura di schermo avente caratteristiche non inferiori a REI 120 e dimensioni superiori di almeno 0,5 m della proiezione retta del serbatoio.

La distanza tra i serbatoi fuori terra e l'involucro del generatore deve essere non inferiore a 5 m; deve essere inoltre previsto un bacino di contenimento di capacità non inferiore ad un quarto del volume dei serbatoi.

Per depositi installati all'esterno delle serre si applicano le prescrizioni di cui ai punti A), B1) E B2) in funzione delle modalità di installazione previste.

6.4 Accesso e comunicazioni.

1. L'accesso al locale deposito può avvenire dall'esterno da:

spazio scoperto;

strada pubblica o privata scoperta;

porticati;

intercapedine antincendio di larghezza non inferiore a 0,9 m;

oppure dall'interno tramite disimpegno avente le caratteristiche indicate al punto 4.2.4, comma 2, lettera b).

- 2. È consentito utilizzare lo stesso disimpegno per accedere al locale di installazione dell'impianto termico ed al locale deposito.
- 3. I locali, all'interno di un edificio, adibiti a deposito possono comunicare tra loro esclusivamente a mezzo di porte REI 90 provviste di dispositivo di autochiusura.
- 4. Non è consentito che il locale adibito a deposito abbia aperture di comunicazione dirette con locali destinati ad altro uso.
- 6.5 Aperture di aerazione.

1. Il locale deposito deve essere dotato di una o più aperture permanenti di aerazione realizzate su pareti esterne di cui al punto 4.1.1. Nei comuni nei quali non si applicano le prescrizioni del regolamento per l'esecuzione della legge 13 luglio 1966, n. 615, contro l'inquinamento atmosferico, approvato con decreto del Presidente della Repubblica 22 dicembre 1970, n. 1391, la superficie di aerazione non deve essere inferiore ad 1/30 della superficie in pianta del locale; è consentita la protezione delle aperture di aerazione con grigliati metallici, reti e/o alette antipioggia a condizione che non venga ridotta la superficie netta di aerazione prevista.

6.6 Porte.

- 1. Le porte del locale deposito devono avere altezza minima di 2 m, larghezza minima di 0,8 m, essere apribili verso l'esterno ed essere munite di dispositivo di autochiusura.
- 2. Le porte di accesso al locale deposito devono avere caratteristiche di resistenza al fuoco almeno REI 60.
- 3. Alle porte di accesso diretto da spazio scoperto, strada pubblica o privata scoperta, intercapedine antincendio ovvero alle porte di accesso a locali esterni all'edificio, non è richiesto il requisito della resistenza al fuoco, purché siano in materiale incombustibile.
- 6.7 Caratteristiche dei serbatoi.
- 1. I requisiti tecnici per la costruzione, la posa in opera e l'esercizio dei serbatoi, sia fuori terra che interrati, devono essere conformi alle leggi, ai regolamenti ed alle disposizioni vigenti in materia.
- 2. I serbatoi devono presentare idonea protezione contro la corrosione e devono essere muniti di:
- a) tubo di carico fissato stabilmente al serbatoio ed avente l'estremità' libera, a chiusura ermetica, posta in chiusino interrato o in una nicchia nel muro dell'edificio e comunque ubicato in modo da evitare che il combustibile, in caso di spargimento, invada locali o zone sottostanti;
- b) tubo di sfiato dei vapori avente diametro interno pari alla metà del diametro del tubo di carico e comunque non inferiore a 25 mm, sfociante all'esterno delle costruzioni ad un'altezza non inferiore a 2,5 m dal piano praticabile esterno ed a distanza non inferiore a 1,5 m da finestre e porte; l'estremità' del tubo deve essere protetta con sistema antifiamma; c) dispositivo di sovrappieno atto ad interrompere, in fase di carico, il flusso del combustibile quando si raggiunge il 90% della capacità geometrica del serbatoio;
- d) idonea messa a terra;
- e) targa di identificazione inamovibile e visibile anche a serbatoio interrato indicante: il nome e l'indirizzo del costruttore; l'anno di costruzione; la capacità, il materiale e lo spessore del serbatoio.

DISPOSIZIONI COMPLEMENTARI

7.1 Dispositivi accessori.

Devono essere adottate tubazioni, dispositivi di preriscaldamento e di accensione del combustibile conformi all'utilizzo previsto e che garantiscano il rispetto degli obiettivi di sicurezza antincendio riportati all'art. 3.

La tubazione di adduzione del combustibile liquido al bruciatore deve essere munita di: un dispositivo automatico di intercettazione che consenta il passaggio del combustibile soltanto durante il funzionamento del bruciatore stesso; un organo di intercettazione a chiusura rapida e comandabile a distanza dall'esterno del locale serbatoio e del locale ove è installato il bruciatore.

7.2 Impianto elettrico.

- 1. L'impianto elettrico deve essere realizzato in conformità alla legge 1° marzo 1968, n. 186 (Gazzetta Ufficiale n. 77 del 23 marzo 1968), e tale conformità deve essere attestata secondo le procedure previste dal D.M. 37/08.
- 2. L'interruttore generale a servizio dei locali di cui ai punti 4.2 e 6.1 deve essere installato all'esterno dei locali stessi, in posizione segnalata e facilmente accessibile. Negli altri casi deve essere

collocato lontano dall'apparecchio utilizzatore, in posizione segnalata e facilmente raggiungibile e accessibile.

7.3 Mezzi di estinzione degli incendi.

- 1. In prossimità di ciascun apparecchio e/o serbatoio fuori terra, deve essere installato, in posizione segnalata e facilmente raggiungibile, un estintore portatile avente carica nominale non minore di 6 kg e capacità estinguente non inferiore a 21A 113B.
- 2. Gli impianti termici con portata termica complessiva installata superiore a 1160 kW devono essere protetti da un estintore carrellato a polvere avente carica nominale non minore di 50 kg e capacità estinguente pari a A-B1.
- 7.4 Segnaletica di sicurezza.
- 1. La segnaletica di sicurezza deve essere conforme al d.lgs. 81/08 e deve richiamare l'attenzione sui divieti e sulle limitazioni imposti nonché segnalare la posizione della valvola esterna di intercettazione e dell'interruttore elettrico generale.

TITOLO II - PROGETTAZIONE, CERTIFICAZIONI E COLLAUDI

Art. XXX Norme per il contenimento del consumo energetico⁶⁷

Nel caso di edifici di nuova costruzione e nei casi previsti dall'art. 3, comma 2, lettere a) e b) del d.lgs. 192/05⁶⁸, si procede in sede progettuale alla determinazione del fabbisogno annuo di energia primaria per la climatizzazione invernale espresso in chilowattora per metro quadrato di superficie utile dell'edificio (kWh/mq anno) e alla verifica che lo stesso risulti inferiore ai seguenti valori⁶⁹:

Rapporto di	ZONA CLIMATICA									
forma	Α	[3	()])	E		F
dell'edificio (S/V)	fino a 600 GG	a 601 GG	a 900 GG	a 901 GG	a 1400 GG	a 1401 GG	a 2100 GG	a 2101 GG	a 3000 GG	oltre 3000 GG
≤ 0,2	10	10	15	15	25	25	40	40	55	55
≥ 0,9	45	45	60	60	85	85	110	110	145	145

Ove:

s è la superficie che delimita verso l'esterno (ovvero verso ambienti non dotati di impianto di riscaldamento) il volume riscaldato V, espressa in metri quadrati;

V è il volume lordo delle parti di edificio riscaldate, definite dalle superfici che lo delimitano, espresso in metri cubi.

Per la definizione delle zone climatiche si faccia riferimento all'art. 2 del D.P.R. 412/93.

Nel caso di nuova installazione e ristrutturazione integrale di impianti termici si applica quanto sopra, verificando che il fabbisogno annuo risulti inferiore ai valori riportati nella tabella precedente aumentati del 50%.

Per i soli impianti di potenza inferiore a 100 kW e nel caso di sostituzione di generatori di calore, si intendono rispettate tutte le disposizioni vigenti in tema di uso razionale dell'energia qualora coesistano le seguenti condizioni:

- i nuovi generatori siano dotati della marcatura di rendimento energetico pari a tre o quattro stelle, come definito nell'allegato II del D.P.R. 660/96 e certificato conformemente a quanto previsto nel decreto medesimo;
- 2. la temperatura media del fluido termovettore in corrispondenza delle condizioni di progetto non sia superiore a 60℃;
- 3. siano presenti dispositivi per la regolazione automatica della temperatura ambiente nei singoli locali o nelle singole zone aventi caratteristiche d'uso ed esposizioni uniformi;
- 4. nel caso di installazioni di potenze nominali del focolare maggiori o uguali a 35 kW, siano installati nuovi generatori di potenza nominale del focolare non superiore del 10% a quella dei generatori che vengono sostituiti.

In tutti gli altri casi di sostituzione di generatori di calore il dimensionamento del o dei generatori stessi deve essere effettuato in modo tale che il "rendimento di produzione medio stagionale" definito come il rapporto tra l'energia termica utile generata ed immessa nella rete di distribuzione e l'energia primaria delle fonti energetiche, compresa l'energia elettrica, calcolato con riferimento al periodo annuale di esercizio di cui all'art. 9 del d.lgs. 412/93, risulti non inferiore al seguente valore:

$$p = (77 + 3 \log Pn)\%$$

dove log Pn è il logaritmo in base 10 della potenza utile nominale del generatore o del complesso dei generatori di calore al servizio del singolo impianto termico, espressa in kW, con l'integrazione del

⁶⁷ d.lgs. 19 agosto 2005, n. 192 - "Attuazione della direttiva 2002/91/CE relativa al rendimento energetico nell'edilizia" - Allegato C e Allegato I.
68 Il presente decreto è stato modificato dal seguente: Decreto Legislativo 29/12/2006 n. 311 - Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico nell'edilizia (Gazzetta ufficiale 01/02/2007 n. 26)

⁶⁹ Di cui alla tabella 1.1, punto 1 dell'allegato C al d.lgs. 311/06.

calcolo del fabbisogno annuo di energia primaria per la climatizzazione invernale, espresso per metro quadrato di superficie utile dell'edificio.

Il "rendimento globale medio stagionale" dell'impianto termico è definito come rapporto tra il fabbisogno di energia termica utile per la climatizzazione invernale e l'energia primaria delle fonti energetiche, ivi compresa l'energia elettrica ed è calcolato con riferimento al periodo annuale di esercizio di cui all'art. 9 del d.lgs. 412/93. Ai fini della conversione dell'energia elettrica in energia primaria si considera l'equivalenza: 10 MJ = 1 kWh.

Nel caso di edifici di nuova costruzione e nei casi previsti dall'art. 3, comma 2, lettere a) e b) del d.lgs. 192/05, se gli edifici e le opere sono progettati e realizzati nel rispetto dei limiti di cui ai punti successivi, e per gli impianti termici è assicurato un rendimento medio stagionale non inferiore al valore espresso dalla formula:

$$\eta g = (75 + 3 \log Pn)\%$$

ove logPn è il logaritmo in base 10 della potenza utile nominale del generatore o dei generatori di calore a servizio del singolo impianto termico, espressa in kW.

Il calcolo del fabbisogno annuo di energia può essere omesso, attribuendo all'edificio o alla porzione interessata il valore limite massimo applicabile al caso specifico. La stessa semplificazione può essere adottata per edifici realizzati con strutture verticali opache di trasmittanza superiori ai limiti stabiliti al punto successivo, fino ad un massimo del 30%, purché si adottino contemporaneamente chiusure trasparenti di trasmittanza inferiore almeno del 30% ai limiti esposti ai punti successivi.

REQUISITI PER LA VALUTAZIONE DELLA PRESTAZIONE ENERGETICA DEGLI EDIFICI

Strutture opache verticali

Per tutte le categorie di edifici, ad eccezione della categoria E.8, come definita dal D.P.R.412/93, il valore della trasmittanza termica (U) per le strutture verticali opache, a ponte termico corretto, delimitanti il volume riscaldato verso l'esterno ovvero verso ambienti non dotati di impianti di riscaldamento, deve essere inferiore o uguale ai sequenti valori limite:

Zona climatica	U (W/mqK) – dal 01.01.06	U (W/mqK) – dal 01.01.08	U (W/mqK) – dal 01.01.10
A	0,85	0,72	0,62
В	0,64	0,54	0,48
С	0,57	0,46	0,40
D	0,50	0,40	0,36
E	0,46	0,37	0,34
F	0,44	0.35	0.33

Valori limite della trasmittanza termica U delle strutture verticali opache

Qualora il ponte termico non dovesse risultare corretto o qualora la progettazione dell'involucro edilizio non preveda la correzione dei ponti termici, i valori sopra riportati devono essere rispettati dalla trasmittanza termica media (parete più ponte termico).

Nel caso di pareti opache verticali esterne in cui fossero previste aree limitate oggetto di riduzione di spessore (sottofinestre e altri componenti) i limiti sopra esposti devono essere rispettati con riferimento alla superficie totale di calcolo.

Strutture opache orizzontali

Per tutte le categorie di edifici, ad eccezione della categoria E.8, come definita dal D.P.R.412/93, il valore della trasmittanza termica (U) per le strutture opache orizzontali o inclinate, a ponte termico corretto, e per quelle orizzontali confinanti con locali non riscaldati o direttamente con l'esterno, deve essere inferiore o uguale ai seguenti valori limite:

Zona climatica	U (W/mqK) – dal 01.01.06	U (W/mqK) – dal 01.01.08	U (W/mqK) – dal 01.01.10
А	0,80	0,42	0,38

В	0,60	0,42	0,38
С	0,55	0,42	0,38
D	0,46	0,35	0,32
Е	0,43	0,32	0,30
F	0,41	0,31	0,29

Valori limite della trasmittanza termica U delle strutture opache orizzontali o inclinate di copertura

Zona climatica	U (W/mqK) – dal 01.01.06	U (W/mqK) – dal 01.01.08	U (W/mqK) – dal 01.01.10
A	0,80	0,74	0,65
В	0,60	0,55	0,49
С	0,55	0,49	0,42
D	0,46	0,41	0,36
Е	0,43	0,38	0,33
F	0,41	0,36	0,32

Valori limite della trasmittanza termica U delle strutture opache orizzontali di pavimento

Qualora il ponte termico non dovesse risultare corretto o qualora la progettazione dell'involucro edilizio non dovesse prevedere la correzione dei ponti termici, i valori sopra riportati devono essere rispettati dalla trasmittanza termica media (parete più ponte termico).

Nel caso di strutture orizzontali sul suolo i valori di trasmittanza termica da confrontare con quelli sopra riportati sono calcolati con riferimento al sistema struttura-terreno.

Chiusure trasparenti

Per tutte le categorie di edifici ad eccezione della categoria E.8, come definita dal D.P.R.412/93, il valore massimo della trasmittanza delle chiusure trasparenti, comprensive dell'infisso, deve rispettare i seguenti valori limite:

Zona climatica	U (W/mqK) – dal 01.01.06	U (W/mqK) – dal 01.01.08	U (W/mqK) – dal 01.01.10
A	5,5	5,0	4,6
В	4,0	3,6	3,0
С	3,3	3,0	2,6
D	3,1	2,8	2,4
Е	2,8	2,4	2,2
F	2,4	2,2	2,0

Valori limite della trasmittanza termica U delle chiusure trasparenti comprensive degli infissi

Zona climatica	U (W/mqK) – dal 01.01.06	U (W/mqK) – dal 01.01.08	U (W/mqK) – dal 01.01.11
А	5,0	4,5	3,7
В	4,0	3,4	2,7
С	3,0	2,3	2,1
D	2,6	2,1	1,9
E	2,4	1,9	1,7
F	2,3	1,7	1,3

Valori limite della trasmittanza centrale termica U dei vetri

Divisori verticali

Per gli edifici di categoria E.1 di da realizzarsi in zona climatica C, D, E ed F, il valore della trasmittanza U del divisorio verticale tra alloggi o unità immobiliari confinanti deve essere inferiore o uguale a 0,8 kW/mqK.

Per tutte le categorie di edifici ad eccezione della categoria E.8, come definita dal D.P.R.412/93, si procede alla verifica dell'assenza di condensazione superficiale e interstiziale delle pareti opache. Qualora non esista un sistema di controllo dell'umidità relativa interna, per i calcoli necessari, questa verrà assunta pari al 65% alla temperatura interna di 20℃.

Per tutte le categorie di edifici, ad eccezione delle categorie E.5, E.6 ed E.8, come definite dal D.P.R. 412/93, al fine di limitare i fabbisogni energetici per la climatizzazione estiva e contenere la temperatura interna degli ambienti, si procede a verificare:

- 5. che siano presenti elementi di schermatura delle superfici vetrate, esterni o interni, fissi o mobili, tali da ridurre l'apporto di calore per irraggiamento solare e che siano efficaci;
- 6. che in tutte le zone climatiche ad eccezione della F, per le località ove il valore medio mensile dell'irradianza sul piano orizzontale, nel mese di massima insolazione estiva, I_{m,s},sia maggiore o uguale a 290 W/mq, la massa superficiale M_s delle pareti opache, verticali, orizzontali o inclinate, sia superiore a 230 kg/mq. In alternativa potrà essere previsto l'utilizzo di tecnologie e materiali innovativi che permettano di contenere le oscillazioni della temperatura degli ambienti in funzione dell'andamento dell'irraggiamento solare: in tal caso deve essere prodotta un'adeguata documentazione e certificazione dei materiali che ne attesti l'equivalenza con le soluzioni tradizionali.

Art. XXXI - Utilizzo di fonti energetiche alternative⁷⁰

Nella concessione di contributi pubblici per la costruzione di edifici residenziali sarà data la preferenza agli interventi che prevedono l'installazione di impianti di riscaldamento e di produzione di acqua calda alimentati da fonti energetiche non tradizionali. Per i predetti interventi il Comitato per l'edilizia residenziale può stabilire una elevazione del limite massimo dei costi ammissibili di cui alla lettera n) art. 3 della legge 457/78. Ai fini dell'elevazione del limite massimo di costo di cui al comma precedente, si considerano anche gli impianti che siano soltanto parzialmente alimentati da fonti energetiche non tradizionali, secondo le modalità precisate con deliberazione del CER. Entro sei mesi dalla data di entrata in vigore della legge 457/78, il Comitato per l'edilizia residenziale provvederà a formare un elenco, da aggiornare ogni biennio, delle fonti energetiche da considerarsi non tradizionali ai fini dell'applicazione del precedente comma, con l'osservanza delle norme contro l'inquinamento.

Nel caso di nuova costruzione o ristrutturazione di edifici pubblici e privati di cui all'art.3, comma 2, lettera a) del d.lgs. 192/06 è obbligatoria la predisposizione delle opere riguardanti l'involucro degli edifici e gli impianti necessarie a favorire il collegamento e reti di teleriscaldamento, ad impianti solari termici e impianti fotovoltaici e i loro allacciamenti agli impianti dei singoli utenti e alle reti.

Nel caso di edifici pubblici o ad uso pubblico di nuova costruzione di cui all'allegato D del D.P.R. 412/93 è obbligatoria l'installazione di impianti solai termici per la produzione di acqua calda sanitaria. L'impianto deve essere progettato e realizzato in modo da coprire almeno il 50% del consumo annuo di energia termica richiesta dall'utenza per la produzione di acqua calda sanitaria.

Al fine di assicurare l'integrazione degli impianti solari termici e fotovoltaici sulle coperture degli edifici si propongono le seguenti raccomandazioni:

- 7. deve essere disponibile una superficie della copertura dell'edificio o di pertinenza dell'edificio con le seguenti caratteristiche:
 - orizzontale o esposta verso il quadrante sud-est sud ovest per le pareti inclinate;
 - dimensione pari al 25% della superficie in pianta dell'edificio;
 - non ombreggiata nei mesi più sfavoriti (gennaio dicembre) da parti dell'edificio stesso per più del 10% della superficie disponibile;

 $^{^{70}}$ Legge 5 agosto 1978, n. 457 - "Norme per l'edilizia residenziale" - Art.56 e s.m.i. e $^{\rm d.lgs.~19~agosto~2005,~n.~192~-$ "Attuazione della direttiva 2002/91/CE relativa al rendimento energetico nell'edilizia" - Allegato D e Allegato I.

- 8. è opportuno includere un vano tecnico dove possano essere ospitati i componenti del circuito primario degli impianti solare termico e i dispositivi di condizionamento della potenza dell'impianto fotovoltaico e di connessione alla rete con le seguenti caratteristiche:
 - volume di dimensione pari a 50 litri per ogni mq di superficie correttamente orientata di cui al punto precedente, in modo tale da poter ospitare serbatoi di accumulo dell'acqua calda sanitaria e i circuiti del componente primario e secondario;
 - caratteristiche idonee a ospitare un quadro elettrico e i dispositivi di interfaccia con la rete;
 - accessibile per la manutenzione degli impianti;
- 9. è necessario prevedere, per la realizzazione dei collettori solari e dei moduli fotovoltaici al vano tecnico, un cavedio di sezione opportuna per poter alloggiare una conduttura di mandata e una di ritorno all'impianto solare termico, due canaline per alloggiare i collegamenti elettrici all'impianto fotovoltaico e il collegamento alla rete di terra;
- 10.è necessario prevedere, per il collegamento dell'impianto solare alle singole utenze, opportuni cavedi o vani che possano contenere la linea di mandata dell'acqua calda sanitaria ed un collegamento elettrico.

Per quanto riguarda la predisposizione all'allaccio alle reti di teleriscaldamento, tale prescrizione risulta obbligatoria nel caso di presenza di tratte di rete ad una distanza inferiore a 1.000 metri ovvero in presenza di progetti approvati nell'ambito di opportuni strumenti pianificatori.

Art. XXXII Progettazione degli impianti⁷¹

Fatta salva l'applicazione di norme che impongono una progettazione degli impianti, la redazione del progetto, di cui all'art. 5 del decreto 37/2008⁷² è obbligatoria per l'installazione, la trasformazione e l'ampliamento dei seguenti impianti:

- a) per gli impianti di produzione, di trasporto, di distribuzione e di utilizzazione dell'energia elettrica all'interno degli edifici a partire dal punto di consegna dell'energia fornita dall'ente distributore, per tutte le utenze condominiali di uso comune aventi potenza impegnata superiore a 6 kW e per utenze domestiche di singole unità abitative di superficie superiore a 400 mq; per gli impianti effettuati con lampade fluorescenti a catodo freddo, collegati ad impianti elettrici, per i quali è obbligatorio il progetto e in ogni caso per impianti di potenza complessiva maggiore di 1200 VA rese dagli alimentatori;
- b) per gli impianti di produzione, di trasporto, di distribuzione e di utilizzazione dell'energia elettrica all'interno degli edifici a partire dal punto di consegna dell'energia fornita dall'ente distributore relativi agli immobili adibiti ad attività produttive, al commercio, al terziario e ad altri usi, quando le utenze sono alimentate a tensione superiore a 1000 V, inclusa la parte in bassa tensione, o quando le utenze sono alimentate in bassa tensione qualora la superficie superi i 200 mq;
- c) il progetto è comunque obbligatorio per gli impianti elettrici con potenza impegnata superiore o uguale a 1,5 kW per tutta l'unità immobiliare provvista, anche solo parzialmente, di ambienti soggetti a normativa specifica del Comitato elettrotecnico italiano (CEI), in caso di locali adibiti ad uso medico o per i quali sussista pericolo di esplosione o maggior rischio di incendio;

⁷¹ Legge 5 marzo 1990, n. 46 - «Norme per la sicurezza degli impianti</sup>. Ai sensi dell'art. 3, comma 1, della legge n. 17 del 2007, con l'entrata in vigore del D.M. n. 37 del 22/01/08, la legge 5/03/1990 n. 46 è abrogata, ad eccezione degli artt. 8, 14 e 16 le cui sanzioni trovano applicazione in misura raddoppiata per le violazioni degli obblighi previsti dallo stesso regolamento. Si faccia dunque riferimento all'art. 5 del D.M. 37 del 2008.

⁷² D.M. 22 gennaio 2008, n. 37 - Regolamento concernente l'attuazione dell'articolo 11 - quaterdecies, comma 13, lettera a) della legge n. 248 del 2 dicembre 2005, recante riordino delle disposizioni in materia di attività di installazione degli impianti all'interno degli edifici.

- d) per gli impianti radiotelevisivi ed elettronici in genere, le antenne e gli impianti di protezione da scariche atmosferiche, quando coesistono con impianti elettrici con obbligo di progettazione nonché per gli impianti di protezione da scariche atmosferiche in edifici di volume superiore a 200 mc dotati di impianti elettrici soggetti a normativa specifica CEI o in edifici con volume superiore a 200 mc e con un'altezza superiore a 5 metri;
- e) per gli impianti di riscaldamento e di climatizzazione azionati da fluido liquido, aeriforme, gassoso e di qualsiasi natura o specie, per le canne fumarie collettive ramificate, nonché per gli impianti di climatizzazione per tutte le utilizzazioni aventi una potenzialità frigorifera pari o superiore a 40.000 frigorie/ora;
- f) per gli impianti per il trasporto e l'utilizzazione di gas allo stato liquido o aeriforme all'interno degli edifici a partire dal punto di consegna del combustibile gassoso fornito dall'ente distributore, con portata termica superiore a 34,8 kW o di gas medicali per uso ospedaliero e simili, nel caso di stoccaggi;
- g) per gli impianti di protezione antincendio, qualora siano inseriti in un'attività soggetta al rilascio del certificato prevenzione incendi e comunque quando gli idranti sono in numero pari o superiore a 4 o gli apparecchi di rilevamento sono in numero pari o superiore a 10.

I progetti devono essere redatti da professionisti, iscritti negli albi professionali, nell'ambito delle rispettive competenze.

I progetti debbono contenere gli schemi dell'impianto e i disegni planimetrici, nonché una relazione tecnica sulla consistenza e sulla tipologia dell'installazione, della trasformazione o dell'ampliamento dell'impianto stesso, con particolare riguardo all'individuazione dei materiali e componenti da utilizzare e alle misure di prevenzione e di sicurezza da adottare. Si considerano redatti secondo la buona tecnica professionale i progetti elaborati in conformità alle indicazioni delle guide dell'Ente italiano di unificazione (UNI).

Qualora l'impianto a base di progetto sia variato in opera, il progetto presentato deve essere integrato con la necessaria documentazione tecnica attestante tali varianti in corso d'opera, alle quali, oltre che al progetto, l'installatore deve fare riferimento nella sua dichiarazione di conformità.

Sono soggetti all'obbligo di depositare presso le autorità comunali il progetto corredato della relazione tecnica, da redigere secondo le modalità previste dalla normativa vigente, tutti i committenti di impianti termici e di condizionamento.

Per «impianto termico», si intende un impianto tecnologico destinato alla climatizzazione degli ambienti con o senza produzione di acqua calda per usi igienici e sanitari o alla sola produzione centralizzata di acqua calda per gli stessi usi, comprendente i sistemi di produzione, distribuzione e utilizzazione del calore nonché gli organi di regolazione e di controllo.

Per «sistema di condizionamento d'aria», si intende il complesso di tutti i componenti necessari per un sistema di trattamento dell'aria, attraverso il quale la temperatura è controllata o può essere abbassata, eventualmente in combinazione con il controllo della ventilazione, dell'umidità e della purezza dell'aria.

Il progetto è depositato:

- presso gli organi competenti al rilascio di licenze di impianto o di autorizzazioni alla costruzione quando previsto dalle disposizioni legislative e regolamentari vigenti;
- presso gli uffici comunali, contestualmente al progetto edilizio, per gli impianti il cui progetto non sia soggetto per legge ad approvazione.

Il Comune, all'atto del ricevimento del progetto, rilascia attestazione dell'avvenuto deposito, convalidando copia della documentazione che rimane al proprietario o possessore dell'impianto, il quale deve esibirla in sede di collaudo o di controllo.

Relazione tecnica inerente l'impianto termico

Ai sensi dell'articolo 28 della Legge 10/91⁷³ il Proprietario dell'edificio, o chi ne ha titolo, deve depositare in comune, in doppia copia insieme alla denuncia dell'inizio dei lavori, il progetto delle opere stesse corredate da una relazione tecnica, sottoscritta dal progettista o dai progettisti, che ne attesti la rispondenza alle prescrizioni in materia di efficienza e risparmio energetico⁷⁴.

La relazione tecnica dovrà essere redatta secondo lo schema generale riportato nell'allegato E del d.lgs. 311/06.

Rimandando al testo del decreto citato, si rammenta che la relazione dovrà includere in generale:

- 1) informazioni generali;
- 2) fattori tipologici dell'edificio (o del complesso di edifici);
- 3) parametri climatici della località
- 4) dati tecnico costruttivi dell'edificio (o del complesso di edifici) e delle relative strutture;
- 5) dati relativi all'impianto termico, comprendenti: la descrizione dell'impianto, le specifiche dei generatori di energia, le specifiche relative ai sistemi di regolazione dell'impianto termico, la descrizione dei dispositivi per la contabilizzazione del calore nelle singole unità immobiliari (solo per impianti centralizzati), dei terminali di erogazione dell'energia elettrica, dei condotti di evacuazione dei prodotti della combustione, dei sistemi di trattamento dell'acqua, le specifiche dell'isolamento termico della rete di distribuzione, della pompa di circolazione, la descrizione degli impianti solari termici e la descrizione degli schemi funzionali degli impianti termici;
- 6) dati relativi agli impianti fotovoltaici;
- 7) dati relativi ad altri impianti;
- 8) principali risultati dei calcoli riguardanti: l'involucro edilizio e i ricambi d'aria, il valore dei rendimenti medi stagionali di progetto, l'indice di prestazione energetica per la climatizzazione invernale e per la produzione di acqua calda sanitaria, la predisposizione delle opere per l'installazione di fonti rinnovabili, impianti solari per la produzione di acqua calda sanitaria ed impianti fotovoltaici;
- 9) elementi specifici che motivano eventuali deroghe a norme fissate dalla normativa vigente;
- 10) valutazioni specifiche per l'utilizzo delle fonti rinnovabili di energia;
- 11) documentazione allegata;
- 12) dichiarazione di rispondenza del progetto al decreto attuativo della direttiva 2002/91/CEE (e del d.lgs. 311/06).

Art. XXXIII Elementi di progetto

Oltre alle specifiche tecniche normative sopra riportate, si dovranno osservare i seguenti valori di riferimento:

- a) l'impianto sarà, salvo altre prescrizioni, del tipo a bassa temperatura; non potrà, quindi, essere superata, nell'acqua delle tubazioni in partenza dalla caldaia, la temperatura di 90℃. (e cioè inferiore di almeno 10°alla temperatura di ebolliz ione) che rappresenta anche il massimo valore consentito per l'impianto;
- b) il livello di caduta della temperatura dell'acqua, dopo il ciclo completo, non dovrà essere superiore ai 15° salvo diverse prescrizioni.

⁷³ Ai sensi dell'art.8 del d.lgs. 29 dicembre 2006, n.311, "la documentazione progettuale di cui all'articolo 28, comma 1, della legge 9 gennaio 1991, n.10 è compilata secondo le modalità stabilite con decreto del Ministero delle Attività Produttive, di concerto con il Ministro dell'ambiente e della tutela del territorio, da emanare entro centottanta giorni dalla data di entrata in vigore del presente decreto, sentita la Conferenza unificata".

⁷⁴ Secondo i criteri indicati dal d.lgs. 29 dicembre 2006, n.311 e relativi allegati.

Dovranno, inoltre, essere coibentate tutte le tubazioni e parti dell'impianto con materiali di facile applicazione ed isolamento.

Le reti di distribuzione saranno eseguite, salvo altre prescrizioni, in tubi di rame opportunamente coibentati e, nel caso di tratti sottotraccia, protetti; verranno disposti rubinetti di intercettazione a monte ed a valle di ogni apparecchiatura ed in corrispondenza dei punti di rete necessari per le operazioni di ispezione e manutenzione.

I corpi scaldanti potranno essere del tipo a radiatori, termoconvettori, pannelli radianti, ecc. ed avranno le caratteristiche espressamente riportate dal progetto di impianto termico.

Prima della chiusura di tracce e cavedi saranno eseguite prove idrauliche di rete ad una pressione superiore di 1,5 volte i valori normali di esercizio per la durata di almeno 8 ore consecutive.

Saranno eseguite, sempre prima del collaudo definitivo, prove di dilatazione, di circolazione e di tenuta da effettuarsi ad impianto ultimato con lo scopo di verificare tutte le parti in condizioni di esercizio parziali.

L'Appaltatore sarà responsabile, durante tutto il periodo di esecuzione delle prove suddette, delle imperfezioni riscontrate e dovrà provvedere, a suo carico e spese, alla pronta riparazione degli inconvenienti riscontrati oltre agli eventuali danni causati direttamente od indirettamente.

Si dovranno prevedere tutte le forniture ed i lavori occorrenti per la realizzazione di:

- generatori di calore (all'interno delle unità abitative) o centrale termica posizionata in apposito locale;
- rete di distribuzione acqua calda ai corpi scaldanti (compresa la loro fornitura);
- corpi scaldanti.

L'impianto sarà di tipo convenzionale con circolazione forzata di acqua a temperatura compensata con quella dell'aria esterna.

Le colonne montanti, in rame, si dipartiranno dalla rete orizzontale che si svilupperà nell'intercapedine sottostante il fabbricato.

La compensazione delle temperature dell'acqua di mandata in funzione di quella dell'aria esterna, avverrà mediante una valvola miscelatrice a tre vie, servoazionata, collegata ad una centralina elettronica completa di sonda di rilevamento temperatura di mandata collegata inoltre con termostato ambiente e sonda di rilevamento temperatura dell'aria esterna. La centralina sarà completa di orologio programmatore.

CLASSIFICAZIONE GENERALE DEGLI EDIFICI PER CATEGORIE (ART. 3 D.P.R. 412/93)

Gli edifici sono classificati in base alla loro destinazione d'uso nelle seguenti categorie:

- E.1 Edifici adibiti a residenza e assimilabili:
 - E.1 (1) abitazioni adibite a residenza con carattere continuativo, quali abitazioni civili e rurali, collegi, conventi, case di pena, caserme;
 - E.1 (2) abitazioni adibite a residenza con occupazione saltuaria, quali case per vacanze, fine settimana e simili;
 - E.1 (3) edifici adibiti ad albergo, pensione ed attività similari;
- E.2 Edifici adibiti a uffici e assimilabili: pubblici o privati, indipendenti o contigui a costruzioni adibite anche ad attività industriali o artigianali, purché siano da tali costruzioni scorporabili agli effetti dell'isolamento termico:
- E.3 Edifici adibiti a ospedali, cliniche o case di cura e assimilabili ivi compresi quelli adibiti a ricovero o cura di minori o anziani nonché le strutture protette per l'assistenza ed il recupero dei tossico-dipendenti e di altri soggetti affidati a servizi sociali pubblici;
- E.4 Edifici adibiti ad attività ricreative, associative o di culto e assimilabili:

- E.4 (1) quali cinema e teatri, sale di riunione per congressi;
- E.4 (2) quali mostre, musei e biblioteche, luoghi di culto;
- E.4 (3) quali bar, ristoranti, sale da ballo;
- E.5 Edifici adibiti ad attività commerciali e assimilabili: quali negozi, magazzini di vendita all'ingrosso o al minuto, supermercati, esposizioni;
- E.6 Edifici adibiti ad attività sportive:
 - E.6 (1) piscine, saune e assimilabili;
 - E.6 (2) palestre e assimilabili;
 - E.6 (3) servizi di supporto alle attività sportive;
- E.7 Edifici adibiti ad attività scolastiche a tutti i livelli e assimilabili;
- E.8 Edifici adibiti ad attività industriali ed artigianali e assimilabili.

Qualora un edificio sia costituito da parti individuabili come appartenenti a categorie diverse, le stesse devono essere considerate separatamente e cioè ciascuna nella categoria che le compete.

TEMPERATURE DI PROGETTO

Temperatura interna (D.M. Sanità 5/7/75 art. 4 in vigore dal 2/08/75)

Gli alloggi debbono essere dotati di impianti di riscaldamento ove le condizioni climatiche lo richiedano. La temperatura di progetto dell'aria interna deve essere compresa tra i 18°C e i 20°C; deve essere, in effetti, rispondente a tali valori e deve essere uguale in tutti gli ambienti abitati e nei servizi, esclusi i ripostigli. Nelle condizioni di occupazione e di uso degli alloggi, le superfici interne delle parti opache delle pareti non debbono presentare tracce di condensazione permanente.

Temperatura esterna (D.P.R. 1052/77 alL. 11)

La temperatura di progetto dell'aria esterna da adottare per il dimensionamento degli impianti di riscaldamento deve essere quella indicata dall'allegato 1 del D.P.R. 1052/77 qui sotto riportata. Gli impianti per il riscaldamento di locali appartenenti a edifici classificati E.3 ed E.6 possono essere dimensionati per fornire una temperatura dell'aria superiore a 20°C. In tal caso, nella relazione tecnica da presentare alle autorità comunali la temperatura dell'aria prescelta deve essere giustificata con elementi di carattere oggettivo.

Temperatura dell'aria esterna di progetto

Torino	- 8	Reggio Emilia	- 5
Alessandria	- 8	Ancona	- 2
Asti	- 8	Ascoli Piceno	- 2
Cuneo	-10	Macerata	- 2
Alta Valle cuneese	-15	Pesaro	- 2
Novara	- 5	Firenze	0
Vercelli	- 7	Arezzo	0
Aosta	-10	Grosseto L.	0
Valle d'Aosta	-15	Livorno	0
Alta Valle d'Aosta	-20	Lucca	0
Genova	0	Massa Carrara	0
Imperia	0	Pisa	0

La Spezia	0	Siena	- 2
Savona	0	Perugia	- 2
Milano	- 5	Terni	- 2
Bergamo	- 5	Roma	0
Brescia	- 7	Frosinone	0
Como	- 5	Latina	2
Provincia di Como	- 7	Rieti	- 3
Cremona	- 5	Viterbo	- 2
Mantova	- 5	Napoli	2
Pavia	- 5	Avellino	- 2
Sondrio	-10	Benevento	- 2
Alta Valtellina	-15	Caserta	0
Varese	- 5	Salerno	2
Trento	- 5	L'Aquila	- 5
Bolzano	-15	Chieti	0
Venezia	- 5	Pescara	2
Belluno	-10	Teramo	0
Padova	- 5	Campobasso	- 4
Rovigo	- 5	Bari	0
Treviso	- 5	Brindisi	0
Verona	- 5	Foggia	0
Verona (zona lago)	- 3	Lecce	0
Verona (zona montagna)	-10	Taranto	0
Vicenza	- 5	Potenza	- 3
Vicenza (zona altipiani)	-10	Matera	- 2
Trieste	- 5	Reggio Calabria	3
Gorizia	- 5	Catanzaro	- 2
Pordenone	- 5	Cosenza	- 3
Udine	- 5	Palermo	5
Bassa Carnia	- 7	Agrigento	3
Alta Carnia	-10	Caltanissetta	0
Tarvisio	-15	Catania	5
Bologna	- 5	Enna	- 3
Ferrara	- 5	Messina	5
Forlì	- 5	Ragusa	0
Modena	- 5	Siracusa	5
Parma	- 5	Trapani	5
Piacenza	- 5	Cagliari	3

Provincia di Piacenza	- 7	Nuoro	0
Ravenna	- 5	Sassari	2

Ove si tratti di località non espressamente indicata è opportuno adottare quale temperatura esterna quella della località più vicina indicata nell'elenco, modificandola opportunamente:

- a) per tener conto della diversa altitudine sul livello del mare: temperatura invariata sino a circa 200 m di differenza di quota; diminuzione (o aumento di 1℃ per ogni 200 m di quota maggiore o minore oltre 200 metri);
- b) per tener conto della diversa situazione dell'ambiente esterno: temperatura invariata, salvo correzione di altezza, in un complesso urbano; diminuzione di 0,5 ÷ 1°C in piccoli agglomerati; diminuzione di 1 ÷ 2°C in edifici isolati;
- c) per tener conto dell'altezza degli edifici, limitatamente ai piani di altezza maggiore di quella degli edifici viciniori; (inclusa la diminuzione di cui alla lettera b), diminuzione di 1 ÷ 2℃).

Art. XXXIV Dichiarazione di conformità

Al termine dei lavori, l'impresa installatrice rilascia al committente la dichiarazione di conformità. Di tale dichiarazione, resa sulla base del modello di cui all'allegato I, sono parte integrante la relazione contenente la tipologia dei materiali impiegati e il progetto di cui all'art.5.

Nei casi in cui il progetto e' redatto dal responsabile tecnico dell'impresa installatrice l'elaborato tecnico e' costituito almeno dallo schema dell'impianto da realizzare, inteso come descrizione funzionale ed effettiva dell'opera da eseguire eventualmente integrato con la necessaria documentazione tecnica attestante le varianti introdotte in corso d'opera.

In caso di rifacimento parziale o di ampliamento di impianti, la dichiarazione di conformità e l'attestazione di collaudo ove previsto, si riferiscono alla sola parte degli impianti oggetto del rifacimento o dell'ampliamento. Nella dichiarazione di conformità dovrà essere espressamente indicata la compatibilità con gli impianti preesistenti.

Il contenuto dei modelli di cui agli allegati I e II può essere modificato o integrato con decreto ministeriale per esigenze di aggiornamento di natura tecnica.

Art. XXXV Attestato di certificazione energetica

Al termine dei lavori, per gli edifici e le opere di cui all'art. 3 del d.lgs. 311/06⁷⁵, l'impresa installatrice dovrà fornire attestato di certificazione energetica redatto secondo i criteri e le metodologie di cui all'art. 6, comma 1 del decreto citato.

Tale attestato è aggiornato ad ogni intervento di ristrutturazione che comporta la modifica della prestazione energetica dell'edificio o dell'impianto. Esso comprende:

- i dati relativi all'efficienza energetica propri dell'edificio;
- i valori vigenti a norma di legge e i valori di riferimento che consentano di valutare e confrontare la prestazione energetica dell'edificio;
- suggerimenti in merito agli interventi più significativi ed economicamente più convenienti per il miglioramento della predetta prestazione.

⁷⁵ d.lgs. 29 dicembre 2006, n. 311 - "Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico in edilizia".

Art. XXXVI Installazione degli impianti⁷⁶

Le imprese installatrici sono tenute ad eseguire gli impianti a regola d'arte utilizzando allo scopo materiali parimenti costruiti a regola d'arte. I materiali ed i componenti realizzati secondo le norme tecniche di sicurezza dell'Ente italiano di unificazione (UNI) nonché nel rispetto di quanto prescritto dalla legislazione tecnica vigente in materia, si considerano costruiti a regola d'arte.

Nel caso in cui per i materiali e i componenti gli impianti non siano state seguite le norme tecniche previste, l'installatore dovrà indicare nella dichiarazione di conformità la norma di buona tecnica adottata. A tal proposito si considerano a regola d'arte i materiali, componenti ed impianti per il cui uso o la cui realizzazione siano state rispettate le normative emanate dagli organismi di normalizzazione di cui all'allegato II della direttiva 83/189/CEE⁷⁷, se dette norme garantiscono un livello di sicurezza equivalente.

I materiali e componenti gli impianti costruiti secondo le norme tecniche per la salvaguardia della sicurezza dell'UNI, nonché nel rispetto della legislazione tecnica vigente in materia di sicurezza, si considerano costruiti a regola d'arte.

Con riferimento alle attività produttive, si applica l'elenco delle norme generali di sicurezza riportate nell'art. 1 del D.P.C.M. 31 marzo 1989⁷⁸.

Art. XXXVII Manutenzione degli impianti⁷⁹

Ai sensi dell'articolo 11, comma 9 del D.P.R. $412/93^{80}$ gli impianti termici con potenza nominale superiore o uguale a 35 kW devono essere muniti di un "libretto di centrale" conforme all'allegato F al citato decreto; gli impianti termici con potenza nominale inferiore a 35 kW devono essere muniti di un "libretto di impianto" conforme all'allegato G al citato decreto.

Ai sensi dell'articolo 11, comma 11 del D.P.R. 412/93 e successive modificazioni (D.P.R. 551/99), la compilazione iniziale del libretto nel caso di impianti termici di nuova installazione o sottoposti a ristrutturazione, e per impianti termici individuali anche in caso di sostituzione dei generatori di calore, deve essere effettuata all'atto della prima messa in servizio, previo rilevamento dei parametri di combustione, dalla ditta installatrice che, avendo completato i lavori di realizzazione dell'impianto termico, è in grado di verificarne la sicurezza e funzionalità nel suo complesso.

Copia della scheda identificativa dell'impianto contenuta nel libretto, firmata dal responsabile dell'esercizio e della manutenzione, dovrà essere inviata all'ente competente (Provincia o comune superiore ai 40.000 abitanti) per i controlli biennali sullo stato di manutenzione e di esercizio dell'impianto termico, ai sensi dell'articolo 11, comma 18 del D.P.R. 412/93 e s.m.i. La compilazione iniziale del libretto, previo rilevamento dei parametri di combustione, per impianti esistenti all'atto dell'entrata in vigore del presente regolamento nonché la compilazione per le verifiche periodiche previste dal presente regolamento è effettuata dal responsabile dell'esercizio e della manutenzione dell'impianto termico. Il libretto di centrale ed il libretto di impianto devono essere conservati presso l'edificio o l'unità immobiliare in cui è collocato l'impianto termico.

Le operazioni di controllo ed eventuale manutenzione dell'impianto termico devono essere eseguite conformemente alle istruzioni tecniche per l'installazione, la regolazione, l'uso e la manutenzione elaborate dal costruttore dell'impianto.

⁷⁶ d.lgs. ²9 dicembre 2006, n. 311 - "Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico in edilizia " - Allegato L.

⁷⁷ Direttiva 83/189/CEE del Consiglio del 28 marzo 1983 che prevede una procedura d'informazione nel settore delle norme e delle regolamentazioni tecniche.

⁷⁸ D.P.C.M. 31 marzo 1989 - "Applicazione dell'art. 12 del D.P.R. 17 maggio 1988, n. 175, concernente rischi rilevanti connessi a determinate attività industriali".

⁷⁹ d.lgs. 29 dicembre 2006, n. 311 - "Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico in edilizia " - Allegato L.

⁸⁰ D.P.R. 26 agosto 1993, n. 412 - "Regolamento recante norme per la progettazione, l'installazione, l'esercizio e la manutenzione degli impianti termici degli edifici ai fini del contenimento dei consumi di energia, in attuazione dell'art. 4, comma 4, della legge 9 gennaio 1991, n. 10"

Qualora non siano disponibili le istruzioni del costruttore, le operazioni di controllo ed eventuale manutenzione degli apparecchi e dispositivi facenti parte dell'impianto termico devono essere eseguite conformemente alle istruzioni tecniche elaborate dal fabbricante ai sensi della normativa vigente, mentre le operazioni di controllo e manutenzione delle restanti parti dell'impianto termico, e degli apparecchi e dispositivi per i quali non siano disponibili le istruzioni del fabbricante relative allo specifico modello, devono essere eseguite secondo le prescrizioni e con la periodicità prevista dalle vigenti normative UNI e CEI per lo specifico elemento o tipo di apparecchio o dispositivo.

In mancanza di tali specifiche indicazioni, i controlli di cui all'allegato F del d.lgs. 311/06 per gli impianti di potenza nominale del focolare maggiori o uguali a 35 kW e all'allegato G del d.lgs. 311/06 per gli impianti di potenza nominale del focolare inferiori a 35 kW devono essere effettuati almeno con le seguenti scadenze temporali:

- a) ogni anno per gli impianti alimentati a combustibile liquido o solido indipendentemente dalla potenza, ovvero alimentati a gas di potenza nominale del focolare maggiore o uguale a 35 kW;
- b) ogni due anni per gli impianti diversi da quelli individuati al punto a), di potenza nominale del focolare inferiore a 35 kW dotati di generatori di calore con una anzianità di installazione superiore a otto anni e per gli impianti dotati di generatore di calore ad acqua calda a focolare aperto installati all'interno di locali abitati, in considerazione del maggior sporcamento delle superfici di scambio dovuto ad un aria comburente che risente delle normali attività che sono svolte all'interno delle abitazioni;
- c) ogni quattro anni per tutti gli altri impianti di potenza nominale del focolare inferiore a 35 kW.

L'operatore addetto alla manutenzione ha l'obbligo di redigere e sottoscrivere, al termine delle operazioni di manutenzione stesse, un rapporto di controllo tecnico in relazione alle tipologie e potenzialità dell'impianto secondo i modelli previsti dalla normativa vigente (d.lgs. 311/06, allegati F e G), da rilasciare al proprietario, conduttore o amministratore che ne sottoscrive copia per ricevuta e presa visione.

In occasione delle operazioni di controllo e manutenzione sui generatori di calore, vanno effettuate anche le verifiche di rendimento. Gli elementi da sottoporre a verifica sono quelli riportati sul libretto di centrale o sul libretto di impianto. Tali verifiche vanno comunque effettuate almeno una volta all'anno, normalmente all'inizio del periodo di riscaldamento, per i generatori di calore con potenza nominale superiore o uguale a 35 kW e almeno con periodicità quadriennale per i generatori di calore con potenza nominale inferiore.

Per le centrali termiche alimentate a combustibili liquidi o solidi ovvero dotate di generatore di calore o di generatori di calore con potenza termica nominale maggiore o uguale a 350 kW è inoltre prescritta una seconda determinazione del solo rendimento di combustione da effettuare normalmente alla metà del periodo di riscaldamento.

Il rendimento di combustione, che dovrà essere rilevato in conformità alle vigenti norme tecniche UNI, nel corso delle suddette verifiche, misurato alla massima potenza termica effettiva del focolare nelle condizioni di normale funzionamento, deve risultare conforme a quanto prescritto all'articolo 11comma 14 del D.P.R. 412/93 e s.mi.

I generatori di calore per i quali, durante le operazioni di verifica in esercizio, siano stati rilevati rendimenti di combustione inferiori ai limiti fissati dall'allegato H del d.lgs. 311/06 e non riconducibili a tali valori mediante operazioni di manutenzione, devono essere sostituiti entro 300 giorni dalla data della verifica.

Art. XXXVIII Verifiche, certificazioni e collaudi delle opere

VERIFICHE

I soggetti direttamente obbligati ad ottemperare a quanto previsto dalla legge devono conservare tutta la documentazione amministrativa e tecnica e consegnarla all'avente causa in caso di trasferimento dell'immobile a qualsiasi titolo, nonché devono darne copia alla persona che utilizza i locali.

CERTIFICAZIONE DELLE OPERE E COLLAUDO

Per la certificazione e il collaudo delle opere si applica la normativa tecnica di riferimento.

La conformità delle opere rispetto al progetto e alla relazione tecnica di cui all'art. 8 comma 1 del d.lgs. 311/06 deve essere asseverata dal Direttore dei lavori e presentata al comune di competenza contestualmente alla dichiarazione di fine lavori. Il Comune dichiara irricevibile la dichiarazione di fine lavori se la stessa non è accompagnata dalla predetta asseverazione.

Per eseguire i collaudi, ove previsti, e per accertare la conformità degli impianti alle disposizioni della presente legge e della normativa vigente, i Comuni, le Unità sanitarie locali, i Comandi provinciali dei Vigili del Fuoco e l'Istituto superiore per la prevenzione e la sicurezza del lavoro (ISPESL) hanno facoltà di avvalersi della collaborazione dei liberi professionisti, nell'ambito delle rispettive competenze. Il certificato di collaudo deve essere rilasciato entro tre mesi dalla presentazione della relativa richiesta.

Il collaudo deve verificare la rispondenza dell'impianto realizzato alle norme di legge e al progetto depositato presso il Comune. Devono essere controllati nei fumi il contenuto di CO₂, l'indice di fumosità e la temperatura e, nel caso di impiego di combustibile gassoso, anche il contenuto di CO. Nel caso in cui l'impianto sia dotato di termoregolazione centralizzata, devono inoltre essere rilevati almeno due valori della temperatura del fluido di mandata dell'impianto a valle della termoregolazione, in relazione ai rispettivi valori della temperatura esterna durante il collaudo. Deve inoltre essere verificato che, in periodo medio stagionale e durante le ore di soleggiamento in giornata serena, la temperatura nei diversi ambienti dell'edificio non superi quella prevista nel progetto.

I dati rilevati vanno riportati, a cura del collaudatore, sul libretto di centrale di cui all'allegato 2 del D.P.R. 1052/77.

Il collaudo dell'impianto centralizzato di acqua calda per usi igienici e sanitari, deve verificare ai fini della legge che la temperatura dell'acqua nel punto di immissione nella rete di distribuzione sia conforme al valore fissato all'art. 7 del D.P.R. 1052/77, con la tolleranza e le modalità indicate all'art. 11 del D.P.R. 1052/77. In occasione dei collaudi di cui sopra devono essere anche accertati gli spessori e lo stato delle coibentazioni delle tubazioni e dei canali d'aria dell'impianto.

Art. IXL Sanzioni

Le sanzioni amministrative vengono determinate nella misura variabile tra il minimo e il massimo, con riferimento alla entità e complessità dell'impianto, al grado di pericolosità ed alle altre circostanze obiettive e soggettive della violazione.

Le violazioni della legge accertate, mediante verifica o in qualunque altro modo, a carico delle imprese installatrici sono comunicate alla Camera di commercio, industria, artigianato e agricoltura competente per territorio, che provvede all'annotazione nell'albo provinciale delle imprese artigiane o nel registro delle imprese in cui l'impresa inadempiente risulta iscritta, mediante apposito verbale.

La violazione reiterata per più di tre volte delle norme relative alla sicurezza degli impianti da parte delle imprese abilitate comporta altresì, in casi di particolare gravità, la sospensione temporanea dell'iscrizione delle medesime imprese dal registro delle ditte o dall'albo provinciale delle imprese artigiane, su proposta dei soggetti accertatori e su giudizio delle commissioni che sovrintendono alla tenuta dei registri e degli albi.

Dopo la terza violazione delle norme riguardanti la progettazione e i collaudi, i soggetti accertatori propongono agli ordini professionali provvedimenti disciplinari a carico dei professionisti iscritti nei rispettivi albi.

All'applicazione delle sanzioni di cui al presente articolo provvedono le Camere di commercio, industria, artigianato ed agricoltura.

Ai sensi dell'art. 15, comma 7 del d.lgs. 311/06, il costruttore che non consegna al proprietario, contestualmente all'immobile, l'originale della certificazione energetica di cui all'articolo 6, comma 1 del medesimo decreto è punito con sanzioni amministrative.

PARTE QUARTA – CONSOLIDAMENTO
PRESCRIZIONI TECNICHE

TITOLO I – PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI INDAGINI, SAGGI ED ANALISI

Le indagini preliminari che potranno essere utilizzate sono di tre tipi:

- c) indagini non distruttive (termografia, indagini soniche, georadar, tomografia sonica e radar);
- d) indagini minimamente distruttive (martinetti piatti, sclerometro, prove di penetrazione, pull test);
- e) indagini geognostiche (sondaggi, prove penetrometriche, analisi di laboratorio, misurazione della quota di falda.

Art. I indagini non distruttive

Nel primo caso si utilizzeranno tecnologie di analisi dei materiali o degli elementi da sottoporre ad opere di demolizione che escludano interventi artificiali o a carattere invasivo tali da alterare in qualsiasi modo le caratteristiche fisico-chimiche delle parti oggetto di indagine.

A questa prima categoria appartengono le seguenti tecnologie:

- fotogrammetria per la ripresa e restituzione di immagini fotografiche completamente prive di distorsioni provocate dall'impiego delle ottiche normalmente utilizzate;
- termografia per il rilevamento delle radiazioni elettromagnetiche (comprese tra 0,4 e 0,75 micron) e di immagini non comprese nella banda del visibile ma estese nel campo dell'infrarosso e più precisamente nella regione spettrale compresa tra 2 e 5,6 micron visualizzando su un monitor la mappa termica o termogramma della distribuzione della temperatura superficiale dei vari materiali, visualizzabile attraverso scale di colori o toni di grigio. Ad ogni colore o tono della scala di grigi, corrisponde un intervallo di temperature. Le apparecchiature all'infrarosso misurano il flusso di energia a distanza senza alcun contatto fisico con la superficie esaminata. Lo schema di funzionamento si basa su una videocamera ad infrarossi che trasforma le radiazioni termiche in segnali elettrici, successivamente convertiti in immagini, a loro volta visualizzate su un monitor e registrate. In particolare nella videocamera, la radiazione infrarossa che raggiunge l'obiettivo, viene trasmessa dal sistema ottico ad un elemento semiconduttore, il quale converte le radiazioni infrarosse in un segnale video, mentre l'unità di rilevazione elabora il segnale proveniente dalla telecamera e fornisce l'immagine termografica. L'apparecchiatura termovisiva deve comprendere una telecamera, capace di effettuare riprese secondo angoli da + 0°a - 90°su uno stesso piano e dotata di obiettivi intercambiabili con lenti al germanio o al silicio ed una centralina di condizionamento del segnale con monitor. Il campo di misura dell'apparecchiatura deve essere compreso tra - 20°C e + 900°C con una sensibilità migliore di 0,5°C. La banda di radiazione dell'apparecchiatura dovrà essere compresa tra 2 e 5,6 mm. L'apparecchiatura dovrà rendere possibile la registrazione delle immagini, su pellicola fotografica in bianco e nero e/o colori, su nastro magnetico. Deve inoltre essere prevista la possibilità di montare l'apparecchiatura su carrello semovente autoportante per poter costituire unità autonoma. Queste apparecchiature sono comunemente portatili e autoalimentate;
- misurazione della temperatura e dell'umidità effettuata con termometri ed igrometri in grado di fornire i valori relativi alle superfici prese in esame; tali misurazioni possono essere eseguite anche con strumentazioni elettroniche di precisione e con l'umidometro a carburo di calcio;
- misurazione dei valori di inquinamento atmosferico attraverso la rilevazione dei dati sulle radiazioni solari, direzione del vento, le precipitazioni e la pressione esterna;
- la rilevazione fotografica con pellicole normali o all'infrarosso per un'analisi più approfondita delle caratteristiche dei materiali e delle loro specificità fisico-chimiche;
- endoscopia necessaria per l'esame ottico di condotti o cavità di piccole dimensioni per mezzo di piccole telecamere o strumenti fotografici integrati con apparecchi illuminanti e, a volte, con l'impiego di fibre ottiche. Per questa indagine si devono prediligere cavità già esistenti onde evitare la manomissione del materiale che ne deriverebbe da un foro appositamente praticato per svolgere l'indagine. Tale indagine è effettuata per mezzo dell'endoscopio che può essere di tipo

PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO-

rigido o di tipo flessibile. L'endoscopio rigido è un sistema ottico a lenti contenuto in un rivestimento rigido. Deve essere prolungabile fino a 2 metri mediante aggiunta di ulteriori elementi ottici e deve essere dotato di sistema di illuminazione per agevolare l'osservazione. Dovrà essere consentita la visione diretta a 45°e 90°. Lo strumento deve essere accoppiabile ad apparecchiature fotografiche e/o televisive. L'endoscopio flessibile permette la trasmissione dell'immagine e della luce tramite fibre ottiche. È comunemente dotato di testa mobile e prisma di conversione a 90°. Lo strumento deve essere accoppi abile ad apparecchiature fotografiche e/o televisive;

- misurazione degli inquinanti atmosferici effettuata con strumenti specifici per la rilevazione dei parametri di anidride carbonica, anidride solforosa, anidride solforica, ossidi di azoto, acido cloridrico, polveri totali, solfati, cloruri, nitrati ed altre sostanze presenti in sospensione nell'aria o depositate sul terreno;
- magnetometria impiegata per la rilevazione dei materiali ferrosi anche inglobati in altre sostanze. Dopo la lavorazione gli orientamenti dei magnetini contenuti nei manufatti rimangono inalterati, costituendo un campo magnetico facilmente rilevabile da apparecchiature magnetometriche; la ricerca è basata sul principio dell'induzione elettromagnetica e lo strumento utilizzato è il metal-detector che localizza la presenza di metalli con emissioni magnetiche effettuate da bobine o altri generatori di campi. Gli elementi che costituiscono questa apparecchiatura sono più sonde rilevatrici, con diversa precisione di rilevamento e con uscite per registratore, e una centralina analogica a due o più scale per la lettura della misura a seconda della differente sensibilità della sonda utilizzata. Queste apparecchiature sono comunemente portatili ed autoalimentate;
- colorimetria che analizza il manufatto sulla base dell'indagine fotografica effettuata con una serie di colorimetri standardizzati secondo la scala Munse che consentono l'individuazione delle varie sostanze presenti nelle parti analizzate.

Esistono, inoltre, degli altri tipi di indagine che rientrano sempre tra quelli classificati non distruttivi ma che hanno un piccolo grado di invasività quali:

- indagini soniche effettuate con fonometri in grado di emettere impulsi sonici e captare delle onde sonore, attraverso la percussione con appositi strumenti o con trasduttori elettrodinamici, registrando la deformazione delle onde elastiche che forniscono elementi per la valutazione del degrado delle murature o eventuale presenza di lesioni. L'elaborazione dei dati, invece, consiste nel calcolo del tempo e della velocità di attraversamento dell'impulso dato dalla muratura. Il principio generale dell'indagine sonica si basa su alcune relazioni che legano la velocità di propagazione delle onde elastiche, attraverso un mezzo materiale, alle proprietà elastiche del mezzo stesso.
 - L'apparecchiatura dovrà essere predisposta per l'uso di una vasta banda di frequenza compresa tra 100 e 1000 Hz e consentire l'utilizzo di uscita su monitor oscilloscopico che permette l'analisi delle frequenze indagate. Gli eventi sonici studiati dovranno poter essere registrati in continuo;
- indagini con ultrasuoni eseguite per mezzo di fonometri particolari in grado di emettere dei segnali che vengono registrati da un captatore (interno all'apparecchio stesso) che misura:
 - la velocità del suono in superficie per individuare le alterazioni superficiali dei materiali,
 - le misure radiate, non sempre possibili (in quanto registrate sulla superficie esterna e su quella interna), per verificare l'omogeneità dei materiali.

Gli elementi che compongono questa apparecchiatura sono una centralina di condizionamento del segnale munita di oscilloscopio e sonde piezoelettriche riceventi, trasmittenti e ricetrasmittenti.

L'apparecchiatura avrà diverse caratteristiche a seconda del materiale da indagare (calcestruzzo, mattoni, elementi lapidei, metalli). Le frequenze di indagine comprese tra i 40 e i 200 Khz dovranno essere utilizzate per prove su materiali non metallici, mentre per i materiali metallici il range adottabile è compreso tra i 500 ed i 5000 Khz. L'apparecchiatura è comunemente autoalimentata e portatile;

— il rilievo della luminosità che viene misurato con un luxmetro che verifica l'illuminazione dei vari oggetti, con un ultraviometro che misura la radiazione ultravioletta, con termometri e termografi per la misurazione della temperatura di colore - i dati rilevati vanno comparati a parametri standard che prevedono un'illuminazione max di 250-300 lux per pietre e metalli, 180 lux per legno e dipinti (il lux equivale all'illuminazione prodotta da una sorgente di 1 candela su una superficie ortogonale ai raggi ad una distanza di 1 metro), temperatura di colore 4.000 K, umidità relativa 55-60%.

Oltre a quelle già descritte esistono delle tecniche di analisi che hanno caratteristiche distruttive di lieve entità e che si rendono necessarie per la valutazione di alcuni parametri:

- analisi con i raggi X per l'identificazione della struttura di una sostanza cristallina individuandone i vari componenti. Il materiale viene irradiato con un isotopo radioattivo e l'energia assorbita viene rimessa sotto forma di raggi X caratteristici degli elementi chimici presenti nel materiale;
- prove chimiche necessarie per stabilire la composizione della malta che viene analizzata con:
 - dissoluzione del campione in acido cloridrico con concentrazioni e temperature variabili;
 - quantità di gas carbonico nei componenti carbonati;
 - dosaggio per perdita al fuoco dell'acqua di assorbimento;
 - dosaggio sostanze organiche;
- analisi spettrofotometriche per l'identificazione ed il dosaggio degli ioni presenti in una soluzione acquosa - campo del visibile (0,4-0,8 micron), ultravioletto (0,000136-0,4 micron) e infrarosso (0,8-400 nm);
- microscopia ottica per l'analisi del colore, dei caratteri morfologici e delle caratteristiche specifiche di ciascuna sostanza;
- microscopia elettronica per lo studio della distribuzione delle singole parti e dei prodotti di alterazione;
- studio petrografico in sezione sottile per analizzare sezioni di materiale di spessore molto ridotto ed osservate al microscopio elettronico a scansione;
- analisi conduttometriche per la valutazione della presenza di sali solubili in acqua nel campione esaminato senza stabilire il tipo di sale eventualmente presente.

Nei processi di analisi dei campioni sono richieste anche le seguenti prove fisiche e meccaniche:

- valutazione della porosità con porosimetri a mercurio e picnometri Beckman in grado di definire, conseguentemente, il livello di permeabilità all'acqua e quindi lo stato di degrado di un materiale;
- analisi granulometrica con setacci a maglie da 60 a 400 micrometri per la definizione della distribuzione del materiale e lo studio dei parametri conseguenti;
- capacità di imbibizione definita con il controllo del peso prima e dopo l'immersione dei vari campioni di materiali. La superficie viene cosparsa con tintura liquida che viene condotta verso le fessurazioni e verso le porosità superficiali. Viene applicato un rilevatore per individuare la presenza e l'ubicazione dei difetti;
- assorbimento per capillarità misurata su campioni posti a contatto con una superficie liquida;
- prove di compressione, taglio e trazione eseguite sui campioni di vari materiali per la definizione delle caratteristiche di ciascun elemento.

Art. II indagini minimamente distruttive

Nel secondo caso si utilizzeranno tecnologie di analisi dei materiali o degli elementi da sottoporre ad opere di demolizione ispezionando direttamente la morfologia muraria, servendosi di prove leggermente distruttive.

A questa seconda categoria appartengono le seguenti tecnologie:

- martinetti piatti che misura lo stato di sollecitazione basandosi sullo stato tensionale in un punto della struttura. Tale misura si ottiene introducendo un martinetto piatto in un taglio effettuato lungo un giunto di malta. A fine prova lo strumento può essere facilmente rimosso e il giunto eventualmente risarcito. Lo stato di sforzo può essere determinato grazie al rilassamento causato dal taglio perpendicolare alla superficie muraria; il rilascio, infatti, determina una parziale chiusura del taglio. La prova prosegue ponendo il martinetto piatto nell'apertura e aumentando la pressione in modo da riportare i lembi della fessura alla distanza originaria, misurata prima del taglio. La parte interessata dall'operazione può essere strumentata con estensimetri rimovibili. In tal modo è possibile misurare con precisione gli spostamenti prodotti dal taglio e dal martinetto durante la prova;
- sclerometro a pendolo consiste nel colpire la superficie del calcestruzzo con una massa guidata da una molla e la distanza di fine corsa viene espressa in valori di resistenza. In questo modo viene misurata la durezza superficiale;
- pull-off test consiste nell'applicare una sonda circolare d'acciaio alla superficie del calcestruzzo con della resina epossidica. Si applica poi una forza di trazione alla sonda aderente, fino alla rottura del calcestruzzo per trazione. La resistenza alla compressione può essere misurata tramite i grafici della calibratura.

Art. III indagini geognostiche

SONDAGGI GEOGNOSTICI81

Generalità

I sondaggi devono essere eseguiti con sonda a rotazione. Nei terreni non lapidei fratturati in cui le pareti del foro manifestino tendenza a franare, verrà posta in opera una batteria da rivestimento di diametro compreso fra 250 ed i 127 mm salvo particolari prescrizioni diverse.

Spessore e qualità dell'acciaio devono essere tali da consentire con un solo diametro il rivestimento di almeno 40 m lineari di foro. Il rivestimento deve essere infisso a rotazione con circolazione di fluido che normalmente è costituito da acqua; in casi particolari il Progettista può richiedere, invece dell'acqua, l'impiego di fango bentonitico.

La perforazione deve venire condotta con o senza l'impiego di fluido di circolazione secondo tipo di terreno, attrezzo impiegato, scopo del sondaggio.

I sondaggi possono essere di due tipi:

- a carotaggio continuo;
- a distruzione di nucleo.

In ogni caso la perforazione deve essere seguita da un tecnico specializzato dell'Appaltatore che esamina i campioni di risulta, compila la stratigrafia ed imposta il lavoro degli operatori di macchina.

La profondità massima cui i sondaggi possono essere spinti non supera, di norma, 100 m dal piano di campagna o dal fondale. Viene comunque precisata dal Progettista, caso per caso, all'inizio dei lavori e può essere variata nel corso degli stessi, in funzione dei dati provvisori risultanti. Al termine di ciascun sondaggio, quando non siano installati piezometri od altri tipi di strumenti, il foro deve essere riempito, fino alla sommità attraverso apposite aste o tubi flessibili calati al fondo foro, con miscela cemento-bentonite-acqua (50-10-100 parti in peso), ritirando man mano i rivestimenti. Mentre la stabilità delle pareti del foro è garantita dal rivestimento metallico provvisorio, quella del fondo del foro deve essere assicurata con i mezzi che la tecnica operativa mette a disposizione.

In particolare:

 le manovre di estrazione dell'attrezzo di perforazione, campionamento, ecc. devono essere eseguite con velocità molto bassa nel tratto sommerso per minimizzare "l'effetto pistone";

⁸¹ D.M. 14 gennaio 2008 – "Nuove norme tecniche per le costruzioni" e UNI EN 1997-1/2005: Eurocodice 7 – "Progettazione geotecnica".

- il battente di fluido in colonna deve essere mantenuto sempre il più possibile, anche facendo sporgere fino ad 1 metro dal piano di lavoro l'estremità superiore del rivestimento da mantenersi pieno di fluido;
- appesantendo con barite il fango bentonitico quando impiegato.

La pulizia del fondo foro, prima di eseguire operazioni di campionamento e/o prove in sito deve essere assicurata eseguendo, se necessario, apposite manovre di pulizia o lavaggio.

Attrezzature di perforazione

Le attrezzature di perforazione a rotazione da impiegare devono avere i seguenti requisiti:

- velocità di rotazione variabile da 0 a 800 giri/minuto primo;
- coppia massima non inferiore a 400 Kgm;
- spinta verso il basso non minore di 2500 Kg, continua per almeno 80 cm;
- tiro non minore di 4000 Kg.

In casi particolari (sondaggi in mare, in pendii o luoghi di difficile accesso, ecc.) il Progettista prescrive il tipo di attrezzature, se diverso da quello sopra indicato, più idoneo al caso specifico.

Le attrezzature devono essere corredate di tutti quegli accessori (pompe, mescolatori, vasche, ecc.) necessari per il corretto funzionamento.

Perforazione a campionatura continua

Il sistema, le modalità di perforazione e di rivestimento devono essere tali da minimizzare il disturbo provocato nei terreni attraversati ed al fondo del foro. Il diametro dell'utensile di perforazione deve essere proporzionato a quello del rivestimento.

L'utensile e le modalità dell'impiego devono garantire una percentuale di recupero sempre superiore al 90%:

- per i terreni coesivi rappresentativo della composizione granulometrica e della struttura;
- per i terreni sciolti granulari rappresentativo della composizione granulometrica e della struttura;
- per i terreni lapidei rappresentativo della struttura, grado di alterazione e fratturazione della roccia.

Di norma tutti i campioni estratti devono essere sistemati in cassette catalogatrici aventi dimensioni 100 x 60 x 15 cm munite di scomparti divisori e di coperchio. Sulle cassette deve essere indicato in modo indelebile il cantiere, il sondaggio e le quote di riferimento. Sugli scomparti interni deve essere chiaramente scritta la quota di riferimento di ciascuna manovra eseguita. I campioni di terreno non roccioso devono essere scortecciati nella parte visibile della cassetta.

In base all'esame dei campioni di cui sopra deve essere compilata la stratigrafia del sondaggio che comprenderà:

terreni non lapidei

- spessore e frequenze di alternanze litologiche e laminazioni ritmiche;
- colore/i prevalente/i delle formazioni;
- composizione granulometrica approssimata, nei termini correnti (trovanti, ciottoli, ghiaia, sabbia, limo, argilla), indicando il diametro massimo della ghiaia ed indicando per prima la frazione prevalente e, di seguito, le eventuali altre frazioni secondo importanza percentuale;
- caratteristiche di consistenza (terreni coesivi) nei termini correnti (tenero, plastico, compatto, molto compatto);
- caratteristiche di addensamento (terreni non coesivi) nei termini usuali (sciolto, mediamente addensato, denso);
- presenza di sostanze organiche o torbe, fossili, legno, calcinacci, ecc.;
- grado di arrotondamento e/o appiattimento e natura di ghiaia e ciottoli;
- grado di uniformità dei materiali non coesivi (ben gradato, uniforme);
- livello di falda se esistente e data della misura:
- diametro rivestimenti e diametro batteria carotante;
- tipo di carotiere utilizzato.

Oltre le note del sondatore relative a tendenze al rifluimento, ecc., ciascuna formazione verrà riassuntivamente classificata secondo la "Unified Soil Classification".

terreni lapidei

- natura litologica;
- grado di fratturazione e stato delle fratture;
- natura del materiale di riempimento delle fratture (eventuale);
- indicazione della stratificazione (eventuale);
- colore:
- natura del cemento (eventuale);
- grado di alterazione;
- lunghezza dei singoli pezzi integri di carota recuperata;
- percentuale di carotaggio riferita ad ogni manovra;
- diametro rivestimento e diametro batteria carotante;
- tipo di carotiere usato;
- tipo di corona adottato;
- livello di falda e data rilievo.

Il Progettista indica all'atto dell'affidamento di lavori se l'Appaltatore deve fotografare tutte o parte delle cassette catalogatrici contenenti il carotaggio, con pellicola a colori; in tal caso la documentazione fotografica deve essere allegata alla relazione finale dell'Appaltatore.

Perforazione a distruzione di nucleo

L'utensile da impiegare in questo tipo di perforazione è costruito in modo che la direzione di fuoriuscita del fluido di circolazione sia fortemente inclinata rispetto alla verticale del foro.

Il detrito della perforazione, portato alla superficie dal fluido in circolazione, deve essere raccolto ed esaminato in modo che anche con le osservazioni dell'operatore, possa essere consentita la compilazione di una stratigrafia sommaria del terreno attraversato.

Il fluido di circolazione è costituito da acqua o fango bentonitico secondo necessità e prescrizioni del Progettista.

La perforazione a distruzione di nucleo potrà anche essere realizzata mediante martello fondo foro seguito o meno da batteria da rivestimento. In questi casi potrà essere richiesta la campionatura saltuaria del terreno.

MISURE DELLA FALDA NEI SONDAGGI

Le misure del livello della falda devono essere eseguite ogni mattina nel foro di sondaggio prima della ripresa della perforazione. Affinché i dati misurati siano attendibili è necessario che, fino alla quota della scarpa di rivestimento, il foro sia libero da materiali impermeabili (limi, argille) che impediscono alla falda di stabilizzarsi durante la notte.

Le misure devono essere annotate su apposita tabella segnalando di volta in volta la quota del rivestimento e quella del fondo foro.

Sulla stratigrafia deve essere riportato il valore più prossimo al p.c. fra quelli rilevati.

In presenza di fango bentonitico nel foro, le misure della falda non devono essere effettuate.

PRELIEVO DEI CAMPIONI PER LE ANALISI NEI SONDAGGI

Nel corso dei sondaggi, con frequenza e nelle formazioni che vengono stabilite caso per caso, devono essere prelevati campioni da sigillare e successivamente da inviare al laboratorio per le analisi.

I campioni saranno del tipo:

- rimaneggiato nei terreni granulari molto grossolani;
- semidisturbati nei terreni granulari, medio fini e fini;

PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO-

- indisturbato nei terreni semicoesivi e coesivi;
- nei terreni lapidei potrà essere richiesta la scelta, sigillatura e spedizione di alcune "carote" rappresentative.

Tutti i campioni dei terreni non lapidei devono essere rappresentativi della composizione granulometrica del terreno; quelli semidisturbati devono inoltre conservare inalterato (terreni semicoesivi-coesivi) il contenuto d'acqua naturale; i campioni indisturbati, oltre alle caratteristiche sopra descritte, devono mantenere pressoché inalterate anche le seguenti caratteristiche:

- peso di volume apparente;
- compressibilità:
- resistenza al taglio.

I campioni devono essere contraddistinti con un cartellino (non alterabile per umidità, trasporto, ecc.) sul quale devono comparire tutti dati indicativi (cantiere, sondaggio, numero progressivo del campione, profondità di prelievo, tipo di campionatura impiegato, data di prelievo, parte alta, ...). Il numero del campione, il tipo di campionatore e il metodo di prelievo deve essere riportato anche sulla stratigrafia di sondaggio, alla relativa quota. Tali annotazioni devono comparire anche nel caso di prelievi non riusciti corredandole con le note dell'operatore. Le estremità dei campioni indisturbati e semidisturbati devono essere sigillate subito dopo il prelievo con paraffina fusa o tappo di espansione.

Campioni rimaneggiati

I campioni rimaneggiati verranno sigillati in sacchetti o barattoli di plastica; la quantità necessaria per il laboratorio è di circa 500 grammi per i terreni fini e di circa 5 Kg per quelli grossolani.

Campioni semidisturbati

Il prelievo verrà eseguito con campionatore tradizionale "a pareti grosse" con contenitore inserito, di diametro adeguato alla granulometria del terreno ed al diametro del foro; il campionatore deve essere munito, all'occorrenza, di cestello di ritenuta (basket shoe) alla base. L'infissione avviene a percussione o a pressione.

In alternativa, secondo il tipo di terreno può o deve essere impiegato un campionatore rotativo a tripla parete, con tagliente che sopravanza la corona, tipo Denison o Mazier.

L'impresa può proporre l'adozione di altri tipi di campionatori adatti per terreni grossolani quali quelli da infiggere a vibrazione, a roto-percussione (adatti al "martello a fondo foro), ecc. che, se ritenuti idonei, saranno accettati dal Progettista.

Campioni indisturbati

Secondo necessità, natura e consistenza del terreno, i campioni indisturbati vengono prelevati con uno dei seguenti campionatori che pertanto devono essere tutti disponibili in cantiere:

- campionatore a pareti sottili tipo Osterberg, a pistone;
- campionatore a pareti sottili con pistone fisso;
- campionatore a pareti sottili aperto;
- campionatore rotativo a tripla parete tipo Denison o Mazier.

Di norma il campionatore tipo Osterberg viene impiegato nei terreni coesivi e semicoesivi teneri. Quello a pareti sottili aperto nei terreni di compattezza media; quello con pistone fisso nei terreni di entrambi i tipi in particolari circostanze (lunghezza di campione ridotta, tendenza a fuoriuscire durante l'estrazione). Il campionatore rotativo viene invece impiegato nei terreni coesivi molto compatti solo quando è dimostrata l'impossibilità di prelievo con gli altri tipi di campionatore.

I campionatori a pareti sottili sono costituiti da cilindri di acciaio inox sagomati a tagliente nella parte terminale, e devono avere le seguenti dimensioni:

- diametro interno 80-85 mm oppure 100-105 mm;
- lunghezza utile 50-60 cm.

La fustella deve essere ben pulita internamente, priva di cordoli (saldature, ecc.) ed ovalizzazioni. Il campionatore deve avere al di sopra della fustella un "serbatoio" di uguale diametro interno e

lunghezza 15-20 cm. I campionatori a pareti sottili devono essere infissi a pressione in unica tratta. In casi particolari il Progettista prescrive l'adozione di campionatori aventi diametro interno all'estremità inferiore (De) leggermente minore di quello interno della fustella (Ds). Lo spessore della fustella costituente il campionatore varia tra 2 e 3 mm in relazione al diametro. Le dimensioni utili del campionatore rotativo devono essere:

- diametro 65-70 mm oppure 85-90 mm;
- lunghezza 60-100 cm.

Tale campionatore è costituito da 2 tubi di acciaio, dei quali 1, esterno, in modo rotatorio e l'altro fisso, più un contenitore che costituisce l'involucro per la spedizione al laboratorio. Al tubo esterno è applicata la corona tagliente mentre quello interno è munito di una scarpa affilata, che sopravanza la corona; la sporgenza della scarpa deve essere regolabile alla natura ed alla consistenza del terreno. Viene infisso a rotazione e pressione, con flusso in circolazione.

Carote di formazioni lapidee

Quando richieste, carote rappresentative delle formazioni cementate e/o lapidee verranno sigillate in cilindri di adeguate dimensioni, riempiendo l'intercapedine e le estremità con paraffina fusa. I cilindri devono essere rigidi.

PROVE DI RESISTENZA

Il tipo, la frequenza, la profondità di prove di resistenza che devono essere eseguite nel corso dei sondaggi vengono indicati dal Progettista in sede di programmazione dell'indagine.

Le prove richieste possono essere:

- prova penetrometrica con penetrometro statico convenzionale;
- prova penetrometrica con penetrometro statico a punta elettrica ed in clinometro;
- prova S.P.T.;
- prova penetrometrica dinamica continua;
- prova scissometrica (vane test);
- prova pressiometrica con pressiometro Menard;
- prova con pressiometro autoperforanti;
- prova con dilatometro "Good.m.ad Jack";
- prova di carico su piastra elicoidale.

Le prove possono essere richieste nel corso dei sondaggi "con campionamento" e/o "a distruzione" descritti nel capitolo 2 oppure, direttamente a partire dal piano campagna con o senza necessità di prefori in ausilio. Il preforo, se richiesto, viene comunque condotto con le modalità descritte nel capitolo 2, adottando diametri di perforazione e di rivestimento adeguati al tipo di prova richiesta.

PROVA S.P.T. (Standard Penetration Test) 82

Riferimenti a "Standard" esistenti:

ASTM 1585/67; "Penetration Test and Split-Barrel Sampling of Soils".

Requisiti dell'attrezzatura

Le dimensioni del campionatore, il peso delle aste e del maglio, l'altezza di caduta dello stesso, devono essere esattamente uguali a quelli illustrati nella norma sopra citata.

La caduta del maglio deve essere libera; pertanto deve essere adottato un dispositivo di sganciamento automatico che svincoli il maglio dal cavo, o altro dispositivo di sollevamento, all'altezza voluta.

Fra testa di battuta in sommità delle aste ed il piano di campagna deve essere installato almeno 1 centrature di guida ed irrigidimento delle aste stesse.

⁸² ASTM D1586/08; "Penetration Test and Split-Barrel Sampling of Soils".

La differenza tra diametro esterno delle aste e diametro interno della tubazione metallica provvisoria di rivestimento non deve superare di norma 6 cm. Qualora ciò avvenga devono essere predisposte, lungo la batteria delle aste, ad intervalli di 3 m, opportune alette di irrigidimento, di dimensioni adeguate al diametro interno effettivo della tubazione di rivestimento provvisoria.

Metodologia della prova

La prova consiste nell'infiggere nel terreno, alla base del sondaggio, il campionatore per 3 tratti consecutivi, ciascuno di 15 cm, rilevando il numero di colpi (N) necessario per la penetrazione di ciascun tratto di 15 cm. Il valore di NSPT è dato dalla somma dei colpi ottenuti per il 2°e 3°tratto .

La prova viene sospesa quando il numero di colpi N, per un tratto di 15 cm, supera 50. In tal caso si annota la penetrazione (in cm) ottenuta con i 50 colpi.

Prima di eseguire la prova è necessario controllare con adeguato scandaglio la quota del fondo foro, confrontandola con quella raggiunta con la prova di perforazione o di pulizia. Può risultare dal controllo che la quota attuale sia più alta, per effetto di rifluimenti dal fondo del foro o per decantazione di detriti in sospensione nel fluido. Se la differenza supera 15 cm la prova non può essere eseguita; si deve pertanto procedere ad un'ulteriore manovra di pulizia.

La quota di inizio della prova SPT deve corrispondere a quella misurata mediante il controllo di cui sopra che, come detto, può coincidere con quella di perforazione o pulizia ma può essere anche (fino a 15 cm) superiore; l'eventuale affondamento del campionatore per peso proprio e delle aste, deve essere annotato ma è già parte integrante dei 45 cm complessivi di infissione.

Ad estrazione avvenute il campione prelevato viene misurato, descritto, trascurando la eventuale parte alta costituita da detriti, e sigillato in adatto contenitore; il Progettista precisa all'Appaltatore se conservare tale campione in cantiere o se inviarlo al laboratorio.

Il Progettista può richiedere in casi particolari che la scarpetta aperta del campionatore sia sostituita con una punta conica di uguale diametro ed apertura di 60°.

Profondità da raggiungere

Il Progettista stabilisce all'inizio dei lavori:

- in quali formazioni eseguire le prove
- la profondità massima, che non supera comunque 60 m dal piano di lavoro.

Nel caso dei lavori ed in base ai risultati emergenti il Progettista può modificare le indicazioni preliminari.

Frequenza delle prove

Il Progettista definisce all'inizio dei lavori l'intervallo fra una prova e la successiva ed apporta, nel corso degli stessi, le eventuali variazioni al programma iniziale.

Documentazione

La documentazione preliminare e quella definitiva devono comprendere:

per ciascuna prova eseguita:

- quota della tubazione provvisoria di rivestimento del foro;
- quota raggiunta con la manovra di perforazione o pulizia;
- quota del fondo foro controllata prima di iniziare la prova (= quota inizio prova);
- penetrazione per peso proprio e delle aste, del campionatore;
- N per infissione di ciascuno dei 3 tratti di 15 cm;
- peso per metro lineare delle aste impiegate;
- lunghezza e descrizione geotecnica del campione estratto;
- grafico NSPT in funzione della profondità per ciascuna verticale indagata.

PROVA PENETROMETRICA DINAMICA CONTINUA

Requisiti dell'attrezzatura

L'attrezzatura consiste di 2 batterie: la prima di aste (interna), la seconda di tubi metallici (esterna), concentriche, e di un dispositivo di infissione agente per percussione. Alla estremità inferiore della batteria di aste interne è collegata una punta conica avente diametro 50,5 mm ed angolo di apertura 60°. Le aste devono avere peso per metro lineare pa ri a 4,6 Kg (+/- 0,5 Kg).

Alla estremità inferiore della batteria di tubi esterni, il cui diametro è 48 mm, (peso 5,3 Kg/m circa), è avvitata una scarpa sagomata a tagliente, l'intercapedine tra diametro interno della scarpa e diametro esterno delle aste interne non deve superare 0,2 - 0,3 mm. Al di sopra della scarpa tale intercapedine deve aumentare rapidamente fino a 2 mm. Il dispositivo di infissione della punta deve essere costituito da un maglio del peso di 73 Kg che cade liberamente da un'altezza di 75 cm; per l'infissione dei rivestimenti l'altezza di caduta non è vincolante. L'asta, alla cui estremità inferiore è collegata la punta conica, deve essere perfettamente liscia e calibrata negli ultimi 50 cm.

Metodologia della prova

La prova consiste nell'infliggere la punta conica nel terreno, per tratti consecutivi di 30 cm, misurando il numero di colpi (NP) necessari.

Dopo 30 cm di penetrazione della punta viene infisso il rivestimento diam. 48 mm rilevando ancora il numero di colpi (NR).

La prova deve essere sospesa quando NP o NR superano il valore di 100. Di norma le prove vengono iniziate alla quota del piano campagna o del fondale; in casi particolari il Progettista chiede di iniziare le prove a partire da determinate profondità raggiunte con prefori.

L'approfondimento della prova oltre i limiti di resistenza sopra indicati, se prescritto, e prove in presenza di battente d'acqua, richiedono l'esecuzione di preforo (nel 1° caso) e l'installazione di un a tubazione metallica provvisoria di rivestimento (in entrambi i casi). Tale tubazione deve avere di norma un diametro nominale massimo di 100 mm.

Diametri maggiori devono essere preventivamente approvati dal Progettista che può richiedere l'inserimento di una ulteriore tubazione-guida avente diametro intermedio.

La punta conica deve sporgere dal rivestimento diam. 48 mm non più di 30 cm in qualsiasi fase della prova. Ciò per evitare che attriti laterali sulle aste alterino i dati di resistenza NP misurati.

Le due batterie, aste collegate alla punta e rivestimenti diam. 48 mm, devono essere

reciprocamente libere per tutta la durata della prova. Nel caso di blocco delle due colonne, a seguito di infiltrazione di materiale nell'intercapedine, la prova deve essere sospesa; prima di estrarre le batterie l'Appaltatore deve mettere in atto tutti gli accorgimenti dettati dall'esperienza atti a sbloccare le due colonne; ad esempio:

- iniezione di acqua in pressione nell'intercapedine
- bloccaggio di una delle 2 colonne e infissione o estrazione dell'altra
- azione combinata dei 2 interventi sopradescritti .

Profondità da raggiungere

Il Progettista stabilisce all'inizio dei lavori la profondità da raggiungere con le prove ed apporta, nel corso degli stessi, le opportune variazioni. Di norma la profondità massima raggiungibile con queste prove è di 60 m dal piano di lavoro.

Frequenza delle prove

La prova è continua per tutta la profondità indagata.

Documentazione

La documentazione preliminare deve comprendere:

- fotocopia dei rilievi di cantiere (NP ed NR alle diverse profondità) per ciascuna prova
- grafico preliminare di NP in funzione della profondità
- altezza di caduta del maglio durante l'infissione del rivestimento.

La documentazione definitiva deve comprendere, per ogni prova:

- grafico di NP in funzione della profondità
- grafico di NR in funzione della profondità, dove NR è ricavato dalla seguente espressione: NR =
 75 NR / H, essendo H l'altezza medio di caduta del maglio sul rivestimento;
- lo schema dell'eventuale preforo.

POSA IN OPERA DI PIEZOMETRI

Piezometri idraulici a tubo aperto

Constano di una colonna di tubi in PVC rigido o in metallo, fessurati ed eventualmente rivestiti di tessuto non tessuto per la parte in falda e ciechi per il rimanente tratto. Vanno posti in opera entro un foro rivestito con una tubazione provvisoria, di diametro utile pari almeno al doppio del diametro dei tubi di misura adottati. Una volta eseguita a quota la pulizia del foro, si inserisce la colonna fino a fondo foro; quindi si procede all'immissione, nell'intercapedine colonnatubazione, di materiale granulare (sabbia, sabbia-ghiaietto) in modo da realizzare un filtro poroso attorno al tratto di colonna finestrato. Tale operazione va eseguita ritirando la tubazione provvisoria mano a mano che si procede con l'immissione dall'alto del materiale filtrante, curando di controllare la quota di questo con idonei sistemi di misura (cordelle metriche, ecc.). Il bordo inferiore della tubazione dovrà sempre trovarsi al di sotto della quota raggiunta dal materiale di riempimento. Al termine della formazione del filtro, si procede all'esecuzione di un tappo impermeabile di circa 1 m di altezza, formato generalmente da palline di bentonite o argilla opportunamente pastellate, onde separare la zona filtrante dal tratto di foro superficiale, che andrà poi riempito con materiale di risulta, oppure cementato a seconda delle esigenze. In superficie, si provvede quindi ad eseguire un idoneo pozzetto, possibilmente con chiusura a lucchetto o simili, per il contenimento e la protezione della testa del piezometro.

Piezometri casagrande

Il Progettista indica all'inizio e nel corso dei lavori in quali fori di sondaggio ed a quali quote i piezometri Casgrande vengono installati. Di norma in ciascun foro vengono installati n. 1 max 2 piezometri. Essi sono costituiti da un cilindro di pietra porosa avente lunghezza di 20-30 cm, e diametro di circa 5 cm, alle cui estremità vengono applicate n. 2 batterie di tubi in PVC rigido di diametro circa mezzo pollice, per il necessario collegamento con la superficie.

Per l'installazione si deve operare come segue:

Caso di foro appositamente trivellato

- perforazione con rivestimento fino a quota 0.5 m più profonda di quella prevista per l'installazione;
- posa di uno strato (spessore 0.5 m) di sabbia pulita (diametro 1-4 mm);
- discesa a quota del piezometro (mantenuto fino a quel momento in acqua pulita) collegando man mano i tubi di andata e ritorno da mezzo pollice, assicurandosi della perfetta tenuta dei giunti;
- posa di sabbia pulita attorno e sopra il piezometro (0.5 m), ritirando man mano la colonna di rivestimento, senza l'ausilio della rotazione, con l'avvertenza di controllare che il piezometro non risalga assieme ai rivestimenti e che in colonna ci sia sempre un po' di sabbia;
- posa del tappo impermeabile costituito da palline di bentonite (diametro 1-2 cm),
 precedentemente confezionate, per lo spessore di 1 m, ritirando man mano i rivestimenti;
- cementazione del foro con malta di cemento e bentonite (acqua 100, cemento 100, bentonite 10, in peso), colata attraverso aste discese al fondo del foro, fino alla sommità o a quota 0,5 m inferiore a quella di posa del secondo piezometro.

Caso di posa in foro di sondaggio

In questo caso il foro viene riempito con malta di cemento e bentonite, del tipo descritto, fino alla quota 0,5 m al di sotto di quella prevista per l'installazione del piezometro più profondo, ritirando man mano il rivestimento. Da questo momento la posa viene condotta con le modalità descritte nei punti precedenti.

Le estremità dei tubi saranno protette con tappo avvitato.

Per evitare danneggiamenti ai terminali gli stessi saranno inseriti in un pozzetto costruito, solidamente cementato nel terreno, munito di coperchio con chiave e lucchetto. Per tutta la durata delle indagini l'Appaltatore deve eseguire la lettura giornaliera ai piezometri installati.

Dietro richiesta l'Appaltatore deve fornire al Progettista la sondina elettrica per il proseguo delle letture anche dopo l'ultimazione delle indagini.

La documentazione deve comprendere :

- lo schema geometrico di installazione
- la quota assoluta dei terminali piezometrici
- le tabelle con le letture eseguite giornalmente.

Art. IV Diagnosi e mappatura dei materiali

GENERALITÀ

Scopo di una campagna diagnostica effettuata su qualsiasi tipo di materiale è quello di individuare le caratteristiche fisico-chimiche del materiale specifico e dei prodotti derivati dai processi di alterazione, per redigere successivamente una mappatura del degrado sulla base degli elaborati di rilievo. L'anamnesi storica può essere molto utile in quanto arriva sovente a documentare trattamenti protettivi o di finitura realizzati in passato, quando non si riescono addirittura a recuperare informazioni che testimoniano la provenienza ed il tipo di lavorazione del materiale.

pietre, laterizi, intonaci e malte

La prima operazione è un'indagine morfologica macroscopica dell'oggetto e del suo deterioramento (campagna di rilevamento fotografico a vari livelli, analisi visiva, tattile), per giungere quindi ad approfondite analisi chimico-fisiche-meccaniche in grado di determinare la composizione mineralogica e chimica di tipo qualitativo e quantitativo.

Lo stesso tipo di analisi dovrà essere effettuata sugli agenti patogeni, su croste nere e depositi, su eventuali organismi infestanti vegetali o animali per identificarne le caratteristiche fisiche, chimiche, biologiche e microbiologiche.

Si dovranno quindi eseguire prove e/o saggi di tipo non distruttivo o minimamente distruttivo, da eseguirsi in situ o da condursi in laboratorio, tramite il prelievo di campioni secondo le modalità poste in essere dalle normative vigenti. Per effettuare le analisi mineralogico-petrografiche e chimico-fisiche opportune sarà in generale necessario disporre di campionature (carotature) delle dimensioni minime di cm 2x3x1 per ogni tipo di materiale o per materiali identici che manifestino comunque peculiarità nello stato di degrado. Qualora fossero presenti croste nere o depositi consistenti sarà necessario rimuoverli parzialmente fino ad ottenere una quantità di 0,5/1 g per l'eventuale effettuazione di analisi chimiche e fisiche. Analogamente bisognerà prelevare frammenti di materiale ricoperto dalla crosta nera per l'analisi di sezioni stratigrafiche lucide o sottili. Saranno inoltre necessari frammenti di croste di polveri e di eventuali manifestazioni di origine biologica visibili ad occhio nudo per effettuare tutte quelle prove di laboratorio che si riterranno opportune. Nelle operazioni di campionamento sarà necessario danneggiare il meno possibile i manufatti, si cercherà pertanto di sfruttare la morfologia del degrado per l'asportazione meno violenta possibile dei campioni (croste nere già sollevate, materiale già fessurato, staccato, ecc.). Nel caso di macchie di natura organica sarà necessario ricorrere all'estrazione dei campioni mediante impacchi o campioni inerti (sepiolite, polpa di carta, ecc.) predisposti con opportuni solventi per effettuare le successive analisi sulle soluzioni da queste separate. Sarà inoltre necessario porre una particolare cura nel prelevamento di campioni biologici che dovrà essere effettuato sterilmente, necessitando di strumenti campionatori, contenitori sterili e manipolazioni accurate, per la conservazione ed il trasporto sino a laboratorio specializzato, trasporto che dovrà avvenire il più sollecitamente possibile.

In generale sarà necessario prelevare provini per consentire l'esame petrografico in adatto laboratorio (mediante microscopio polarizzatore, impiegando metodologie tradizionali di analisi mineralogica in sezione sottile). Questi studi hanno lo scopo della identificazione di minerali principali ed accessori del materiale prelevato, della sua microstruttura e tessitura, delle eventuali

microfaune fossili, ecc., e quindi permetteranno di stabilire la genesi del materiale e la eventuale provenienza determinando l'età del manufatto ed altre caratteristiche quali la granulometria intrinseca e la porosità. In alcuni casi si dovranno predisporre provini per l'analisi diffrattometrica-X per la determinazione delle fasi cristalline presenti sia nel materiale sia nei depositi superficiali o sulle eventuali croste nere. Potrebbero inoltre essere necessarie analisi al microscopio stereoscopico o a quello elettronico a scansione, qualora si dovesse lasciare inalterato il campione prelevato che potrà quindi essere sfruttato per esami successivi.

MATERIALI IN COTTO

Nella maggior parte dei casi i manufatti in laterizio fanno parte di un sistema murario integrato ed eterogeneo (letti di malta, murature miste, a sacco, strutture portanti o paramenti di tamponamento o rivestimento) che denuncia caratteristiche differenti relativamente alla tipologia impiegata. Lo studio preliminare deve permettere di individuare le caratteristiche fisico-chimiche dei manufatti in modo da evidenziarne gli stati di alterazione identificando nel contempo le cause intrinseche ed estrinseche di tipo diretto o indiretto generatrici del degrado.

Come per gli altri materiali risulta indispensabile conoscere la genesi storico-costruttiva del manufatto acquisendo informazioni relative alla provenienza, alle modalità di posa e messa in opera, al tipo di trattamento che ha eventualmente subito col passare degli anni (tecniche di finitura, applicazione di prodotti protettivi, consolidanti, ecc.). Nella maggior parte dei casi i laterizi vengono impiegati con compiti strutturali: diventa così per lo più necessario svolgere un'indagine di tipo statico onde individuare ed evidenziare l'eventuale quadro fessurativo valutandone la staticità o la dinamicità per mezzo di opportuna strumentazione (fessurimetri, deformometri, crepemetri), conoscere e calcolare i carichi d'esercizio, indagare sulle cause del dissesto tramite approfondimenti diagnostici. Altro fattore determinante per il degrado dei manufatti in cotto è la presenza di umidità che andrà attentamente monitorata.

Ispezione visiva – prima e fondamentale analisi per stabilire eventuali priorità di intervento e definire le successive indagini diagnostiche accurate. L'osservazione diretta della superficie esterna servirà per mettere in evidenza tutte le particolarità che hanno importanza ai fini di una prima diagnosi di tipo macroscopico: colore, piani di sfaldatura, piani di sedimentazione, sfarinamento, presenza di efflorescenze saline, presenza di patologie in genere (muschi, licheni, croste nere, macchie, depositi, degrado dei letti di malta). Si potrà successivamente ricorrere a prove ottiche non distruttive (apparecchi termovisivi e fotografici, all'infrarosso, a luce radente) per individuare discontinuità, alterazioni superficiali, fessurazioni, identificazione di corpi estranei utilizzati per la fermatura, il consolidamento o il fissaggio dei manufatti, zone imbibite d'acqua e distaccate o comunque alterate.

Indagini di dettaglio - studi a carattere minimamente distruttivo da eseguirsi sulla base delle informazioni acquisite con l'ispezione visiva, utili a determinare con precisione le caratteristiche fisicochimiche del materiale e degli agenti patogeni in aggressione.

Indagini in situ - atte a determinare la presenza di umidità e del contenuto d'acqua con l'utilizzo di apparecchi a costante dielettrica, al carburo di calcio, rilevatori di condensazione, di temperature superficiali. Tali strumenti consentono di fornire indicazioni sulle discontinuità presenti nel materiale effettuando misurazioni di tipo sonico e ultrasonico direttamente correlabili alla velocità di propagazione del suono. Indagini endoscopiche onde verificare l'eventuale modalità di posa in opera di setti murari a sacco o da rivestimento.

Analisi di laboratorio - studi a carattere minimamente distruttivo che constano nel prelievo di piccole carote di circa cm 2x3x1 (pochi grammi) per ogni tipo di materiale o per materiali identici che comunque manifestino peculiarità nello stato di degrado, avendo eventualmente l'accortezza di prelevare anche parti degradate, in frammenti già distaccati dalla matrice (croste nere, esfoliazioni). I campioni prelevati dovranno essere sottoposti ad analisi petrografica-mineralogica per mezzo di osservazione in sezione sottile al microscopio, in grado di identificare i minerali principali ed accessori, la microstruttura e tessitura, la granulometria e la porosità. Anche qui si potrà ricorrere all'analisi difrattometrica ai raggi X per la determinazione delle fasi cristalline presenti sia nel materiale che nelle croste nere.

Analisi chimica – con le quali si verificheranno il contenuto totale di Ca, Mg, Fe, Al, Si, Na, K, P, ed eventualmente Ti, Mn, Sr. Sarà inoltre necessario fare il prelevamento di campioni per analisi di croste nere e di efflorescenze saline che consentano di evidenziare la qualità e la quantità dei sali solubili, in particolare di solfati, cloruri e nitrati, per avere a disposizione una chiara idea del grado di pericolosità delle croste e delle efflorescenze e predisporre l'utilizzo degli agenti pulenti adatti alla loro rimozione.

Analisi fisica - per determinare i principali parametri fisici delle murature in laterizio con prove quantitative e semiquantitative. Mediante misure dirette di peso e volume effettuate su campioni, è possibile determinare la massa volumica apparente e reale, la porosità, la capacità di assorbimento (per immersione totale e per capillarità), di imbibizione e di saturazione del materiale. Si possono inoltre acquisire informazioni sulla permeabilità al vapor d'acqua.

Analisi meccanica – da effettuarsi nel caso in cui si riscontrino effettivi problemi legati alla staticità, alla resistenza e alla deformabilità del materiale. Sono normalmente analisi di tipo distruttivo o minimamente distruttivo da effettuarsi direttamente sull'apparecchio murario e/o su campioni cubici di muratura di cm 4x4x4 (laterizio, malta-laterizio). Si potranno eseguire prove sulla durezza superficiale del materiale, che mettano in evidenza le proprietà fisico-meccaniche della superficie da effettuare prima delle operazioni di pulitura. Alcuni tipi di materiale da costruzione (ad esempio il calcestruzzo), per effetto dell'esposizione agli agenti atmosferici, si ha un indurimento superficiale che può avere un effetto protettivo sul materiale o peggiorarne la conservazione (distacco o sfogliamento per disomogeneità di comportamento chimico-fisico con il materiale sottostante). Alcuni metodi di pulitura tendono a diminuire la durezza dello strato di superficie (spray di acqua, ecc.), altri a conservarla (impacchi di attapulgite, ecc.). Sarà quindi necessario controllarne l'esistenza con successive misure di durezza superficiale, prima e dopo la pulitura, e verificare la preservazione dello strato indurito con test alternati di permeabilità all'acqua e al vapore (per esempio mediante misure di velocità di evaporazione dell'acqua). Test e prove potranno essere effettuati in laboratori specializzati mediante il prelevamento di campioni ad hoc o sul monumento stesso. Lo strumento da utilizzarsi per la prova di durezza superficiale sarà lo sclerometro di Martens, costituito da una punta d'acciaio gravata da un peso variabile che, trascinata mediante una manopola righerà il manufatto; più il materiale è tenero e più la punta si affonda nello stesso tracciando un largo solco. Le dimensioni del solco saranno poi determinate mediante un tubo microscopico dotato di micrometro. Prove di guesto tipo, mettendo in evidenza la presenza di uno strato indurito e l'eventuale diminuzione di durezza superficiale dovuta alla pulitura, consentiranno di valutare l'eventuale necessità di consolidamenti mediante resine opportune o di modificare il metodo di pulitura stesso. Un'altra caratteristica tecnica che sarà necessario evidenziare mediante prove opportune è la resistenza all'usura sia del materiale incrostante (crosta nera, incrostazione calcarea, ecc.) sia di quello base sottostante. Sarà inoltre necessaria l'eventuale valutazione di altre caratteristiche quali la porosità del materiale, che consentirà di giudicare la capacità di assorbimento d'acqua dello stesso in merito ad eventuale

trattamento di pulizia mediante acqua nebulizzata.

Analisi biologica - da eseguirsi sulla microflora autotrofa ed eterotrofa in grado di identificare le caratteristiche morfologiche degli organismi anche non visibili ad occhio nudo (solfobatteri, nitrobatteri, attinomiceti e funghi microscopici). Si effettueranno tramite rilevazione visiva utilizzando la microscopia (stereomicroscopio, microscopio ottico, elettronico a scansione e a trasmissione) o ricorrendo a colture su terreni selettivi.

MATERIALI LAPIDEI

Le indagini da effettuarsi su elementi in pietra naturale dovrebbero permettere di individuare le caratteristiche fisico-chimiche dei manufatti per evidenziarne gli stati di alterazione identificando nel contempo le cause intrinseche ed estrinseche di tipo diretto o indiretto generatrici del degrado. Per acquisire questi ultimi dati la ricerca deve partire dalla raccolta di informazioni relative alla storia del manufatto, al luogo di provenienza e di estrazione, alle modalità di posa e messa in opera, al tipo di trattamento che ha eventualmente subito col passare degli anni (tecniche di finitura, applicazione di prodotti protettivi, consolidanti, ecc.). Nel caso in cui il materiale venga impiegato con compiti strutturali diventa necessario individuare ed evidenziare il quadro fessurativo valutandone la staticità o la dinamicità per mezzo di opportuna strumentazione (fessurimetri, deformometri, crepemetri),

indagando in parallelo sulle cause del dissesto. In seguito si potranno valutare ulteriori approfondimenti diagnostici di primo e secondo livello da effettuarsi in situ e tramite analisi di laboratorio. Le procedure, la terminologia e la prassi da adottare per l'esecuzione di prove diagnostiche farà riferimento alle raccomandazioni NORMAL o, se sostituite, alle norme UNI, relative ai materiali lapidei naturali e precisamente:

- UNI 11182:2006 (che sostituisce la Normal 1/88): descrizione della forma di alterazione -Termini e definizioni;
- Normal 3/80: campionamento e conservazione dei campioni;
- Normal 16/84, 6/81, 8/81, 10/82,14/83, 28/88, 34/91, UNI 11087/03 (sostituisce la Normal 13/83), UNI 11140/04 (sostituisce la Normal 32/89): caratterizzazione chimico-mineralogico-petrografico-morfologica;
- Normal 4/80, 7/81, 21/85, 22/86, 29/88, 33/89, 43/93, 44/93, 42/93, UNI 10859/00 (sostituisce la Normal 11/85), UNI 11085/03 (sostituisce la Normal 40/93): caratterizzazione fisica;
- Normal 9/88, 25/87, 24/86, UNI 10923/01 (sostituisce la Normal 19/85): agenti biologici del degrado.

Ispezione visiva - necessaria per stabilire eventuali priorità di intervento e definire le successive indagini diagnostiche più accurate. Si effettua osservando direttamente la superficie sterna dei manufatti lapidei mettendo in evidenza tutte le particolarità che hanno importanza ai fini di una prima diagnosi di tipo macroscopico: colore, abito cristallino, piani di sfaldatura, piani di sedimentazione, patologie di degrado, tipo mineralogico. Si potrà successivamente ricorrere a prove ottiche non distruttive (processi termovisivi e fotografici, all'infrarosso, a luce radente) per individuare discontinuità, alterazioni superficiali, fessurazioni, identificazione di corpi estranei utilizzati per la fermatura, il consolidamento o il fissaggio dei manufatti, zone imbibite d'acqua distaccate o comunque alterate.

Indagini di dettaglio - In base alle informazioni acquisite con le precedenti indagini si potranno effettuare analisi approfondite a carattere minimamente distruttivo utili a determinare con precisione le caratteristiche fisico-chimiche del materiale. Si dovrà così prevedere il prelievo di almeno un campione delle dimensioni di cm 2x3x1 (pochi grammi). La portata distruttiva potrà essere ulteriormente limitata avendo l'accortezza di prelevare anche parti di roccia degradata, magari in frammenti già distaccati dalla matrice (croste nere, esfoliazioni), eventuali talli o parti di organismi biologici presenti e, mediante impacchi di sostanze solventi, anche campioni delle sostanze presenti come macchie. I campioni così prelevati dovranno essere sottoposti alle seguenti analisi di laboratorio.

Analisi petrografica-mineralogica (Normal 10/82, 14/83): osservando al microscopio, in luce polarizzata o riflessa, sezioni sottili di materiale si è in grado di definirne la struttura mineralogica, la classificazione petrologica, la genesi e la provenienza, identificare i legami fra le diverse sostanze, osservare modificazioni provocate dal degrado. In particolare l'analisi diffrattometrica ai raggi X su preparati di polveri (Normal 34/91) sarà utile per definire la composizione mineralogica principale (feldspati, quarzo, calcite, dolomite, silicati, ecc.), la composizione cristallina delle croste nere, oltre ad identificare componenti argillose. Quest'ultima operazione sarà indispensabile per stabilire il tipo di pulitura da adottare. Vista la spiccata tendenza dell'argilla ad imbibirsi, aumentando il volume, saranno infatti da evitarsi puliture che impieghino l'acqua. L'indagine qualitativa degli elementi chimici può essere inoltre effettuata utilizzando la fluorescenza ai raggi X e la spettrofotometria all'infrarosso.

Analisi chimica: per completare la caratterizzazione dei materiali lapidei, individuare la presenza di particolari elementi o prodotti applicati in passato, ricercare le cause ed i meccanismi di degrado, valutare l'efficacia degli interventi conservativi (Normal 28/88). Mediante la somministrazione di prodotti reagenti è possibile risalire alla composizione chimica di partenza. L'analisi calcimetrica permette, per esempio, di valutare il contenuto dei carbonati tramite un attacco acido (Normal 32/89 sostituita da UNI 11140/04), l'analisi cromatografica di determinare la presenza di sostanze saline. Analisi fisica: atta a determinare i principali parametri fisici del materiale lapideo con prove

Analisi fisica: atta a determinare i principali parametri fisici del materiale lapideo con prove quantitative e semiquantitative. Mediante misure dirette di peso e volume effettuate su campioni, è possibile determinare la massa volumica apparente e reale, la porosimetria (Normal 4/80), la

capacità di assorbimento (per immersione totale e per capillarità: Normal 7/81, 11/85 sostituita da UNI 10859/00), di imbibizione e di saturazione del materiale. Si possono inoltre acquisire informazioni sulla permeabilità al vapor d'acqua (Normal 21/85), sulla misura e propagazione del suono mediante prove soniche ed ultrasoniche capaci di fornire indicazioni sulle discontinuità presenti nel materiale direttamente correlabili alla velocità di propagazione del suono (Normal 22/86). Inoltre è possibile effettuare la caratterizzazione colorimetrica, parametrizzando la luce prodotta da una sorgente tarata e riflessa dal materiale tramite l'impiego di specifica apparecchiatura elettronica (Normal 43/93). L'indagine risulta utile per il controllo di variazioni cromatiche a seguito di trattamenti, lavorazioni, processi di invecchiamento artificiali.

Analisi meccanica: caso in cui si evidenzino problemi legati alla staticità, alla resistenza e alla deformabilità del materiale. Sono normalmente analisi di tipo distruttivo o minimamente distruttivo. Si potranno eseguire prove in situ utilizzando essenzialmente apparecchiature sclerometriche capaci di determinare la durezza superficiale del materiale individuando così aree di minor resistenza meccanica, da sottoporre eventualmente a successive prove di laboratorio. Altre analisi di tipo meccanico potranno effettuarsi in laboratorio su specifici provini carotati per determinare la resistenza a compressione (monoassiale e triassiale) e della resistenza a trazione (effettuabile anche in situ misurando puntualmente la forza necessaria ad estrarre tasselli ad espansione inseriti ad hoc – pull off).

Analisi biologica: indagine da eseguirsi sulla microflora autotrofa ed eterotrofa ed in grado di identificare le caratteristiche morfologiche degli organismi in aggressione Si effettueranno tramite rilevazione visiva utilizzando la microscopia (stereomicroscopio, microscopio ottico, elettronico a scansione e a trasmissione: Normal 19/85 sostituita da UNI 10923/01) o ricorrendo a colture su terreni selettivi (Normal 9/88, 25/87).

INTONACI E MALTE

Premesso che la malta interagisce direttamente con il supporto e con gli altri strati (se vi sono) di intonaco, rappresenta l'interfaccia fra elementi costruttivi e fra questi e l'ambiente, determinando i flussi di interscambio (igrotermici, atmosferici, idrici). Per conoscere le caratteristiche e lo stato di conservazione di una malta non è sufficiente l'analisi delle singole componenti ma sarà necessario ricorrere alla valutazione dei vari livelli prestazionali. Come per la pietra le procedure, la terminologia e la prassi da adottare per l'esecuzione di prove diagnostiche farà riferimento alle raccomandazioni NORMAL o, ove sostituite, alle norme UNI, comuni ai materiali lapidei naturali e precisamente:

- Normal 1/88: descrizione delle alterazioni macroscopiche;
- Normal 3/80: campionamento e conservazione dei campioni;
- Normal 16/84, 8/81, 14/83, 34/91, UNI 11087/03 (sostituisce la Normal 13/83): caratterizzazione chimico-mineralogico-petrografico-morfologica;
- Normal 4/80, 7/81, 21/85, 22/86, 29/88, 33/89, 43/93, 44/93, 42/93, UNI 10859/00 (sostituisce la Normal 11/85), UNI 11085/03 (sostituisce la Normal 40/93): caratterizzazione fisica;
- Normal, 9/88, 25/87, 24/86, UNI 10923/01 (sostituisce la Normal 19/85): agenti biologici del degrado.

Esame visivo: necessario per indirizzare la successiva campagna diagnostica e di ricavare i primi dati elementari: aspetto esterno, presenza di patologie di degrado (polverizzazione, alveolizzazione, distacchi, bollature, colonie di organismi patogeni). Per approfondire l'analisi al livello dello stato funzionale del sistema ci si potrà avvalere in modo particolare di tecniche di telerilevamento, della termovisione e della fotogrammetria, per individuare le caratteristiche del supporto ed eventuali zone degradate non visibili a occhio nudo (parti distaccate o umide).

Analisi di laboratorio: per la determinazione della caratteristiche chimico fisiche del materiale atte a precisare:

- Densità - Assoluta e relativa, ovvero massa volumica reale ed apparente, rapporti tra massa del materiale e volume reale o apparente, quest'ultimo comprensivo del volume fra pori aperti e

chiusi. Variazioni nel valore della massa volumica reale indicano la formazione di nuovi composti o la perdita di materiale per azioni patologiche.

- Peso specifico Varia, per le malte, da 2,50 a 2,70, mentre non sempre è possibile determinare sperimentalmente quello delle singole componenti, per cui si usa ricorrere a valori standard in rapporto al tipo di materiale impiegato (peso di volume e peso in mucchio).
- Porosità È un altro parametro fondamentale, perché influenza notevolmente gli scambi igrotermici con l'ambiente. Si definisce come rapporto percentuale tra il volume dei pori aperti ed il volume apparente. Il volume reale si misura con picnometri (porosimetri) di tipo Beckman, mentre il volume apparente si ricava con picnometri a mercurio. La porosità negli intonaci dipende dalla forma degli aggregati e dalla quantità di legante presente. Maggiore è la sfericità dei granuli e minore è la porosità della malta. La presenza di legante in grande quantità e la lavorazione a ferro o a spatola limitano notevolmente la porosità di un impasto, che normalmente è compreso fra 34% e 40%. Dalla porosità dipendono anche la capacità di assorbimento, il coefficiente di assorbimento, la permeabilità all'aria, all'acqua e al vapore acqueo.
- granulometria ossia la distribuzione percentuale delle frazioni di aggregato con diverso diametro. È uno dei parametri più importanti, perché influisce sulle più importanti caratteristiche prestazionali dei rivestimenti. L'elaborazione statistica dei dati granulometrici (che si sviluppano su scala semilogaritmica) porta a istogrammi di distribuzione e alla determinazione di importanti parametri (per esempio l'indice di dispersione, il grado di simmetria, l'indice di acutezza). Negli intonaci la granulometria degli aggregati varia fra i 60 e i 4000 millimicron.
- Capacità di assorbimento È l'attitudine di un materiale ad assorbire acqua, che viene fissata nelle cavità interne. Come è noto l'altezza della risalita capillare è legata poi all'evaporazione della stessa acqua di risalita: il livello massimo sarà determinato dal raggiungimento di una superficie bagnata che garantisce evaporazione di una quantità di acqua pari a quella assorbita dal terreno.
- Permeabilità Si misura con strumenti denominati permeametri. I permeametri si distinguono in due categorie: a carico costante e a carico variabile. La permeabilità di un rivestimento è determinante per le condizioni del sistema murario: una grande permeabilità consente alla muratura di respirare ma può portare all'imbibizione di acqua piovana; una permeabilità molto ridotta comporta l'instaurarsi di una barriera al vapore, che provoca tensioni superficiali dovute al gradiente di pressione fra interno ed esterno e può portare a distacchi superficiali, a condense interne e ad una alterazione generale delle condizioni di equilibrio.

LEGNO

Hanno lo scopo di determinare le caratteristiche dell'essenza, lo stato di conservazione e le specifiche patologie di degrado. Le indagini dovranno basarsi su un sopralluogo con esame visivo dei manufatti e delle condizioni al contorno, sulla misurazione delle caratteristiche igrotermiche dell'ambiente, sull'impiego di strumenti atti a determinare l'entità di eventuali dissesti, sul prelievo di materiale oggetto di biodeterioramento.

Per determinare il tipo di essenza e, conseguentemente, le condizioni adeguate al mantenimento di uno stato di equilibrio, si potrà fare ricorso a tecniche minimamente distruttive, che prevedono il prelievo di un ridotto quantitativo di materiale. Le indagini da effettuarsi si possono dividere essenzialmente in due livelli utili all'acquisizione di dati speditivi di prima approssimazione ed in analisi di dettaglio utili alla puntuale valutazione dello stato di degrado di strutture e manufatti. Risulta ovvio che tutte le analisi richiedono che la struttura da valutare sia il più possibile accessibile e che la superficie del legname risulti pulita, senza strati di pitturazioni, verniciature e trattamenti che ne impediscano la visibilità.

Ispezione visiva - per stabilire eventuali priorità di intervento e definire le successive indagini diagnostiche di approfondimento. Deve essere effettuata osservando direttamente la superficie esterna degli elementi e dei manufatti lignei mettendo in evidenza tutte le particolarità che hanno importanza ai fini di una prima diagnosi di tipo macroscopico. Si potranno pertanto identificare la specie legnosa, i caratteri morfologici, i difetti e le anomalie, il degrado apparente. Andranno valutate le alterazioni subite nel corso del tempo dal materiale, lo stato dei collegamenti tra i singoli elementi, andranno identificati i difetti in grado di condizionare le proprietà meccaniche del legno quali nodi, fessurazioni, deviazione della fibratura, dovrà essere rilevata la presenza di attacco biologico da parte di insetti xilofagi e dei funghi della carie.

Dendrocronologia - Permette di determinare l'età dell'elemento ligneo. Avviene attraverso il paragone della conformazione degli anelli annuali. A seconda degli anni più o meno fecondi si possono rilevare dati di crescita differenti. Attraverso analisi di tronchi diversi della stessa specie viene definita una curva standard per una precisa regione geografica. Dall'elemento ligneo vengono prelevati campioni di prova, contenenti un numero minimo di 30 anelli annuali che vengono misurati e paragonati alla curva standard. Quando la curva data dal campione e quella standard coincidono è possibile determinare l'età dell'elemento. Il campione migliore per un'analisi è costituito da una fetta di tronco. Per materiali in opera si dovrà ricorrere alla carotatura.

Misurazione della resistenza ad infissione - È un metodo penetrometrico in grado di definire la presenza di degrado e la resistenza massima del legno in situ. Una punta metallica viene infissa nel legno con colpi ripetuti alla stessa intensità trasmessi da uno sclerometro. A seconda del numero dei colpi necessari a raggiungere la profondità di cm 1 è possibile identificare il degrado in atto. La correlazione tra i risultati ottenuti in situ e i risultati ottenuti dalle prove di laboratorio, a loro volta correlati a prove di resistenza a flessione degli stessi provini, possono portare a definire la resistenza massima del legno in sito. A causa dell'anisotropia del legno e dell'eventuale presenza di umidità i risultati possono essere molto diversi. Umidità superiore al 25% può fortemente influenzare i risultati dell'analisi.

Analisi resistografiche - Viene impiegato uno strumento capace di misurare la resistenza opposta dal legno alla penetrazione di una punta di piccolo diametro (1,3-3 mm). Un trapano speciale imprime un movimento combinato di rotazione ed avanzamento a velocità costante della punta. Tramite la misurazione della potenza assorbita dal motore dello strumento durante la perforazione vengono restituiti dei grafici, denominati "profili" che hanno andamento caratteristico dipendente dalla specie legnosa e dalla densità. Si possono così ricavare dati sulle caratteristiche del legno, specialmente nelle zone non visibili o non accessibili (teste delle travi), determinare la presenza di danni causati da insetti e/o funghi della carie (diminuzione della resistenza alla foratura). Con questa tecnica si è inoltre in grado di valutare l'altezza delle sezioni dove non vi siano altre possibilità di accertamento.

Resistenza ad estrazione - Il sistema, di tipo minimamente distruttivo, risulta utile per definire quale porzione di una sezione di elementi colpiti da degrado sia ancora portante. Lo strumento è composto da una vite da legno, un cilindro in ferro ed un comparatore a quadrante che misura la variazione del diametro in micron. La curva di variazione del diametro una volta effettuato l'avvitamento, determina una forza che corrisponde alla forza di estrazione della vite. Dopo varie prove si paragona la dipendenza della forza di estrazione alla densità media calcolata precedentemente in base al peso del provino per un'umidità del 12%.

Analisi soniche/ultasoniche - Si basano sulla misurazione del tempo di propagazione delle onde attraverso il legno. Vengono impiegati generatori di impulsi che, a seconda della dimensione del corpo da analizzare e della direzione del suono, emettono frequenze tra i 20 kHz e 1 MHz. Gli impulsi vengono trasmessi al corpo da un trasmettitore e ricevuti ad una distanza predefinita da un ricevitore. Il tempo di percorrenza viene normalmente rilevato da oscillografi. La velocità di propagazione viene influenzata dal degrado presente, dall'umidità, da difetti e irregolarità, dalla direzione della fibra. Tramite la correlazione dei dati è pertanto possibile definire caratteristiche e proprietà del legno nonché la densità e le proprietà elastiche.

Analisi del contenuto d'acqua - Parametro molto importante in quanto da esso dipendono tutte le proprietà fisiche e meccaniche del legno e soprattutto la sua predisposizione agli attacchi da funghi della carie. Come umidità del legno si intende il rapporto tra la massa del legno secco e la quantità

d'acqua data in percentuale presente al suo interno. Le misurazioni dell'umidità di possono effettuare tramite:

- metodo dell'essiccazione (o ponderale): metodo minimamente distruttivo che prevede l'estrazione di alcuni provini di materiale che vengono immediatamente pesati, essiccati e successivamente ripesati. Tramite semplici equazioni si determina la percentuale di umidità presente nel provino prelevato rispetto al provino secco. Durante l'operazione bisogna fare in modo che il provino prelevato non subisca in alcun modo fenomeni di pre-essicazione prima della pesatura, falsando così il dato finale.
- metodo a resistenza dielettrica: di sicuro meno preciso del precedente in quanto facilmente influenzabile dai sali o altri elementi chimici presenti nel legno. Il metodo si basa sulla misurazione della resistenza elettrica tra due elettrodi inseriti nel legno. Tale resistenza sarà tanto più bassa quanto più risulta elevata la presenza d'acqua all'interno dell'elemento.

Analisi del materiale - L'analisi di campioni di fibre degradate consentirà di determinare il tipo di attacco biologico in corso e di studiare un'adeguata risposta chimica. La possibilità di procedere ad analisi minimamente distruttive permette di conoscere innanzi tutto il tipo di essenza e la variazione del contenuto di umidità rispetto ai limiti che caratterizzano una specifica essenza. Da queste informazioni deriva immediatamente la conoscenza di altri dati fisici sull'essenza studiata, quali il peso specifico apparente e assoluto, l'indice di porosità, il contenuto di umidità. Prove effettuate su campioni della medesima essenza, sottoposti a cicli di invecchiamento, possono essere impiegati per ricavare ulteriori informazioni circa la resistenza meccanica, i valori di dilatazione dovuta a sbalzi termici, la capacità di assorbimento d'acqua.

MATERIALI METALLICI

I manufatti metallici potranno essere oggetto di due ordini di indagini conoscitive: indagini volte a determinare la natura del materiale e indagini volte a valutare la funzionalità strutturale del medesimo. Nel caso dei metalli, a parte alcuni aspetti del degrado del cemento armato, l'esame visivo potrà essere già sufficiente all'individuazione delle patologie di degrado nella loro globalità. Per la determinazione degli aspetti chimici bisognerà invece ricorrere a prove strumentali. Fra queste, le analisi chimiche e metallografiche minimamente distruttive servono a stabilire la composizione chimica del metallo e delle patine. Si effettuano su campioni di piccolissima dimensione, adatti alla realizzazione di sezioni microscopiche e metallografiche (pochi grammi). Le analisi non differiscono, pur avendo una propria specificità, da quelle mineralogiche; in particolare anche per i metalli è consigliabile l'indagine per diffrazione ai raggi X, o l'elettrografia per emissione, che sono in grado di stabilire la composizione dei materiali cristallini che si formano sulla superficie del manufatto a seguito delle reazioni patogene. La conoscenza della composizione chimica dei metalli e delle sostanze presenti sulla loro superficie può agevolare la scelta dei prodotti detergenti, che devono in molti casi essere selettivi. Le indagini strutturali comprendono invece prove non distruttive, come la termografa, la gammagrafia, la radiografia a raggi X, la fotografia ad infrarosso e a luce radente e prove minimamente distruttive, come quelle per la determinazione della resistenza del metallo, che prevede una campionatura piuttosto consistente. In particolare la termovisione permette di valutare le modalità di diffusione della temperatura in una struttura e lo scambio termico con l'intorno, che determinano movimenti anche di grande ampiezza, in rapporto alle dimensioni del manufatto e che possono essere all'origine di dissesti, soprattutto se i vincoli non sono in buono stato di conservazione. Metal detector, magnetometria, termografia, ultrasuoni, radar e altre tecniche possono consentire di determinare la posizione dei ferri di armatura in strutture di cemento armato. Complemento inscindibile delle indagini diagnostiche su strutture metalliche sarà la verifica statica: dovrà essere realizzata con elaborazioni di calcolo impostate sui principi della statica e della scienza delle costruzioni, prendendo in considerazione le caratteristiche del materiale (geometriche e chimiche), l'entità dei carichi d'esercizio, le tensioni ammissibili, i vincoli e le loro condizioni, lo schema strutturale e i possibili effetti di incendi e di eventi eccezionali (in particolare sismi e alluvioni). La verifica, per essere valida, si dovrà avvalere di rilievi adeguati e dei risultati delle prove diagnostiche e generalmente si avvale di prove di carico che possono anche avere valore di collaudo.

TITOLO II - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DI NOLI E TRASPORTI

Art. V Opere provvisionali

Le opere provvisionali, gli apprestamenti e le attrezzature atti a garantire, per tutta la durata dei lavori, la prevenzione degli infortuni e la tutela della salute dei lavoratori sono oggetto di specifico capitolato (vedi: Bassi Andrea, *I costi della sicurezza in edilizia*, settembre 2008, III edizione, Maggioli Editore).

Le principali norme riguardanti i ponteggi e le impalcature, i ponteggi metallici fissi, i ponteggi mobili, ecc., sono contenute nel d.lgs. 81/08 e successivo d.lg n.106 del 03/08/2009.

Art. VI Noleggi

I noleggi, sono riconosciuti come prestazione da compensare a parte, solo quando non rientrino tra gli oneri generali a carico dell'Appaltatore o non risultino compresi nella formulazione dell'articolo che compensa la prestazione. Le macchine, gli attrezzi, i materiali, devono essere in perfetto stato di efficienza e completi degli accessori per il loro impiego.

I noli devono essere espressamente richiesti, con ordine di servizio, dalla Direzione dei Lavori e sono retribuibili solo se non sono compresi nei prezzi delle opere e/o delle prestazioni.

Per quanto concerne le attrezzature ed i macchinari l'Appaltatore dovrà curare la loro omologazione secondo le norme e leggi vigenti sia per quanto riguarda l'utilizzo che per quanto concerne le verifiche ed i collaudi. Per quanto riguarda i ponteggi d'opera e strutturali, devono rispondere ai requisiti previsti dalle vigenti normative e leggi in materia di sicurezza.

Le macchine ed attrezzi dati a noleggio devono essere in perfetto stato di esercizio ed essere provvisti di tutti gli accessori necessari per il loro funzionamento. Sono a carico esclusivo dell'Impresa la manutenzione degli attrezzi e delle macchine affinché siano in costante efficienza.

Il nolo si considera per il solo tempo effettivo, ad ora o a giornata di otto ore, dal momento in cui l'oggetto noleggiato viene messo a disposizione del committente, fino al momento in cui il nolo giunge al termine del periodo per cui è stato richiesto.

Nel prezzo sono compresi: i trasporti dal luogo di provenienza al cantiere e viceversa, il montaggio e lo smontaggio, la manodopera, i combustibili, i lubrificanti, i materiali di consumo, l'energia elettrica, lo sfrido e tutto quanto occorre per il funzionamento dei mezzi.

I prezzi dei noli comprendono le spese generali e l'utile dell'imprenditore.

Per il noleggio dei carri e degli autocarri verrà corrisposto soltanto il prezzo per le ore di effettivo lavoro, rimanendo escluso ogni compenso per qualsiasi altra causa o perditempo.

Art. VII Trasporti

Il trasporto è compensato a metro cubo di materiale trasportato, oppure come nolo orario di automezzo funzionante.

Se la dimensione del materiale da trasportare è inferiore alla portata utile dell'automezzo richiesto a nolo, non si prevedono riduzioni di prezzo.

Nei prezzi di trasporto è compresa la fornitura dei materiali di consumo e la manodopera del conducente.

TITOLO III - PRESCRIZIONI PER IL RIPRISTINO, IL RESTAURO ED IL CONSOLIDAMENTO DEI MATERIALI E DEGLI ELEMENTI EDILIZI

Art. VIII Trattamento di pulitura dei materiali

Preliminare all'intervento conservativo sarà sempre la rimozione delle cause che hanno comportato l'alterazione della materia ponendo particolare attenzione all'eventuale presenza d'acqua.

TECNICHE DI PULIZIA

Pulire i materiali significa scegliere quella tecnica la cui azione, calibrata alla reattività ed alla consistenza del litotipo, non comporti alcuno stress chimico-meccanico su materiali già degradati e, quindi, facili a deperirsi maggiormente.

L'intervento di pulitura dovrà eseguirsi dall'alto verso il basso, dopo aver protetto le zone circostanti non interessate e deve poter essere interrotto in qualsiasi momento.

Le tecniche più utilizzate sono:

- i) Pulizia manuale. Viene eseguita con spazzole di saggina o di nylon; le spatole, i raschietti, le carte abrasive ed i trapani dotati di particolari frese in nylon o setola, invece, possono essere utilizzati per la rimozione di consistenti depositi situati in zone poco accessibili.
- j) Pulizia con acqua. La pulizia con acqua può produrre sulle croste:
 - un'azione solvente se i leganti delle incrostazioni sono costituiti da leganti in esse solubili;
 - un'azione d'idrolisi se, nebulizzata con appositi atomizzatori, viene lasciata ricadere sulle superfici da pulire. La nebulizzazione avviene attraverso appositi ugelli che dovranno essere posizionati in modo che le goccioline colpiscano la superficie in ricaduta;
 - un'azione meccanica se pompata a pressione (2-4 bar). L'acqua scioglie il gesso e la calcite secondaria di ridepositazione, elementi leganti delle croste nere, ed una blanda azione nei confronti della silice, legante delle croste nere sulle rocce silicatiche.

L'acqua deve essere deionizzata in modo da non introdurre eventuali sali nocivi e permettere un controllo sulla desalinizzazione del materiale tramite prove di conducibilità.

Il getto non deve mai raggiungere perpendicolarmente il materiale, ponendo inoltre attenzione alla protezione delle zone circostanti e ad un perfetto drenaggio delle acque di scolo; si userà la minor quantità di acqua possibile onde evitare un imbibimento delle strutture o una fuoriuscita di macchie e di umidità sulle superfici interne.

Questa operazione non deve essere compiuta in inverno o in periodi climatici tali da provocare il congelamento dell'acqua o una bassa velocità di evaporazione.

A questo metodo può essere affiancata una blanda azione meccanica mediante l'utilizzo di spazzole di nylon o di saggina.

- k) Apparecchiature ad ultrasuoni. Una volta eseguito il trattamento con acqua nebulizzata, per asportare le croste, vengono impiegati apparecchi che, mediante leggere vibrazioni prodotte da una piccola spatola e da una pellicola d'acqua, rimuovono le incrostazioni, semplicemente sfiorando con l'emettitore senza toccare la crosta che in questo modo si distacca.
- I) Microsabbiatura di precisione. La microsabbiatura si serve di macchine che, sfruttando l'azione altamente abrasiva di microsfere di vetro o di allumina del diametro di 40 micron, puliscono solo le zone ricoperte da incrostazioni non molto spesse e di limitata dimensione. Tali strumenti alimentati ad aria o ad azoto compresso sono muniti di ugelli direzionabili.
- m) Microsabbiatura umida controllata. Prima di procedere alla microsabbiatura occorre ammorbidire la crosta con acqua nebulizzata a bassa pressione. Lo strumento è composto da un compressore e un contenitore in cui l'abrasivo deve essere costantemente tenuto sospeso da un agitatore. L'abrasivo deve avere granulometrie piccole e non a spigolo vivo. La pressione dovrà essere contenuta tra 0,1-1-5 atm.
- n) Pulizia chimica. I detergenti chimici, che devono avere un pH compreso tra 5,5-8, vanno applicati esclusivamente sulle croste e mai a diretto contatto con i materiali lapidei, per prevenirne l'azione corrosiva. Tale pulizia deve essere sempre accompagnata da un lavaggio con acqua ed appositi

neutralizzatori, onde evitare che i residui di detergente intacchino i materiali e ritornare quindi ad un pH neutro. Per attenuare l'azione corrosiva si possono interporre tra pasta chimica e pietra, dei fogli di carta assorbente da staccare successivamente soffiando con aria compressa. La pasta applicata sulla superficie dovrà essere ricoperta con del polietilene leggero per evitarne l'essiccazione, altrimenti potranno essere utilizzate emulsioni acqua/olio, gel o soluzioni da spruzzare.

- o) Impacchi con argille assorbenti. Le argille hanno la proprietà di assorbire oli e grassi senza operare azioni aggressive anche sui materiali deteriorati. Le argille da utilizzare sono la sepiolite e l'attapulgite con granulometria compresa tra 100-200 mesh. La pasta dovrà avere uno spessore di 2-3 cm e dovrà rimanere in opera, previe prove preliminari, per un periodo compreso tra le 24-48 ore. Prima di applicare l'impasto sarà necessario sgrassare la superficie o eliminare cere tramite solventi. Ove le argille non riuscissero a sciogliere incrostazioni di consistente spessore, è possibile additivarle con piccole quantità di agenti chimici. Dopo il trattamento lavare abbondantemente con acqua deionizzata.
- p) Impacchi mediante impacco biologico. L'intervento, capace di pulire croste molto spesse grazie all'azione solvente esercitata dai nitrobatteri, consiste in impacchi a base argillosa di una soluzione composta da: acqua, urea e glicerina. L'impasto deve avere uno spessore di almeno 2 cm e deve agire per circa un mese; necessita quindi di una protezione con polietilene leggero ben sigillato ai bordi. Dopo l'applicazione si dovrà procedere ad un lavaggio accurato con acqua addizionata con un fungicida per disinfettare il materiale.
- q) Formulati: Per croste nere di piccolo spessore (1-2 mm) si potrà utilizzare un preparato così formulato:
 - 50-100 g di EDTA (sale bisodico);
 - 30 g di bicarbonato di sodio;
 - 50 g di carbosilmetilcellulosa;
 - 1000 q di acqua.

formulato messo a punto dall'ICR, preferibilmente con un PH intorno a 7,5 (sarà comunque sufficiente che il pH non superi il valore 8 per evitare fenomeni di corrosione dei calcari e la eventuale formazione di sotto prodotti dannosi). Il bicarbonato sviluppa anidride carbonica favorendo così il distacco delle croste nere, mentre l'EDTA complessa il calcio del gesso presente nella crosta, portando in soluzione questo minerale e sostituendolo con solfato sodico, molto più solubile. La seguente ricetta va usata con molta attenzione, solo esclusivamente in caso di effettivo bisogno, in quanto è in grado di generare sali solubili sempre dannosi per i materiali solubili. Dopo l'intervento di pulitura si dovranno eseguire nuovamente tutte le analisi volte ad individuare la struttura del materiale in oggetto, del quale non dovranno risultare variate le caratteristiche fisiche, chimiche, meccaniche ed estetiche.

r) Biocidi: Sono prodotti da utilizzarsi per la eliminazione di muschi e licheni. La loro applicazione dovrà essere preceduta da una serie di operazioni di tipo meccanico per l'asportazione superficiale utilizzando spatole, pennelli a setole rigide, bisturi, ecc. attrezzi comunque da utilizzarsi con estrema cautela in modo da non esercitare un'azione troppo incisiva sul manufatto. I biocidi da impiegarsi potranno essere specifici su alcune specie, oppure a vasto raggio di azione. Per muschi e licheni si possono utilizzare soluzioni acquose all'1/2% di ipoclorito di litio. Per i licheni soluzioni di sali di ammonio quaternario in acqua all'1/2% o di pentaclorofenolo di sodio all'1%. Per alghe verdi e muffe è possibile irrorare la superficie intaccata con formalina oppure con una soluzione di acqua ossigenata (25%) e ammoniaca. Per alghe e microflora si potrà anche utilizzare un germicida disinfettante come il benzalconio cloruro da utilizzarsi in soluzione acquosa all'1/2% da applicare a spruzzo. Molti di questi prodotti non esplicano un persistente controllo algale, sarà pertanto utile applicare sulle superfici interessate prodotti algicidi in solvente, in grado di esplicare un'azione preventiva e di controllo della microflora (alghe, licheni, muffe, microfunghi, ecc.) Tutti i biocidi, pur non essendo in linea di massima tossici per l'uomo, saranno comunque da utilizzarsi con molta attenzione e cautela;

Nel trattamento di risanamento dall'attacco di funghi è necessario pulire a fondo i legni, gli intonaci, le murature infestate, e sterilizzarle con fiaccola da saldatura, con intonaco fungicida o con irrigazione del muro stesso. Per il risanamento dall'attacco di insetti esistono trattamenti specifici, quali la scattivatura del legno, le iniezioni di antisettico, la sterilizzazione con il calore o la fumigazione con gas tossici, che deve essere eseguita da ditte specializzate. Le operazioni preventive nei confronti degli attacchi da parte di funghi e di insetti prendono inizio da un contenimento del livello di umidità, ottenuto con una buona ventilazione degli appoggi delle travi, che non devono essere sigillate nel muro né coperte di intonaco. Le sostanze protettive possono essere applicate a pennello o a spruzzo, ed è buona norma che l'operatore si munisca di guanti, occhiali protettivi, tuta, ecc.

PULITURA DEI METALLI

Nel recupero di metalli (se la struttura non è attaccata) è necessario pulire il materiale con metodi meccanici, quali la sabbiatura con sabbiatrici ad uso industriale, la smerigliatura o la discatura con disco abrasivo, decapaggi, mediante l'immersione in soluzioni acide, condizionamento chimico, mediante l'applicazione di agenti chimici che fissano la ruggine e la calamina, deossidazione, per i metalli non ferrosi, fosfatazione che provoca la passivazione di una superficie metallica con soluzioni di fosfati inorganici o acidi fosforici. Alcuni prodotti, però, come i convertitori di ruggine a base di acidi, i fosfatanti e le vernici reattive a base acida, possono nuocere al sistema di ripristino, così come le pitture antiruggine nuocciono all'adesione del riporto di malta. I migliori trattamenti anticorrosivi sono quelli a stesura di formulati cementizi o epossidici, potendo questi ultimi svolgere anche un'eventuale funzione di ponte d'aggancio nell'intervento di ripristino.

La protezione avviene, nel caso di metalli esposti, per verniciatura, con due mani preliminari di antiruggine a base di minio oleofonolico e due mani di vernice a base di resine viniliche ed acriliche resistenti agli agenti atmosferici, o, nel caso di ferri di armatura, per stesura di formulati cementizi o epossidici.

PULITURA DELLE ROCCE SEDIMENTARIE

- Arenaria e tufo A seconda delle condizioni del materiale, la pulitura va preceduta da un preconsolidamento, effettuato con veline di carta giapponese ed impregnazione di silicato d'etile.
 La pulitura può essere effettuata a secco, con impacchi di argilla assorbente o di polpa di carta oppure con un blando lavaggio con acqua nebulizzata.
- Travertino La pulizia deve essere effettuata con acqua nebulizzata, con impacchi o con trattamenti a secco. Per le fessure sulle stuccature è consigliata una malta composta da un legante idraulico unito a polvere di marmo.
- Pietra d'Angera, Pietra di Verona e pietra tenera dei Colli Berici La pulizia che deve essere preceduta, quando necessario, dal preconsolidamento, si effettua con acqua nebulizzata o con impacchi di materiale assorbente.

PULITURA DELLE ROCCE METAMORFICHE (MARMI, SERPENTINI, MISCOSCISTI, CALCISCISTO)

È consigliato il trattamento ad acqua nebulizzata o leggera spazzolatura, oppure impacchi assorbenti. Nel caso di marmo decoesionato e zuccherino, la pulizia è preceduta da un trattamento di preconsolidamento con silicato di etile iniettato sulla superficie preparata con veline di carta giapponese.

PULITURA DI COTTO E LATERIZI

I metodi consigliati sono:

- spray d'acqua e/o acqua nebulizzata per tempi brevi e controllati, al fine di evitare l'eccessiva imbibizione del materiale;
- metodi chimici o impacchi con argille assorbenti, in cicli successivi per verificare la completa desalinizzazione. Tra una fase e la seguente la superficie dovrà risultare completamente asciutta.

PULITURA DEL CALCESTRUZZO

È indicato il lavaggio. È necessario sabbiare l'armatura e proteggerla con sostanze antiruggine e sostanze passivanti.

PULITURA DEGLI INTONACI

La pulitura delle superfici intonacate dovrà essere effettuata con spray d'acqua a bassa pressione o acqua nebulizzata accompagnata eventualmente da una leggera spazzolatura. In presenza di croste nere di notevole spessore si potranno utilizzare impacchi biologici o argillosi.

PULITURA DEGLI STUCCHI

Le polveri ed i sali cristallizzati in superficie andranno rimossi mediante l'uso di pennelli morbidi. Qualora si accerti la presenza di croste nere e/o criptoefflorescenze saline, si potrà procedere alla loro eliminazione mediante nebulizzazioni a durata controllata o tamponi imbevuti con acqua distillata. Eventuali residui organici (fumo di candele, cere, vernici oleose) potranno essere rimossi con solventi organici (per esempio alcool etilico diluito in acqua) applicati a tampone.

Art. IX Trattamento di consolidamento dei materiali

I requisiti di un buon consolidamento sono:

- penetrazione in profondità fino a raggiungere il materiale sano;
- buon potere consolidante;
- diminuzione della porosità;
- assenza di danni indotti (diretti o indiretti);
- reversibilità;
- ripristino della continuità materica delle fratture;
- mantenimento della cromia originaria evitando colorazioni e brillantezze.

I consolidanti devono avere i seguenti requisiti:

- non formare prodotti secondari dannosi:
- essere assorbiti uniformemente dalla pietra fino a raggiungere il materiale sano;
- possedere un coefficiente di dilatazione termica non molto dissimile dal materiale consolidato;
- non alterarsi nel tempo per invecchiamento;
- assicurare una buona traspirabilità;
- possedere buona reversibilità;
- possedere buona permeabilità.

TECNICHE DI CONSOLIDAMENTO

I metodi consentiti per l'applicazione del consolidante sono:

 Applicazione a pennello. Dopo aver accuratamente pulito e neutralizzato la superficie da trattare, si applica la soluzione a pennello morbido fino a rifiuto. Il trattamento deve essere iniziato con resina in soluzione particolarmente diluita, aumentando via via la concentrazione superiore allo standard per le ultime passate.

- Nella fase finale dell'applicazione è necessario alternare mani di soluzioni di resina a mani di solo solvente, per ridurre al minimo l'effetto di bagnato.
- Applicazione a spruzzo. Dopo aver accuratamente pulito e neutralizzato la superficie, si applica la soluzione a spruzzo fino a rifiuto. Il trattamento deve essere iniziato con resina in soluzione particolarmente diluita, aumentando la concentrazione fino a giungere ad un valore superiore allo standard per le ultime passate. È possibile chiudere lo spazio da trattare mediante fogli di polietilene resistente ai solventi, continuando la nebulizzazione anche per giorni; la soluzione in eccesso, che non penetra entro il materiale, viene recuperata e riciclata.
- Applicazione a tasca. Nella parte inferiore della zona da impregnare, si colloca una specie di grondaia impermeabilizzata con lo scopo di recuperare il prodotto consolidante in eccesso. La zona da consolidare viene invece ricoperta con uno strato di cotone idrofilo e chiusa da polietilene. Nella parte alta un tubo con tanti piccoli fori funge da distributore di resina.
- La resina viene spinta da una pompa nel distributore e di qui, attraverso il cotone idrofilo, penetra nella zona da consolidare; l'eccesso si raccoglie nella grondaia da dove, attraverso un foro, passa alla tanica di raccolta e da qui ritorna in ciclo. È necessario che il cotone idrofilo sia a contatto con il materiale, per questo deve essere premutogli contro. La soluzione di resina da utilizzare dev'essere nella sua concentrazione standard.
- Applicazione per colazione. Un distributore di resina viene collocato nella parte superiore della superficie da trattare; questa scende lungo la superficie e penetra nel materiale per assorbimento capillare. La quantità di resina che esce dal distributore dev'essere calibrata in modo da garantire la continuità del ruscellamento. Il distributore è costituito da un tubo forato, ovvero da un canaletto forato dotato nella parte inferiore di un pettine o spazzola posti in adiacenza alla muratura, aventi funzione di distributori superficiali di resina.
- Applicazione sottovuoto. Tale trattamento può essere applicato anche in situ: consiste nel realizzare un rivestimento impermeabile all'aria intorno alla parete da trattare, lasciando un'intercapedine tra tale rivestimento e l'oggetto, ed aspirandone l'aria. Il materiale impiegato per il rivestimento impermeabile è un film pesante di polietilene. La differenza di pressione che si stabilisce per effetto dell'aspirazione dell'aria tra le due superfici del polietilene è tale da schiacciare il film sulla parte da trattare, e da risucchiare la soluzione impregnante.

Terminata l'operazione di consolidamento, potrebbe essere necessaria un'operazione di ritocco finale per eliminare gli eccessi di resina con appropriato solvente; questa operazione deve essere eseguita non oltre le 24 ore dal termine dell'impregnazione con materiale consolidante. Inoltre, potrebbe essere necessario intervenire a completamento dell'impregnazione in quelle zone dove, per vari motivi, la resina non avesse operato un corretto consolidamento. Potrà anche essere aggiunto all'idrorepellente un opacizzante come la silice micronizzata o le cere polipropileniche microcristalline.

In caso di pioggia o pulizia con acqua sarà necessario attendere prima di procedere alla completa asciugatura del supporto e comunque bisognerà proteggere il manufatto dalla pioggia per almeno 15 giorni dopo l'intervento.

Il prodotto dovrà essere applicato almeno in due mani facendo attenzione che la seconda venga posta ad essiccamento avvenuto della prima.

Il trattamento non dovrà essere effettuato con temperature superiori ai 25° C ed inferiori a 5° C, e si eviterà comunque l'intervento su superfici soleggiate.

MATERIALI PER IL CONSOLIDAMENTO

I prodotti da utilizzarsi per il consolidamento dei manufatti oggetto di intervento, dovranno possedere le seguenti caratteristiche:

- elevata capacità di penetrazione nelle zone carenti di legante:
- resistenza chimica e fisica agli agenti inquinanti ed ambientali;

- spiccata capacità di ripristinare i leganti tipici del materiale oggetto di intervento senza la formazione di sottoprodotti di reazione pericolosi (sali);
- capacità di fare traspirare il materiale;
- penetrazione in profondità in modo da evitare la formazione di pellicole in superficie;
- "pot-life" sufficientemente lungo in modo da consentire l'indurimento solo ad impregnazione completata;
- perfetta trasparenza priva di effetti traslucidi;
- spiccata capacità a mantenere inalterato il colore del manufatto.

Composti organici

Possiedono una dilatazione termica diversa da quella dei materiali oggetto di intervento. Sono tutti dei polimeri sintetici ed esplicano la loro azione grazie ad un'elevata adesività. Possono essere termoplastici o termoindurenti; se termoplastici assorbono bene urti e vibrazioni e soprattutto, non polimerizzando una volta penetrati nel materiale, mantengono una certa solubilità che ne consente la reversibilità; i prodotti termoindurenti hanno invece solubilità pressoché nulla, sono irreversibili, piuttosto fragili e sensibili all'azione dei raggi ultravioletti. Hanno un vasto spettro di impiego: i termoplastici sono impiegati per materiali lapidei, per le malte, per la muratura e per i legnami (nonché per la protezione degli stessi materiali e dei metalli), mentre i termoindurenti vengono impiegati soprattutto come adesivi strutturali.

Alcune resine organiche, diluite con solventi, possiedono la capacità di diffondersi in profondità all'interno dei materiali. L'utilizzo delle resine organiche sarà sempre condizionato dalle indicazioni fornite dal progetto di conservazione e alla specifica autorizzazione della D.L. e degli organi preposti alla tutela del bene oggetto di intervento.

Resine epossidiche

Prodotti termoindurenti, con buona resistenza chimica, ottime proprietà meccaniche, eccellente adesività, ma con difficoltà di penetrazione e tendenza ad ingiallire e a sfarinare alla luce solare. Sono impiegate soprattutto per la protezione di edifici industriali, di superfici in calcestruzzo e di manufatti sottoposti ad una forte aggressione chimica, per incollaggi e per consolidamenti strutturali di materiali lapidei, legname, murature. Sono prodotti bicomponenti (un complesso propriamente epossidico ed una frazione amminica o acida), da preparare a piè d'opera e da applicare a pennello, a tampone, con iniettori o comunque sotto scrupoloso controllo dal momento che hanno un limitato tempo di applicazione. Il loro impiego dovrà essere attentamente vagliato dall'Appaltatore, dietro espressa richiesta della D.L.

Resine poliuretaniche

Prodotti termoplastici o termoindurenti, a seconda dei monomeri che si impiegano in partenza, hanno buone proprietà meccaniche, buona adesività, ma bassa penetrabilità. Mescolati con isocianati alifatici hanno migliore capacità di penetrazione nei materiali porosi (hanno bassa viscosità), sono resistenti ai raggi ultravioletti e agli inquinanti atmosferici. Sono spesso usati come alternativa alle resine epossidiche rispetto alle quali presentano una maggiore flessibilità ed una capacità di indurimento anche a 0 °C. Applicati per iniezione una volta polimerizzati si trasformano in schiume rigide, utili alla stabilizzazione di terreni o all'isolamento delle strutture dai terreni. Oltre che come consolidanti possono essere impiegati come protettivi e impermeabilizzanti. Infatti, utilizzando l'acqua come reagente, risultano particolarmente adatti per sbarramenti verticali extramurari contro infiltrazioni dando luogo alla formazione di schiume rigide. Si possono impiegare unitamente a gel di resine acriliche per il completamento della tenuta contro infiltrazioni d'acqua. Il prodotto dovrà possedere accentuata idrofilia per permettere la penetrazione per capillarità anche operando su murature umide.

Resine acriliche

Sono composti termoplastici ottenuti polimerizzando gli acidi acrilico, metacrilico e loro derivati. Le caratteristiche dei singoli prodotti variano entro limiti piuttosto ampi in funzione dei tipi di monomero e del peso molecolare del polimero. Per la maggior parte le resine acriliche sono solubili in opportuni solventi organici e hanno una buona resistenza all'invecchiamento, alla luce, agli agenti chimici. Hanno scarsa capacità di penetrazione e non possono essere impiegate come adesivi strutturali.

Possiedono in genere buona idrorepellenza che tende a decadere se il contatto con l'acqua si protrae per tempi superiori alle 100 ore. Inoltre, sempre in presenza di acqua tendono a dilatarsi. Il prodotto si applica a spruzzo, a pennello o per impregnazione.

Le resine acriliche oltre che come consolidanti si possono impiegare come protettivi e impermeabilizzanti.

Metacrilati da iniezione

I metacrilati da iniezione sono monomeri liquidi a base di esteri metacrilici che, opportunamente catalizzati ed iniettati con pompe per iniezione di bicomponenti si trasformano in gel polimerici elastici in grado di bloccare venute d'acqua dolce o salmastra. Sono infatti in grado di conferire la tenuta all'acqua di murature interrate o a contatto con terreni di varia natura. Si presentano come soluzioni acquose di monomeri la cui gelificazione viene ottenuta con l'aggiunta di un sistema catalitico in grado di modulare il tempo di polimerizzazione. I gel che si formano a processo avvenuto rigonfiano a contatto con l'acqua, garantendo tenuta permanente. Il prodotto impiegato deve possedere bassissima viscosità (simile a quella dell'acqua) non superiore a 10 mPa.s, essere assolutamente atossico, traspirante al vapore acqueo, non biodegradabile. Il pH della soluzione da iniettare e del polimero finale ottenuto deve essere maggiore o uguale a 7, onde evitare l'innesco di corrosione alle armature metalliche eventualmente presenti. A complemento dell'operazione impermeabilizzante possono essere utilizzati poliuretani acquareattivi.

Perfluoropolieteri ed elastomeri fluororati

Collocazione fortemente anomala rispetto ai prodotti precedentemente illustrati. Sono in genere adatti al consolidamento e alla protezione di materiali lapidei e porosi. Sono prodotti che non polimerizzano dopo la loro messa in opera, non subiscono alterazioni nel corso dell'invecchiamento e di conseguenza non variano le loro proprietà. Non contengono catalizzatori o stabilizzanti, sono stabili ai raggi UV, posseggono buone doti aggreganti, ma anche protettive, risultano permeabili al vapore d'acqua, sono completamente reversibili (anche quelli dotati di gruppi funzionali deboli di tipo ammidico), posseggono scarsa penetrazione all'interno della struttura porosa. Vengono normalmente disciolti in solventi organici (acetone) al 2-3% in peso ed applicati a pennello o a spray in quantità variabili a seconda del tipo di materiale da trattare e della sua porosità.

Resine acril-siliconiche

Uniscono la resistenza e la capacità protettiva delle resine acriliche con l'adesività, l'elasticità, la capacità di penetrazione e la idrorepellenza delle resine siliconiche. Disciolte in particolari solventi, risultano indicate per interventi di consolidamento di materiali lapidei specie quando si verifica un processo di degrado provocato dall'azione combinata di aggressivi chimici ed agenti atmosferici. Sono particolarmente adatte per opere in pietra calcarea o arenaria. Le resine acriliche e acril-siliconiche si dovranno impiegare con solvente aromatico, in modo da garantire una viscosità della soluzione non superiore a 10 cPs, il residuo secco garantito deve essere di almeno il 10%. L'essiccamento del solvente dovrà avvenire in maniera estremamente graduale in modo da consentire la diffusione del prodotto per capillarità anche dopo le 24 ore dalla sua applicazione. Non dovranno presentare in fase di applicazione (durante la polimerizzazione e/o essiccamento del solvente), capacità reattiva con acqua, che può portare alla formazione di prodotti secondari dannosi; devono disporre di una elevata idrofilia in fase di impregnazione; essere in grado di aumentare la resistenza agli sbalzi termici eliminando i fenomeni di decoesione; non devono inoltre presentare ingiallimento nel tempo, ed essere in grado di resistere agli agenti atmosferici e ai raggi UV. Deve sempre essere possibile intervenire con adatto solvente per eliminare gli eccessi di resina.

Polietilenglicoli o poliessietilene

Sono prodotti termoplastici, molto solubili, usati soprattutto per piccole superfici e su legnami, in ambiente chiuso.

Estere etilico dell'acido silicico (silicati di etile)

Monocomponente fluido, incolore, si applica in solvente, in percentuali (in peso) comprese fra 60 e 80%. Precipita per idrolisi, dando alcool etilico come sottoprodotto. È una sostanza bassomolecolare a base inorganica in solvente organico. Viene impiegato soprattutto per arenarie e

PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI"

per pietre silicatiche, ma fornisce ottimi risultati anche su mattoni ed intonaci. Ha una bassissima viscosità, per cui penetra profondamente anche in materiali poco porosi, va applicato preferibilmente con il sistema a compresse o per immersione; è tuttavia applicabile anche a pennello, a spruzzo con irroratori a bassa pressione, a percolazione. Il materiale da trattare va completamente saturato sino a rifiuto; si potrà ripetere il trattamento dopo 2 o 3 settimane. Il supporto dovrà essere perfettamente asciutto, pulito e con una temperatura tra i 15 e i 20 ℃. Il consolidante completa la sua reazione a seconda del supporto dopo circa 4 settimane con temperatura ambiente di circa 20 ℃ e UR del 40-50%. In caso di sovradosaggio sarà possibile asportare l'eccesso di materiale, prima dell'indurimento, con tamponi imbevuti di solventi organici minerali (benzine). Alcuni esteri silicici, miscelati con silossani, conferiscono una buona idrorepellenza al materiale trattato; costituiscono anche un prodotto di base per realizzare sbarramenti chimici contro l'umidità di risalita. È molto resistente agli agenti atmosferici e alle sostanze inquinanti, non viene alterato dai raggi ultravioletti. Dovrà possedere i seguenti requisiti:

- prodotto monocomponente non tossico;
- penetrazione ottimale;
- essiccamento completo senza formazione di sostanze appiccicose;
- formazione di sottoprodotti di reazione non dannosi per il materiale trattato;
- formazione di un legante stabile ai raggi UV, non attaccabile dagli agenti atmosferici corrosivi;
- impregnazione completa con assenza di effetti filmogeni e con una buona permeabilità al vapor d'acqua;
- assenza di variazioni cromatiche del materiale trattato.

Composti inorganici

Sono certamente duraturi, compatibili con il materiale al quale si applicano, ma irreversibili e poco elastici. Possono inoltre generare prodotti di reazione quali sali solubili. Per questi motivi il loro utilizzo andrà sempre attentamente vagliato e finalizzato, fatte salve tutte le prove diagnostiche e di laboratorio da effettuarsi preventivamente.

Calce

Applicata alle malte aeree e alle pietre calcaree come latte di calce precipita entro i pori e ne riduce il volume. Non ha però le proprietà cementanti del CaCO3 che si forma nel lento processo di carbonatazione della calce, per cui l'analogia tra il processo naturale ed il trattamento di consolidamento con calce o bicarbonato di calcio è limitata ad una analogia chimica, poiché tutte le condizioni di carbonatazione (temperatura, pressione, forza ionica, potenziale elettrico) sono molto diverse. Ne consegue che il carbonato di calcio che precipita nei pori di un intonaco o di una pietra durante un trattamento di consolidamento non necessariamente eserciterà la stessa azione cementante di quello formatosi durante un lento processo di carbonatazione. Il trattamento con prodotti a base di calce può lasciare depositi biancastri di carbonato di calce sulla superficie dei manufatti trattati, che vanno rimossi, a meno che non si preveda un successivo trattamento protettivo con prodotti a base di calce (grassello, scialbature).

Idrossido di bario, Ba(OH)2

Si impiega su pietre calcaree e per gli interventi su porzioni di intonaco affrescato di dimensioni ridotte laddove vi sia la necessità di neutralizzare prodotti gessosi di alterazione. L'idrossido di bario è molto affine al CaCO3, essendo, in partenza, carbonato di bario BaCO3; reagisce con il gesso per dare BaSO4 (solfato di bario), che è insolubile. Può dar luogo a patine biancastre superficiali, ha un potere consolidante piuttosto basso e richiede l'eliminazione preventiva degli eventuali sali presenti in soluzione nel materiale. Non porta alla formazione di barriera al vapore, in quanto non satura completamente i pori del materiale; per lo stesso motivo non esplica un'efficace azione nei confronti della penetrazione di acqua dall'esterno.

Come nel caso del trattamento a base di calce la composizione chimica del materiale trattato cambia solo minimamente; il prodotto consolidante (carbonato di bario, BaCO3) ha un coefficiente di dilatazione tecnica simile a quello della calcite, è molto stabile ed è praticamente insolubile; se esposto ad ambiente inquinato da anidride solforosa, può dare solfato di bario (BaSO4), che è comunque un prodotto insolubile. Viceversa non deve essere applicato su materiali ricchi, oltre al gesso, di altri sali solubili, con i quali può combinarsi, dando prodotti patogeni.

Alluminato di potassio, KAIO2

Può dare sottoprodotti dannosi. Fra questi si può infatti ottenere idrossido di potassio, che, se non viene eliminato in fase di trattamento, può trasformarsi in carbonato e solfato di potassio, Sali solubili e quindi potenzialmente dannosi. Impregnanti per la protezione e l'impermeabilizzazione I prodotti da usare per l'impermeabilizzazione corticale e la protezione dei materiali dovranno possedere caratteristiche specifiche eventualmente confortate da prove ed analisi da effettuarsi in laboratorio o direttamente in cantiere. Tali prodotti andranno applicati solo in caso di effettivo bisogno, su murature e manufatti eccessivamente porosi esposti agli agenti atmosferici, all'aggressione di umidità da condensa, di microrganismi animali e vegetali. Le operazioni andranno svolte su superfici perfettamente asciutte con una temperatura intorno ai 20 °C. Si potranno applicare a pennello, ad airless, per imbibizione completa e percolamento. Gli applicatori dovranno agire con la massima cautela, dotati di adeguata attrezzatura protettiva, nel rispetto delle norme antinfortunistiche e di prevenzione. I prodotti da utilizzarsi dovranno possedere un basso peso molecolare ed un elevato potere di penetrazione; buona resistenza all'attacco fisico-chimico degli agenti atmosferici; buona resistenza chimica in ambiente alcalino; assenza di effetti collaterali e la formazione di sottoprodotti di reazione dannosi (produzione di sali); perfetta trasparenza ed inalterabilità dei colori; traspirazione tale da non ridurre, nel materiale trattato, la preesistente permeabilità ai vapori oltre il valore limite del 10%; atossicità. Sarà sempre opportuno ad applicazione avvenuta provvedere ad un controllo (cadenzato nel tempo) sulla riuscita dell'intervento onde verificarne l'effettiva efficacia.

Polimeri acrilici e vinilici

Sono prodotti solidi ottenuti per polimerizzazione di un monomero liquido. Il monomero liquido può essere applicato ad una superficie per creare (a polimerizzazione completata) un film solido più o meno impermeabile ed aderente al supporto. I polimeri con scarso grado di polimerizzazione dispersi in acqua o in solventi organici danno luogo a lattici o emulsioni. Polimeri con basso peso molecolare sempre disciolti in acqua o in solvente organico formano soluzioni trasparenti. Entrambi questi prodotti se applicati come rivestimento in strato sottile permangono come film superficiali dopo l'evaporazione del solvente dal lattice o dalla soluzione. Lattici e soluzioni polimeriche sono spesso combinati con altri componenti quali cariche, pigmenti, opacizzanti, addensanti, plastificanti. I principali polimeri impiegati per questo tipo di applicazione sono i poliacrilati e le resine viniliche. I poliacrilati possono essere utilizzati come impregnanti di materiali porosi riducendone consistentemente la permeabilità; sono pertanto impiegabili per situazioni limite quando si richiede l'impermeabilizzazione del materiale da forti infiltrazioni. Sotto forma di lattici vengono utilizzati per creare barriere protettive contro l'umidità oppure applicati come mani di fondo (primer) per migliorare l'adesione di pitturazioni e intonaci. Le resine viniliche sono solitamente copolimeri di cloruro di acetato di vinile sciolti in solventi. Presentano ottima adesione al supporto, stabilità sino a 60 °C, flessibilità, atossicità, buona resistenza agli agenti atmosferici. Sono però da impiegarsi con estrema cautela e solo in casi particolari in quanto riducono fortemente la permeabilità al vapor d'acqua, posseggono un bassissimo potere di penetrazione, risultano eccessivamente brillanti una volta applicati. In ogni caso, avendo caratteristiche particolari ricche di controindicazioni (scarsa capacità di penetrazione, all'interno del manufatto, probabile alterazione cromatica dello stesso ad applicazione avvenuta, effetto traslucido), l'utilizzo dei polimeri organici sarà da limitarsi a casi particolari. La loro applicazione si potrà effettuare dietro esplicita richiesta della D.L. e/o degli organi preposti alla tutela del bene oggetto di intervento.

Resine poliuretaniche

Prodotti termoplastici o termoindurenti a seconda dei monomeri che si impiegano in partenza, hanno buone proprietà meccaniche, buona adesività, ma bassa penetrabilità. Mescolate con isocianati alifatici hanno migliore capacità di penetrazione nei materiali porosi (hanno bassa viscosità), sono resistenti ai raggi ultravioletti e agli inquinanti atmosferici e garantiscono un'ottima permeabilità al vapore. Oltre che come consolidanti possono essere impiegate come protettivi e impermeabilizzanti. Infatti utilizzando l'acqua come reagente risultano particolarmente adatte per sbarramenti verticali extramurari contro infiltrazioni dando luogo alla formazione di schiume rigide. Si possono impiegare unitamente a resine acriliche per il completamento della tenuta contro infiltrazioni d'acqua. Il

prodotto dovrà possedere accentuata idrofilia per permettere la penetrazione per capillarità anche operando su murature umide.

Oli e cere naturali e sintetiche

Quali prodotti naturali sono stati usati molto spesso anche anticamente a volte in maniera impropria, ma in determinate condizioni e su specifici materiali ancora danno ottimi risultati per la loro protezione e conservazione con il grosso limite perché di una scarsa resistenza all'invecchiamento. Inoltre l'iniziale idrorepellenza acquisita dall'oggetto trattato, sparisce col tempo. L'olio di lino è un prodotto essiccativo formato da gliceridi di acidi grassi insaturi. Viene principalmente usato per l'impregnazione del legno, così pure di pavimenti e materiali in cotto. Gli oli essiccativi si usano normalmente dopo essere stati sottoposti a una particolare cottura, per esaltarne il potere essiccativo. L'olio di lino dopo la cottura (250-300 ℃) si presenta molto denso e vischioso, con colore giallo o tendente al bruno. Le cere naturali, microcristalline o paraffiniche, vengono usate quali validi protettivi per legno e manufatti in cotto (molto usate sui cotti le cere steariche bollite in ragia vegetale in soluzione al 20%; sui legni la cera d'api in soluzione al 40% in toluene). Questi tipi di prodotti prevedono comunque sempre l'applicazione in assenza di umidità, che andrà pertanto preventivamente eliminata. Per le strutture lignee si potrà ricorrere al glicol polietilenico (PEG) in grado di sostituirsi alle molecole d'acqua che vengono allontanate. Le cere sintetiche, costituite da idrocarburi polimerizzati ed esteri idrocarburi ossidati, hanno composizione chimica, apparenza e caratteristiche fisiche ben diverse da quelle delle cere naturali. Le cere polietilene e polietilenglicoliche sono solubili in acqua e solventi organici, ma non si mischiano bene alle cere naturali ed alla paraffina. Sono comunque più stabili al calore, hanno maggior resistenza all'idrolisi ed alle reazioni chimiche. Le cere possono essere usate in forma di soluzione o dispersione. ad esempio in trementina, toluolo, cicloesano o etere idrocarburo, oppure sotto forma di miscele a base di cera d'api, paraffina colofonia. Tutte le cere trovano comunque impiego ristretto nel trattamento dei materiali lapidei e porosi in generale a causa dell'ingiallimento e dell'opacizzazione delle superfici trattate, danno inoltre luogo alla formazione di saponi che scoloriscono l'oggetto trattato se in presenza di umidità e carbonato di calcio, hanno scarsa capacità di penetrazione. Ancora, non vanno usate su manufatti in esterno, esposti alle intemperie ed all'atmosfera, possibili terreni di coltura per batteri ed altri parassiti. Oli e cere vengono normalmente applicati a pennello.

CONSOLIDAMENTO DELLE ROCCE SEDIMENTARIE

- Arenaria e tufo È consigliato l'uso degli esteri dell'acido silicico applicati col sistema a tasca (possibile anche l'utilizzo del silicato di etile). Le sigillature si effettuano con una miscela di pietra macinata, grassello e resina acrilica.
- Travertino Come consolidante può essere utilizzata una miscela di silicati ed alchil-alcossi-silani o alchil-alcossi-polisilani e miscele di resine acriliche e siliconiche.
- Pietra d'Angera, pietra di Verona e pietra tenera dei Colli Berici Si utilizza silicato di etile o esteri dell'acido silicico. Le stuccature vanno realizzate con grassello di calce e polvere della pietra stessa.

CONSOLIDAMENTO DELLE ROCCE METAMORFICHE (MARMI, SERPENTINI, MISCOSCISTI, CALCISCISTO)

Le fessurazioni saranno sigillate con impasto costituito da grassello di calce, polvere di marmo e sabbia. È consigliato l'utilizzo di resine siliconiche di tipo metil-fenil-polisilossano per assorbimento sottovuoto o capillare, di miscele di silicati ed alchil-alcossi-silani, di alchil-alcossi-polisilani, di resine acriliche, di resine acriliche e di miscele di resine acriliche e siliconiche. Il consolidamento statico e l'incollaggio delle parti deve essere effettuato con perni in materiale non alterabile: alluminio, acciai speciali, resine epossidiche.

CONSOLIDAMENTO DI COTTO E LATERIZI

I laterizi possono essere consolidati con silicati di etile, alchil-alcossi-silani o miscele dei due.

CONSOLIDAMENTO DEL CALCESTRUZZO

Il riempimento delle lacune deve essere effettuato con una malta che non presenti né ritiro né carbonatazione. Si devono utilizzare cementi espansivi o a ritiro controllato che presentino una buona deformabilità. Per tali qualità è necessaria la presenza di additivi idonei nella malta. La superficie sulla quale si interviene deve essere ruvida e umida. La malta va gettata con forza sulla superficie in modo da non far rimanere residui d'aria. Sulla superficie deve poi essere applicato un additivo di cura per evitare la carbonatazione troppo rapida, consistente in una vernice che, dopo un certo periodo di tempo, si spellicola automaticamente.

Per un calcestruzzo a vista è consigliato l'impiego di un cemento Portland molto compatto oppure di cemento pozzolanico. Nel caso d'interventi in zone ricche di solfati ci si deve servire di cemento ferrico che non contiene alluminato tricalcico. In ambienti ricchi d'acqua a quest'ultimo va aggiunta pozzolana.

CONSOLIDAMENTO DEGLI INTONACI

Nel caso in cui il materiale si presenti decoesionato si consiglia l'uso degli esteri etilici dell'acido silicico.

La riadesione degli strati d'intonaco al supporto murario dovrà avvenire mediante iniezioni di miscela a base di calce pozzolanica additivata con riduttori d'acqua organici (ma non resine) all'1% del legante allo stato secco. La miscela dovrà avere caratteristiche analoghe a quelle della malta costituente l'intonaco, la medesima porosità, non contenere sali solubili e presentare una buona iniettabilità in fessure sottili. Inoltre non dovrà avere resistenza meccanica superiore al supporto.

Si dovrà procedere all'eliminazione di polveri e detriti interni mediante apposite attrezzature di aspirazione. Verranno in seguito effettuate iniezioni di lavaggio con acqua ed alcool. Si procederà quindi all'imbibizione abbondante del supporto, mediante iniezioni, al fine di facilitare la fuoriuscita di eventuali sali ed evitare bruciature della nuova malta.

Sarà poi necessario far riaderire al supporto l'intonaco distaccato, ponendo sulla superficie del cotone bagnato ed esercitando una lieve pressione tramite un'assicella.

Le iniezioni dovranno essere effettuate, fino a rifiuto, dal basso verso l'alto per permettere la fuoriuscita dell'aria; durante tutta l'operazione si continuerà ad esercitare una leggera pressione. Si procederà sigillando le parti iniettate.

CONSOLIDAMENTO DEGLI STUCCHI

Nel caso si siano verificati distacchi di lamine decorative o il materiale si presenti decoesionato, potranno essere utilizzate resine in emulsione acquosa, applicate a pennello su carta giapponese. Qualora l'elemento presenti distacchi dal supporto murario, il riancoraggio potrà avvenire mediante l'iniezione di miscele idrauliche a base di calce idrata e cocciopesto o pozzolana, eventualmente addizionate con fluidificante e miscele adesive. Le eventuali nuove armature devono essere in acciaio inossidabile o vetroresina.

CONSOLIDAMENTO DI PARTICOLARI ARCHITETTONICI

Le superfici si consolidano e si proteggono solo dopo un'accurata ed approfondita pulizia.

Le tecniche di consolidamento più usate sono:

 la tecnica del vuoto, adatta per il consolidamento di particolari architettonici di piccole e medie dimensioni. Il manufatto, tenuto sotto l'azione del vuoto, ha la possibilità di assorbire notevoli quantitativi di sostanza impregnante; l'azione del vuoto, inoltre, è efficace, anche, per eliminare l'umidità e le polveri presenti all'interno dei pori;

 la tecnica delle tasche: ricoperti i manufatti deteriorati con uno strato di cotone idrofilo, si applica una gronda di cartone impermeabile e si avvolge il tutto con fogli di polietilene raccordato nella parte superiore con dei tubetti adduttori.

L'impregnante, spinto da una pompa a bassa pressione, satura tramite i tubetti adduttori il cotone che, aderendo alla superficie del manufatto, gli trasmette la sostanza consolidante. L'eccesso di impregnazione percola nella gronda e rientra in circolo mediante un recipiente di raccolta collegato alla pompa. In questo modo, la resina bagna la struttura per tutto il tempo occorrente all'ottenimento del grado d'impregnazione voluto.

È necessario adattare le modalità operative e le quantità d'impregnazione al livello di degrado del manufatto che si potrà presentare costituito da:

- materiali fortemente alterati: in questo caso è necessaria una maggiore quantità di sostanza consolidante;
- materiali poco alterati: in questo caso, essendo poco porosi e compatti, occorre una quantità minima di sostanza impregnante.

Art. X Trattamento di protezione dei materiali

PROTEZIONE DELLE ROCCE SEDIMENTARIE

- Arenaria e tufo: la protezione va effettuata con alchil-alcossi-silani o poli-metil-silossani applicati a spruzzo o a pennello.
- Travertino, pietra d'Angera, pietra di Verona e pietra tenera dei Colli Berici: la protezione prevede l'applicazione di alchil-aril-polisilossani e miscele di resine acriliche e siliconiche.

PROTEZIONE DELLE ROCCE METAMORFICHE (MARMI, SERPENTINI, MISCOSCISTI, CALCISCISTO)

Può essere effettuata con miscele di resine acriliche e siliconiche e di alchil-aril polisilossani.

PROTEZIONE DI COTTO E LATERIZI

Si possono usare come protettivi alchil-aril-polisilossani (resine siliconiche) o miscele di resine acriliche e siliconiche. I pavimenti in cotto potranno essere protetti con olio di lino crudo in ragia vegetale al 5%.

PROTEZIONE DEL CALCESTRUZZO

È possibile applicare una resina che presenti le seguenti caratteristiche: deformabilità elevata, resistenza ai raggi UV, strato di piccolo spessore, trasparenza e elasticità nel tempo.

PROTEZIONE DEGLI STUCCHI

Si suggerisce l'utilizzo di resine acril-siliconiche.

Art. XI Conservazione del legno

I prodotti da usare per la prevenzione del legname da parte di organismi vegetali e/o animali devono soddisfare i sequenti requisiti:

tossicità per funghi ed insetti, ma estremamente limitata o nulla per l'uomo;

PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO-

- possedere una viscosità sufficientemente bassa in modo da ottenere una buona capacità di penetrazione anche in profondità;
- stabilità chimica nel tempo;
- resistenza agli agenti chimico-meccanici;
- non alterare le caratteristiche intrinseche dell'essenza quali odore, colore, tenacità, caratteristiche meccaniche;
- possedere proprietà ignifughe.

Gli antisettici utilizzabili per trattamenti di preservazione potranno essere di natura organica o di natura inorganica. Saranno comunque da preferirsi i primi in quanto gli inorganici, generalmente idrosolubili, presentano l'inconveniente di essere dilavabili.

L'applicazione sarà effettuata:

- a pennello. Dopo aver pulito e/o neutralizzato la superficie da trattare (con applicazione di solvente) si applicherà la soluzione di resina a pennello morbido fino al rifiuto. Il trattamento di impregnazione andrà iniziato con resina in soluzione particolarmente diluita e si aumenterà via via la concentrazione fino ad effettuare le ultime passate con una concentrazione superiore allo standard;
- a spruzzo. Dopo aver pulito e/o neutralizzato con solvente la superficie da impregnare si applicherà la soluzione a spruzzo fino al rifiuto. Il trattamento andrà iniziato con resina in soluzione particolarmente diluita e si aumenterà via via la concentrazione fino ad effettuare le ultime passate con una concentrazione superiore allo standard;
- per iniezione. Si introdurranno nel legno da impregnare appositi iniettori con orifizio variabile (2/4,5 mm). L'iniettore conficcato in profondità nel legno permetterà la diffusione del prodotto impregnante nelle zone più profonde.

Per arrestare il deterioramento e comunque per impostare una efficace azione di consolidamento potranno essere utilizzate varie resine:

- resine naturali. Prima di essere applicate dovranno sciogliersi in solvente che, evaporando determina il deposito della resina nei pori e nelle fessure del legno. A causa del rapido deterioramento e/o invecchiamento, le resine naturali potranno essere utilizzate solo in casi particolari. Risultati analoghi si possono ottenere usando cere naturali fuse o sciolte in solvente oppure olio di lino cotto;
- oli siccativi e resine alchidiche siccative. Il procedimento consiste nel fare assorbire dal legno materiali termoplastici sciolti in adatto solvente che tende col tempo a trasformare i polimeri solidi reticolati per effetto dell'ossigeno dell'aria. Tale impregnazione ha più uno scopo protettivo che di miglioramento delle caratteristiche meccaniche;
- resine termoplastiche in soluzione. Il solvente, usato per sciogliere tali resine, deposita la resina nei pori e nelle fessure del legno col risultato di migliorare le caratteristiche meccaniche e la resistenza agli agenti atmosferici, nonché l'aggressione biologica e chimica;
- resine poliesteri insature. Queste resine polimerizzano a freddo previa aggiunta di un catalizzatore e di un accelerante. Presentano buona resistenza agli aggressivi chimici (ad eccezione degli alcali). L'uso di tali resine è limitato nel caso in cui si voglia ottenere una buona resistenza agli aggressivi chimici;
- resine poliuretaniche;
- resine epossidiche.

Le resine dovranno in ogni caso presentare una elevata idrofilia per permettere la penetrazione per capillarità dovendo operare su legni anche particolarmente umidi. Dovranno essere sciolte in solvente organico polare fino a garantire una viscosità non superiore a 10 cPs a 25° e un residuo secco superiore al 10% per resine a due componenti (poliuretaniche, epossidiche) e al 7% per le rimanenti. I sistemi di resine da utilizzare dovranno essere atossici e non irritanti secondo la classificazione Cee e presentare le seguenti proprietà:

- nessun ingiallimento nel tempo;
- elevata resistenza agli agenti atmosferici e ai raggi UV;
- indurimento e/o evaporazione del solvente, graduale ed estremamente lento, tale da consentire la diffusione completa del prodotto per garantire una impregnazione profonda;

- possibilità di asporto di eventuali eccessi di resina dopo 24 ore dalla applicazione, mediante l'uso di adatti solventi:
- elevata resistenza chimica, all'acqua, all'attacco biologico.

Art. XII Consolidamento degli intonaci

Nei casi di deterioramento dell'intonaco e del conseguente distacco dal supporto murario (che può avvenire per condizioni atmosferiche, esecuzioni delle malte) dovranno essere chiaramente individuate le cause prima di procedere ai lavori di ripristino previsti dal progetto effettuando anche, se necessario, dei saggi sotto il controllo del direttore dei lavori.

I distacchi e il deterioramento dell'intonaco danno origine ad una serie di conseguenze che dovranno essere risolte in funzione del tipo di supporto e della possibilità di effettuare lavori di rimozione totale o di restauro conservativo.

Nel caso in cui si intenda procedere con la rimozione totale delle parti distaccate, queste dovranno essere rimosse estendendo questa operazione fino alle zone circostanti saldamente ancorate ed in condizioni tali da poter garantire, nel tempo, la loro adesione al supporto.

Le operazioni di pulizia che dovranno, comunque, precedere gli interventi saranno eseguite con pennelli asciutti, cannule di aspirazione e bagnatura delle parti esposte prima di eseguire i lavori sopra indicati.

I lavori di ripristino o manutenzione nel caso di intonaci correnti, in cui è possibile rimuovere le parti distaccate, saranno eseguiti con la formazione di malte, il più possibile omogenee a quelle preesistenti, che verranno poste in opera anche con l'applicazione di una serie di strati in relazione allo spessore da raggiungere ed avendo cura di non realizzare strati superiori ai 4-5 mm. ca. di spessore per applicazione.

Per quanto riguarda gli intonaci di qualità e pregio tali da non consentire la rimozione delle parti distaccate si dovrà procedere con delle iniezioni di soluzioni adesive idonee a tale scopo oppure fissando nuovamente al supporto le parti in via di distacco con delle spennellature di soluzione adesiva, previa pulizia accurata delle zone d'intervento.

Qualora il ripristino degli intonaci preveda degli interventi di stuccatura si procederà nel modo sequente:

- 1) analisi delle cause che hanno generato i microdistacchi o le fessurazioni su cui si deve intervenire verificando la consistenza superficiale dei fenomeni (che diversamente richiederebbero interventi di natura strutturale):
- 2) preparazione delle malte da utilizzare che dovranno essere un grassello di calce con inerti di dimensioni variabili per i riempimenti più consistenti ed impasti più fluidi da usare per gli interventi di finitura;
- 3) utilizzo di malte epossidiche o impasti speciali per le opere di stuccatura di fessurazioni di origine strutturale.

CONSERVAZIONE

Conservazione di intonaci distaccati mediante iniezioni a base di miscele idrauliche: Questi interventi consentono di ripristinare la condizione di adesività fra intonaco e supporto, sia esso la muratura o un altro strato di rivestimento, mediante l'applicazione o l'iniezione di una miscela adesiva che presenti le stesse caratteristiche dell'intonaco esistente e cioè:

- forza meccanica superiore, ma in modo non eccessivo, a quella della malta esistente;
- porosità simile;
- ottima presa idraulica;

- minimo contenuto possibile di sali solubili potenzialmente dannosi per i materiali circostanti;
- buona plasticità e lavorabilità;
- basso ritiro per permettere il riempimento anche di fessure di diversi millimetri di larghezza.

Il distacco può presentare buone condizioni di accessibilità (parti esfoliate, zone marginali di una lacuna), oppure può manifestarsi senza soluzioni di continuità sulla superficie dell'intonaco, con rigonfiamenti percettibili al tocco o strumentalmente. Nel primo caso la soluzione adesiva può essere applicata a pennello direttamente sulle parti staccate, ravvicinandole al supporto. Nel caso in cui la zona non sia direttamente accessibile, dopo aver ispezionato le superfici ed individuate le zone interessate da distacchi, l'Appaltatore dovrà eseguire delle perforazioni con attrezzi ad esclusiva rotazione limitando l'intervento alle parti distaccate. Egli altresì, iniziando la lavorazione a partire dalla quota più elevata, dovrà:

- aspirare mediante una pipetta in gomma i detriti della perforazione e le polveri depositatesi all'interno dell'intonaco;
- iniettare con adatta siringa una miscela acqua/alcool all'interno dell'intonaco al fine di pulire la zona distaccata ed umidificare la muratura;
- applicare all'interno del foro un batuffolo di cotone;
- iniettare, attraverso il batuffolo di cotone, una soluzione a basi di adesivo acrilico in emulsione (primer) avendo cura di evitare il reflusso verso l'esterno;
- attendere che l'emulsione acrilica abbia fatto presa;
- iniettare, dopo aver asportato il batuffolo di cotone, la malta idraulica prescritta operando una leggera, ma prolungata pressione sulle parti distaccate ed evitando il percolamento della miscela all'esterno.

Qualora la presenza di alcuni detriti dovesse ostacolare la ricollocazione nella sua posizione originaria del vecchio intonaco, oppure impedire l'ingresso della miscela, l'Appaltatore dovrà rimuovere l'ostruzione con iniezioni d'acqua a leggera pressione oppure attraverso gli attrezzi meccanici consigliati dalla D.L.

Per distacchi di lieve entità, fra strato e strato, con soluzioni di continuità dell'ordine di mm 0,5, non è possibile iniettare miscele idrauliche, per cui si può ricorrere a microiniezioni a base di sola resina, per esempio un'emulsione acrilica, una resina epossidica o dei silani. Per distacchi estesi si potrà utilizzare una miscela composta da una calce idraulica, un aggregato idraulico, un adesivo fluido, ed eventualmente un fluidificante. L'idraulicità della calce permette al preparato di far presa anche in ambiente umido; l'idraulicità dell'aggregato conferma le proprietà e conferisce maggiore resistenza alla malta; l'adesivo impedisce in parte la perdita di acqua appena la miscela viene a contatto con muratura e intonaco esistente; il fluidificante eleva la lavorabilità dell'impasto.

Conservazione di intonaci e decorazioni distaccati mediante microbarre di armatura: Previa accurata ispezione di intonaci e decorazioni in modo da individuare con precisione tutte le parti in fase di distacco, l'Appaltatore avrà l'obbligo di mettere in sicurezza tramite puntellature e/o altri accorgimenti le zone che potrebbero accusare notevoli danni a causa delle sollecitazioni prodotte dai lavori di conservazione. Quindi dovrà:

- praticare delle perforazioni aventi il diametro e la profondità prescritti dagli elaborati di progetto ordinati dalla D.L.;
- aspirare mediante una pipetta in gomma i detriti della perforazione e le polveri depositatesi;
- iniettare con adatta siringa una miscela acqua/alcool all'interno dell'intonaco al fine di pulire la zona distaccata ed umidificare la muratura;
- applicare all'interno del foro un batuffolo di cotone;
- iniettare, se richiesto, attraverso il batuffolo di cotone, una soluzione a basi di adesivo acrilico in emulsione (primer);
- iniettare, dopo aver asportato il batuffolo di cotone, una parte della miscela idraulica in modo da riempire circa il 50% del volume del foro;
- collocare la barra di armatura precedentemente tagliata a misura (vetroresine, PVC);
- iniettare la rimanente parte di miscela idraulica evitando il percolamento della miscela all'esterno.

Conservazione di decorazioni a stucco: Prima di procedere a qualsiasi intervento di conservazione sarà indispensabile effettuare una complessiva verifica preliminare dello stato materico, statico e patologico dei manufatti (indagine visiva, chimica e petrografica). Il quadro patologico andrà restituito tramite specifica mappatura in grado di identificare soluzioni di continuità presenti, distacchi, fessurazioni, lesioni, deformazioni, croste superficiali. Si procederà successivamente con cicli di pulitura consolidamento e protezione. Saranno da evitare operazioni di integrazione, sostituzione e rifacimento di tutte le porzioni mancanti o totalmente compromesse finalizzate alla completa restituzione dell'aspetto cosiddetto "originale". Eventuali integrazioni saranno funzionali alla conservazione del manufatto ed alla eventuale complessiva leggibilità.

PULITURA

Idrosabbiatura

Le superfici circostanti alla zona d'intervento dovranno essere protette e il ponteggio provvisorio andrà isolato dall'esterno tramite la stesura di teli a trama fitta. Dopo una prova su un'area ridotta, effettuata sotto il controllo del direttore dei lavori, per scegliere il tipo e la conformazione di abrasivo da utilizzare (corindone, silicato di ferro e magnesio, sabbia silicea vagliata, silice ed allumina) si potrà procedere al trattamento di tutte le superfici. La pressione varierà da 0,5 a 3 Kg/cmq, a seconda del tipo di ugello utilizzato e della posizione dello stesso (distanza e inclinazione rispetto al manufatto).

Si provvederà infine al risciacquo mediante idropulitrice, avendo cura di smaltire le acque secondo le normative vigenti.

Acqua nebulizzata

Si procederà dall'alto verso il basso, nebulizzando attraverso appositi ugelli acqua a bassa pressione (da 2,5 a 4 atmosfere), che raggiungerà le superfici indirettamente, per caduta. Le parti danneggiabili o soggette ad infiltrazioni (serramenti, legno, vetrate) andranno preventivamente protette. Analoga cura si porrà allo smaltimento delle acque defluenti.

Microsabbiature senza impalcature

Come per l'idrosabbiatura si procederà alla protezione delle zone danneggiabili limitrofe all'area di intervento, nonché ad una prova di valutazione dei parametri operativi (tipo di abrasivo, granulometria, pressione di esercizio e modalità di intervento).

In questo caso si utilizzerà un automezzo a braccio telescopico evitando il montaggio di impalcature: questo sosterrà una cabina a ventosa dotata di aspiratori che convogliano le polveri in un condotto dove un getto d'acqua le porta fino a terra. Qui il residuo sabbioso verrà separato dall'acqua e accantonato per il successivo trasporto alle discariche.

Impacchi con argilla

La superficie da pulire andrà preventivamente sgrassata con acetone o cloruro di metilene per renderla bagnabile, e poi spruzzata con acqua distillata. Il fango di argilla, costituito da sepiolite e attapuglite in granulometria 100-200 Mesh, andrà miscelato con acqua distillata fino a realizzare un impasto denso e non scorrevole. L'applicazione avverrà tramite spatole e pennelli, per uno spessore di 2-3 cm su tutte le superfici.

Una volta essiccato, il fango andrà rimosso e la superficie lavata con acqua. Nel caso di macchie molto tenaci si potrà ritardare l'essiccazione del fango coprendolo con fogli impermeabili.

CONSOLIDAMENTO

Iniezioni di malte cementizie

L'area di intervento sarà oggetto di accurata indagine preliminare con tecniche adeguate (battitura, carotaggio, termografia) per l'individuazione di cavità interne e di sostanze aggressive. Dopo la pulitura delle superfici si procederà al consolidamento delle parti decoese tramite l'iniezione a bassa pressione di malta cementizia, con rapporto sabbia/cemento da 0,6 a 0,8 additivata con agenti antiritiro o fluidificanti; i fori, in ragione di almeno 2-3 al mq, saranno equidistanti o comunque in relazione alla diffusione delle fessure.

Per evitare la fuoriuscita della malta iniettata, dopo l'inserimento dei tubi di adduzione si sigilleranno le zone di inserimento e le zone superficiali lesionate. L'iniezione della miscela avverrà in maniera simmetrica e costante, dal basso verso l'alto. Ad avvenuta cementazione i fori verranno sigillati con malta cementizia.

È essenziale che le superfici trattate siano perfettamente asciutte, in temperatura ambiente tra i +5 $^{\circ}$ C e i +25 $^{\circ}$ C e umidità relativa al massimo del 60/ 70%.

Iniezioni di resine epossidiche

L'area di intervento sarà oggetto di accurata indagine preliminare con tecniche adeguate (battitura, carotaggio, termografia) per l'individuazione di cavità interne e di sostanze aggressive. Dopo la pulitura delle superfici si procederà al consolidamento delle parti decoese tramite l'iniezione a bassa pressione di resina epossidica; i fori, in ragione di almeno 2-3 al mq, saranno equidistanti o comunque in relazione alla diffusione delle fessure. Nel caso di murature in mattoni la distanza sarà al massimo di 50 cm, in quelle in blocchi di cemento sarà invece di qualche metro.

Per evitare la fuoriuscita della resina, dopo l'inserimento dei tubi di adduzione per i 2/3 della profondità del muro, si sigilleranno le zone di inserimento e le zone superficiali lesionate. L'iniezione della miscela avverrà in maniera simmetrica e costante, dal basso verso l'alto. Ad avvenuta cementazione i fori verranno sigillati con malta cementizia.

È essenziale che le superfici trattate siano perfettamente asciutte, in temperatura ambiente tra i +5 ℃ e i +25 ℃ e umidità relativa al massimo del 60/ 70%.

PROTEZIONE

Protettivi a base di resine siliconiche

Prima di procedere all'esecuzione dell'opera, tutti gli aggetti e le superfici non soggette ad intervento andranno protette; si prepareranno poi i supporti mediante spazzolatura, pulitura ed eventuale risanamento.

Il protettivo a base di resine siliconiche sarà steso in più mani in base all'assorbimento della superficie, comunque attendendo sempre l'essiccazione dello strato precedente.

È essenziale che le superfici trattate siano perfettamente asciutte, in temperatura ambiente tra i +5 $^{\circ}$ C e i +25 $^{\circ}$ C e umidità relativa al massimo del 60/ 70%.

Protettivi a base di resine acriliche

Prima di procedere all'esecuzione dell'opera, tutti gli aggetti e le superfici non soggette ad intervento andranno protette; si prepareranno poi i supporti mediante spazzolatura, pulitura ed eventuale risanamento.

Il protettivo incolore a base di resine acriliche sarà steso in più mani, in base all'assorbimento della superficie, bagnato su bagnato fino a rifiuto.

È essenziale che le superfici trattate siano perfettamente asciutte, in temperatura ambiente tra i +5 \mathbb{C} e i +25 \mathbb{C} e umidità relativa al massimo del 60/ 70%.

Protettivo antigraffio e antiscritta

Prima di procedere all'esecuzione dell'opera tutti gli aggetti e le superfici non soggette ad intervento andranno protette; si prepareranno poi i supporti mediante spazzolatura, pulitura ed eventuale risanamento.

Il protettivo (formulato trasparente idrorepellente antiscritta in base solvente) sarà steso a pennello o a spruzzo in due mani successive, seguendo le indicazioni specifiche del produttore.

È essenziale che le superfici trattate siano perfettamente asciutte, in temperatura ambiente tra i +5 $^{\circ}$ C e i +25 $^{\circ}$ C e umidità relativa al massimo del 60/ 70%.

Protettivi lapidei con resine siliconiche

Prima di procedere all'esecuzione dell'opera, tutti gli aggetti e le superfici non soggette ad intervento andranno protette; si prepareranno poi i supporti mediante spazzolatura, pulitura ed eventuale risanamento.

Il protettivo a base di resine siliconiche sarà steso in due mani, in base all'assorbimento della superficie e alle indicazioni del produttore, comunque attendendo sempre l'essiccazione dello strato precedente.

È essenziale che le superfici trattate siano perfettamente asciutte, in temperatura ambiente tra i +5 $^{\circ}$ C e i +25 $^{\circ}$ C e umidità relativa al massimo del 60/ 70%.

Protettivi lapidei con pellicolare a base di resine copolimere acriliche

Prima di procedere all'esecuzione dell'opera, tutti gli aggetti e le superfici non soggette ad intervento andranno protette; si prepareranno poi i supporti mediante spazzolatura, pulitura ed eventuale risanamento.

Il protettivo a base di copolimeri acrilici sarà steso in due mani, in base all'assorbimento della superficie e alle indicazioni del produttore, comunque attendendo sempre l'essiccazione dello strato precedente.

È essenziale che le superfici trattate siano perfettamente asciutte, in temperatura ambiente tra i +5 \mathbb{C} e i +25 \mathbb{C} e umidità relativa al massimo del 60/ 70%.

Protettivo per laterizi a base di resine siliconiche

Prima di procedere all'esecuzione dell'opera, tutti gli aggetti e le superfici non soggette ad intervento andranno protette; si prepareranno poi i supporti mediante spazzolatura, pulitura mediante idrolavaggio ed eventuale risanamento. Successivamente, a giunti completamente induriti, si procederà ad una pulitura con tamponi in fibra di nylon impregnati di granuli leggermente abrasivi a differente densità.

Il protettivo a base di resine siliconiche sarà steso in due mani, in base all'assorbimento della superficie e alle indicazioni del produttore.

È essenziale che le superfici trattate siano perfettamente asciutte, in temperatura ambiente tra i +5 \mathbb{C} e i +25 \mathbb{C} e umidità relativa al massimo del 60/ 70%.

Protettivi per laterizi con pellicolare a base di resine acriliche

Prima di procedere all'esecuzione dell'opera tutti gli aggetti e le superfici non soggette ad intervento andranno protette; si prepareranno poi i supporti mediante spazzolatura, idrolavaggio ed eventuale risanamento.

Il protettivo a base di resine acriliche sarà steso in due mani, in base all'assorbimento della superficie e alle indicazioni del produttore, comunque attendendo sempre l'essiccazione dello strato precedente.

È essenziale che le superfici trattate siano perfettamente asciutte, in temperatura ambiente tra i +5 $^{\circ}$ C e i +25 $^{\circ}$ C e umidità relativa al massimo del 60/ 70%.

RIPRISTINO

Scrostatura totale

Dopo aver disposto un paraschegge perimetrale all'area di intervento, tutte le superfici ad intonaco saranno demolite mediante battitura manuale o meccanica, fino ad esporre la muratura viva, avendo cura di evitare danneggiamenti alle parti non interessate.

Le macerie verranno calate al piano terra ed avviate alla pubblica discarica; eventuali frammenti di intonaco che ostacolassero la sottostante sede stradale andranno immediatamente sgomberati.

I residui polverosi e i calcinacci verranno eliminati tramite lavaggio con idropulitrice.

Rifacimento totale con intonaco rustico

Previa demolizione totale del rivestimento esistente, come al punto precedente, si disporranno delle fasce guida verticali e sul supporto adeguatamente bagnato si applicherà con forza, a riempire i giunti, un primo strato di malta bastarda (composizione: 100 Kg. di cemento 325, 25 Kg. di calce idraulica, mc 0,50 di acqua per mc di sabbia).

Una volta indurito e asciutto lo strato rugoso, si procederà a nuova bagnatura e si applicherà a frattazzo o cazzuola e in più riprese un secondo strato di 1-2 cm della stessa malta, regolarizzata mediante staggiatura per garantire la planarità della superficie.

Rifacimento totale con intonaco cementizio tipo civile

Previa demolizione totale del rivestimento esistente, si disporranno delle fasce guida verticali e sul supporto adeguatamente bagnato si applicherà con forza, a riempire i giunti, un primo strato di malta cementizia (composizione: 400 Kg. di cemento 325 per mc di sabbia).

Una volta indurito e asciutto lo strato rugoso, si procederà a nuova bagnatura e si applicherà a frattazzo o cazzuola e in più riprese un secondo strato di 1-2 cm della stessa malta, regolarizzata mediante staggiatura per garantire la planarità della superficie.

Verrà poi applicata con spatola metallica l'arricciatura finale (2-5 mm) di malta dello stesso tipo ma con sabbia più fine, rifinendo poi con frattazzino di spugna.

Rifacimento totale con intonaco di malta idraulica

Previa demolizione totale del rivestimento esistente, si disporranno delle fasce guida verticali e sul supporto adeguatamente bagnato si applicherà con forza, a riempire i giunti, un primo strato di malta idraulica da 10-20 mm (composizione: mc 0,44 di calce per mc di sabbia).

Una volta indurito e asciutto lo strato rugoso, si procederà a nuova bagnatura e si applicherà a frattazzo o cazzuola e in più riprese un secondo strato della stessa malta, regolarizzata mediante staggiatura per garantire la planarità della superficie.

Verrà poi applicata con spatola metallica l'arricciatura finale (2-5 mm) di malta dello stesso tipo ma con sabbia più fine, rifinendo poi con frattazzino di spugna.

Art. XIII Consolidamento delle murature

I lavori di conservazione delle murature sono quelli rivolti alla conservazione integrale del manufatto originario evitando interventi di sostituzioni, rifacimenti o ricostruzioni. Tali operazioni dovranno quindi essere eseguite, dopo avere effettuato le eventuali analisi necessarie ad individuare le

caratteristiche dei materiali presenti, ricorrendo il più possibile a materiali e tecniche compatibili con quelli da conservare.

STILATURA DEI GIUNTI

La prima operazione sarà quella di analisi ed individuazione dei vari componenti delle malte e delle murature da trattare per passare poi alla preparazione di malte compatibili da porre in opera. Prima dell'applicazione degli impasti così preparati si dovranno rimuovere tutte le parti in via di distacco o asportabili con facilità delle stilature preesistenti passando, quindi, alla nuova stilatura dei giunti con le malte confezionate come descritto.

Oltre alla rimozione delle parti mobili, utilizzando anche scalpelli e utensili di questo tipo, le superfici da trattare dovranno essere pulite meccanicamente o con acqua deionizzata passando ad una prima stilatura dei giunti con una malta di calce idraulica e sabbia vagliata (rapporto legante-inerte 1:2) applicata con spatole di piccole dimensioni per non danneggiare le superfici che non necessitano del trattamento e che potranno essere protette nei modi più adeguati.

La stilatura di finitura dovrà essere effettuata con grassello di calce e sabbia vagliata che potrà essere integrata con polveri di coccio, marmo o simili con un rapporto legante inerti di 1:3; la pulizia finale e la regolarizzazione saranno effettuate con un passaggio di spugna imbevuta di acqua deionizzata.

PARZIALE RIPRISTINO DI MURATURE

Qualora sia necessario intervenire su pareti in muratura solo parzialmente danneggiate le opere di rifacitura interesseranno soltanto le parti staticamente compromesse. Gli interventi andranno eseguiti per zone limitate ed alternate con parti di muratura in buone condizioni per non alterare eccessivamente l'equilibrio statico della struttura.

Le prime opere riguarderanno la demolizione controllata di una delle zone da rimuovere; una volta rimosso il materiale di risulta si procederà alla ricostituzione della muratura con mattoni pieni e malta grassa di cemento avendo cura di procedere ad un efficace ammorsamento delle parti di ripristino in quelle esistenti. Ultimato questo tipo di lavori si procederà, dopo 2-3 giorni di maturazione della malta, al riempimento fino a rifiuto di tutti gli spazi di contatto tra vecchia e nuova muratura.

INTERVENTI DI PROTEZIONE SU MURATURE ESPOSTE

Su parti di muratura o superfici esterne particolarmente soggette ad usura da agenti atmosferici si dovrà intervenire con opere di protezione da realizzare con strati di malta disposti sulle teste dei mattoni interessati a totale o parziale copertura delle superfici esposte. Tali interventi dovranno comunque raccordarsi in modo adeguato con la struttura preesistente senza creare differenze di spessori, incongruenze nell'uso dei materiali e difformità non compatibili con le caratteristiche dell'insieme della struttura.

La migliore rispondenza alle necessità di durata e resistenza di questi interventi protettivi potrà essere ottenuta con l'impiego di additivi appropriati alle diverse situazioni e che andranno aggiunti negli impasti delle malte da utilizzare.

CONSOLIDAMENTO DI MURATURE CON INIEZIONI DI MISCELE

Gli interventi di consolidamento di una muratura con iniezioni di miscele saranno realizzati nel caso si verificassero le seguenti condizioni:

1) le prove preliminari sulle sottostrutture o le fondazioni delle pareti in muratura abbiano avuto buon esito confermando la solidità di tali parti;

2) l'indebolimento della muratura, nella parte in elevazione, sia dovuto principalmente alla presenza di cavità o vuoti dovuti allo sgretolamento della malta.

I lavori dovranno essere preceduti da una serie di analisi necessarie a stabilire la composizione chimico-fisica delle murature stesse e dei vari componenti (blocchi, mattoni, pietre e malte) oltre alla localizzazione dei vuoti eventualmente presenti ed alla definizione della loro entità.

Le opere avranno inizio con la realizzazione dei fori sulle murature che, nel caso di spessori inferiori ai cm. 70, verranno praticati su una sola parte della muratura; per spessori superiori si dovranno eseguire fori su entrambe le facce del muro da consolidare. I fori saranno effettuati con delle carotatrici, dovranno avere un diametro di ca. 30-50 mm. e verranno realizzati in quantità di 3 ogni metro quadro per una profondità pari ad almeno la metà dello spessore del muro (2/3 nel caso di spessori superiori ai 70 cm.). I fori dovranno essere realizzati con perforazioni inclinate verso il basso fino ad un massimo di 45° per favorire una mi gliore distribuzione della miscela.

Nell'esecuzione dei fori si dovranno utilizzare modalità diverse in funzione del tipo di muratura da trattare: per le murature in pietrame i fori saranno eseguiti in corrispondenza dei giunti di malta e ad una distanza reciproca di 70 cm., nel caso di murature in mattoni la distanza tra i fori non dovrà superare i 50 cm.

Prima delle iniezioni di malta si dovranno effettuare un prelavaggio per la rimozione dei depositi terrosi dalla muratura in genere e dai fori in particolare, ed un lavaggio con acqua pura che precederà le operazioni di rinzaffo delle lesioni superficiali e le iniezioni di malta nei fori predisposti.

La miscela da iniettare sarà di tipo cementizio o epossidico, verrà immessa nei fori a pressione variabile ed avrà una composizione formulata in funzione delle condizioni dei materiali e delle specifiche condizioni della muratura, prevedendo, se necessario, anche parziali rinforzi realizzati con piccole armature da inserire nei fori. Nel caso del tipo cementizio l'impasto potrà essere formato da una parte di cemento ed una parte di acqua (un quintale di cemento per 100 litri d'acqua) oppure miscele con sabbie molto fini ed additivi plastificanti per ottenere una corretta fluidità necessaria alla penetrazione capillare della miscela.

Gli impasti potranno essere realizzati anche con resine epossidiche la cui applicazione verrà preceduta da trattamenti dei fori con solventi per saturare le superfici di contatto e consentire all'impasto di polimerizzare in modo omogeneo con il solvente già diffuso prima dell'iniezione.

Le iniezioni dovranno essere eseguite a bassa pressione e con strumenti di lettura dei valori di esercizio per poter verificare costantemente la correttezza delle varie operazioni; all'interno di ciascun foro verrà introdotto un tubicino per la verifica del livello di riempimento del foro stesso che faciliterà, con la fuoriuscita della malta, l'individuazione dell'avvenuto riempimento. All'indurimento della miscela gli ugelli andranno rimossi ed il vuoto creato dalla loro rimozione dovrà essere riempito con lo stesso tipo di malta utilizzato per le iniezioni.

Sarà tassativamente vietato procedere alla demolizione di eventuali intonaci o stucchi che dovranno, comunque, essere ripristinati prima dell'effettuazione delle iniezioni.

Le iniezioni andranno praticate partendo sempre dai livelli inferiori e, nel caso di edifici multipiano, dai piani più bassi.

CONSOLIDAMENTO CON INIEZIONI ARMATE

Nel caso di murature con dissesti tali da rendere necessarie delle opere di rinforzo per contrastare, oltre alle sollecitazioni di compressione anche quelle di trazione, si dovrà ricorrere ad iniezioni di cemento con relativa armatura.

Le modalità di realizzazione di tali interventi saranno del tutto simili a quelle indicate per le iniezioni di miscele con la differenza che all'interno dei fori verranno introdotte delle barre in acciaio ad aderenza migliorata o collegate secondo precisi schemi di armatura indicati nel progetto di consolidamento, prima del getto della miscela prevista.

Le armature potranno essere realizzate anche mediante l'impiego di piastre, tiranti bullonati o trefoli di acciaio da porre in pretensionamento con l'uso di martinetti adeguati.

CONSOLIDAMENTO CON CONTROPARETI IN CLS

Questo tipo di intervento dovrà essere utilizzato solo nei casi di pareti irrimediabilmente compromesse ma soggette ad essere conservate per motivi di vario ordine.

In questo caso si procederà con la pulizia di tutte le superfici esposte delle pareti e con la rimozione di eventuali intonaci o rivestimenti presenti, effettuando anche rimozioni parziali di parti di murature particolarmente compromesse. In seguito dovranno essere realizzati dei fori passanti disposti obliquamente e nella quantità di ca. 5 per metro quadrato al cui interno verranno fissate delle barre di acciaio sporgenti per almeno 20 cm. dal filo esterno della muratura. Tali barre saranno collegate a delle reti elettrosaldate da applicare sulle due superfici esterne della muratura con le prescrizioni fissate dal progetto o fornite dal direttore dei lavori. Una volta completata l'armatura, bagnate le superfici ed, eventualmente, posizionate le casseforme si applicherà la malta a spruzzo (per spessori finali non superiori a 3 cm.), manualmente (per strati intorno ai 5 cm.) ed in getto con casseforme (per spessori intorno ai 10 cm.).

CONSOLIDAMENTO CON TIRANTI METALLICI

Per lesioni di una certa entità che interessino non soltanto singole parti di muratura ma interi elementi, tra loro correlati, si dovranno utilizzare dei tiranti metallici fissati alle estremità con delle piastre metalliche. La funzione di questi tiranti è, oltre alla creazione di un sistema strutturale più rigido, anche la migliore distribuzione dei carichi presenti sui vari elementi.

La prima operazione consisterà nel tracciamento di tutti i fili e posizioni dei vari tiranti per i quali andranno preparate delle sedi opportune nelle quali collocare i cavi di acciaio e le relative piastre; successivamente saranno posizionati i tiranti, previa filettatura di almeno cm. 10 per ogni capo, e verranno fissati alle piastre con dadi di opportuno diametro e guaine di protezione. I tiranti destinati a risolvere problemi di carico orizzontale dovranno essere collocati al livello dei solai con intervalli anche ristretti e rigidamente definiti dalle specifiche progettuali.

Nel caso di attraversamento di murature esistenti si provvederà con piccole carotatrici in grado di eseguire fori di 40-50 mm. di diametro nei quali potrà rendersi necessaria la predisposizione di bulbi di ancoraggio.

A consolidamento avvenuto si provvederà alla ulteriore messa in tensione dei cavi con chiavi dinamometriche applicate sui vari dadi che verranno, dopo questa operazione, saldati alle piastre di giacitura.

Le tracce di giacitura dei tiranti saranno ricoperte con malte cementizie o resine reoplastiche concordemente a quanto stabilito dal direttore dei lavori.

Tutte le parti (piastre, trefoli, bulbi di ancoraggio, tiranti e tipi di armatura) occorrenti per la realizzazione di questo tipo di interventi dovranno essere state preventivamente analizzate e descritte all'interno degli elaborati esecutivi e delle specifiche tecniche di progetto.

Art. XIV Ripristino dei rivestimenti in pietra

Nel caso di distacco delle lastre dal supporto originario a causa dell'ossidazione dei supporti metallici o del venir meno dell'aderenza della malta o dei sistemi di fissaggio alle pareti retrostanti, dovranno essere osservate le sequenti prescrizioni:

a) limitare il ricorso ad adesivi o collanti preferendo il sistema di ancoraggio metallico e, comunque, nel caso di utilizzo delle resine di fissaggio si dovranno scegliere materiali idonei con caratteristiche specifiche e garanzie decennali supportate da apposita polizza;

- b) i sistemi di ancoraggio con supporti metallici dovranno essere realizzati esclusivamente con materiale in acciaio inossidabile espressamente certificato, dovranno essere posizionati in modo da facilitare le dilatazioni termiche ed ogni lastra dovrà essere sostenuta ed ancorata indipendentemente dalle altre;
- c) il fissaggio dei supporti metallici sulla lastra e sulla superficie muraria retrostante dovrà essere eseguito con la creazione di una sede adeguata sulla lastra stessa ottenuta con strumenti a rotazione con basso numero di vibrazioni e con perforatori a rotazione per il supporto murario la sigillatura del tassello sarà effettuata con delle resine compatibili con il tipo di pietra e, per quanto riguarda la parete, con malte adeguate;
- d) i giunti tra le varie lastre saranno costituiti da materiali indeformabili a perfetta tenuta e stabili nel tempo per impedire il passaggio e le infiltrazioni d'acqua tra il rivestimento ed il supporto;
- e) effettuare degli ulteriori controlli sulla effettiva stabilità e tenuta delle soluzioni adottate durante il rimontaggio delle prime lastre prima di procedere alla completa esecuzione del lavoro.

Art. XV Deumidificazione delle murature

Nel caso le manifestazioni ed i deterioramenti dovuti all'umidità assumano caratteristiche tali da compromettere lo stato generale dei manufatti interessati fino ad alterare anche il loro comportamento alle sollecitazioni di natura statica e meccanica e in applicazione delle prescrizioni progettuali, dovranno essere adottati specifici trattamenti.

Qualunque tipo di intervento dovrà essere preceduto da un'analisi approfondita delle cause principali che hanno dato origine al problema senza trascurare anche tutte le concause che possono aver contribuito alla sua estensione.

La risoluzione di questi problemi dovrà essere effettuata utilizzando i due principali tipi di interventi adottabili in questi casi:

- a) opere di bonifica con lavori di realizzazione di intercapedini aeranti, vespai, drenaggi o modificazioni forzate (riscaldamento o climatizzazione) dei microclimi locali;
- b) interventi diretti sui manufatti di tipo meccanico o fisico.

OPERE DI BONIFICA

Dovranno essere utilizzati questi tipi di interventi per l'eliminazione dei fenomeni di umidità che si manifestano principalmente nelle fondazioni, sottomurazioni, parti interrate o a contatto con delle zone umide (terra, acqua) non sufficientemente isolate e esposte ai fenomeni di risalita o vaporizzazione dell'acqua. In questi casi si dovranno prevedere una serie di lavori da eseguire in aree non strettamente limitate a quelle dove si è manifestato il deterioramento; questi lavori dovranno essere eseguiti secondo le specifiche prescrizioni riportate di seguito.

VESPAI

Questo tipo di intervento dovrà essere costituito da uno spessore complessivo di materiale con un'altezza media di cm. 50 ca., costituito da spezzoni di pietrame ed aerato con aperture disposte lungo le pareti perimetrali di delimitazione del vespaio stesso. Sulla parte superiore del vespaio andrà steso un massetto dello spessore totale di 8-10 cm. armato con rete elettrosaldata ed impermeabilizzato con uno o due strati di guaina in poliestere armata per garantire un totale isolamento dal terreno sottostante.

DRENAGGI

Tutte le opere di drenaggio dovranno garantire un adeguato allontanamento dell'acqua giunta a contatto delle superfici esterne delle murature perimetrali o delle intercapedini in modo tale da eliminare qualsiasi permanenza prolungata in grado di facilitare delle infiltrazioni.

Il drenaggio verrà realizzato con uno scavo sulla parte esterna della parete interessata dal problema e dal suo riempimento con scheggioni di cava di dimensioni medie ai quali, sul fondo dello scavo, può essere aggiunto anche un tubo forato (con pendenza dell'1% ca.) per rendere più efficace la raccolta ed il conseguente allontanamento dell'acqua. Le opere di drenaggio dovranno essere affiancate, se possibile, anche da interventi di impermeabilizzazione delle pareti esterne e da interventi di protezione superficiali delle zone a contatto con il fabbricato (marciapiedi, pavimentazioni o asfaltature parziali) per impedire la penetrazione dell'acqua piovana. Le opere di drenaggio devono essere posizionate a ca. 2 mt. dai bordi delle travi di fondazione per impedire qualunque tipo di contatto tra il piano di appoggio delle fondazioni e l'acqua stessa.

INTERCAPEDINI

Questo tipo di interventi dovrà essere realizzato per risanare situazioni di umidità su murature contro terra.

I lavori dovranno prevedere lo scavo e la rimozione della terra a contatto della parete deteriorata e la successiva creazione di una nuova parete (anche impermeabilizzata) posta ad una distanza di 60-80 cm. da quella originaria, verso l'esterno, in modo tale da impedire il contatto con il terreno e la formazione di umidità. Le due pareti potranno essere collegate anche da un solaio calpestabile per consentire la praticabilità della zona superiore ma si dovrà garantire, in ogni caso, un'aerazione sufficiente dell'intercapedine così da evitare fenomeni di umidità o condensa sulle pareti stesse. Le dimensioni dell'intercapedine dovranno essere fissate in relazione al tipo ed alla quantità di umidità presenti nelle zone d'intervento.

CONTROPARETI

Questo tipo di intervento potrà essere utilizzato solo in casi dove le manifestazioni di umidità abbiano carattere di lieve entità per cui sono ipotizzabili anche lavori contenuti su aree sufficientemente limitate.

La controparete dovrà essere realizzata in mattoni pieni o forati ad una testa (spessore 10-12 cm.), intonacati nella faccia a vista e dovrà prevedere un isolamento della base della controparete stessa, aerazione diretta dall'esterno della camera d'aria (che dovrà essere invece chiusa in caso di umidità da condensa) con profondità non inferiore ai cm. 5, avere una distanza di almeno 5-8 cm. dalla parete deteriorata e non avere alcun punto di contatto con quest'ultima, fori di ventilazione anche verso la parte interna e, da valutare per i singoli casi, lastre di materiale isolante inserite nell'intercapedine creata dalla controparete. La quantità, la posizione dei fori e sistemi di ventilazione oltre al posizionamento degli eventuali isolanti dovranno essere oggetto di una scelta molto ponderata e da valutare sulla base delle prescrizioni progettuali e delle condizioni oggettive riscontrate, concordemente con il direttore dei lavori, al momento dell'esecuzione delle opere.

SBARRAMENTO CHIMICO

Nei casi di umidità ascendente su murature in pietra a blocchi di una certa dimensione e durezza, dovrà essere utilizzato il sistema della barriera chimica. In questo caso dovranno essere utilizzate delle resine epossidiche per realizzare uno strato impermeabile orizzontale ottenuto attraverso l'impregnazione capillare della muratura deteriorata senza dover ricorrere al taglio della stessa. Le operazioni dovranno essere eseguite secondo le fasi illustrate nei punti successivi:

- a) rimozione dell'intonaco per una fascia di cm. 50 intorno alla zona su cui intervenire;
- b) esecuzione di una serie di fori di diametro ca. 18 mm. ad intervalli regolari di ca. 10-20 cm. e perpendicolarmente alla superficie fino ad una profondità del 95% dello spessore murario complessivo:

- c) posa in opera dei flaconi trasfusori in prossimità della muratura e con tubi di drenaggio bloccati all'interno dei fori già realizzati e con conseguente stuccatura per impedire la fuoriuscita delle resine;
- d) iniezione di resine epossidiche all'interno dei flaconi predisposti lungo la muratura da ripetere fino al rifiuto dell'assorbimento da parte della muratura stessa; l'iniezione potrà essere effettuata a pressione forzata o a gravità atmosferica;
- e) rifacitura dell'intonaco di impasti additivati con acceleranti per facilitare l'evaporazione dell'umidità residua.

Per questo tipo di trattamento si dovranno utilizzare tutti gli accorgimenti e le cautele per garantire la continuità ed efficacia della fascia orizzontale di sbarramento chimico legata al grado di impregnazione delle resine iniettate; qualora dopo il trattamento si manifestassero delle tracce di umidità al di sopra della barriera realizzata si dovranno distinguere due diverse situazioni:

- 1) nel caso le tracce comparse sopra la barriera siano poche e di lieve entità non si dovrà procedere con alcun intervento perché questo fenomeno si attenuerà gradualmente fino al completo riassorbimento:
- 2) nel caso le tracce sopra la barriera siano di entità consistente e duratura si dovrà procedere ad un secondo trattamento intensificando l'intervallo dei fori per le iniezioni disponendoli in modo alternato (rispetto a quelli già eseguiti) su una fila posizionata a ca. 15 cm. sopra quella della prima applicazione.

ELETTRO-OSMOSI

Questo tipo di intervento è basato sul principio dell'inversione di polarità che consente di invertire la risalita dell'acqua portando a potenziale negativo il terreno e positivo il muro da prosciugare.

Sulla muratura deteriorata dovrà essere applicato un conduttore di rame continuo (con funzioni di anodo) mentre sul terreno saranno infisse, a distanze regolari, delle puntazze di carbonio (con funzioni di elettrodo negativo); i due elementi dovranno essere collegati ad un trasformatore per la fornitura di una corrente continua costante per il mantenimento della differenza di potenziale del campo elettromagnetico. La quantità e la posizione dei conduttori da inserire nella muratura dovrà essere stabilita in relazione alla quantità ed alla velocità di rimozione dell'acqua, al tipo di muratura ed alle caratteristiche strutturali dell'edificio.

Una cura particolare dovrà essere posta nel posizionamento dei conduttori all'interno della muratura per impedire le possibili rotture dovute all'inserimento di chiodi nella muratura stessa o altre operazioni di manutenzione e considerando, inoltre, che si tratta di un sistema da installare e lasciare in uno stato di attivazione continua controllando le condizioni del campo elettromagnetico con dei rilevatori predisposti in tal senso.

Durante il funzionamento del sistema si dovranno controllare, soprattutto nel primo periodo, i dati riportati dalla centralina collegata alla rete di elettro-osmosi tenendo anche presente che il metodo funziona a bassa tensione con un consumo ridottissimo di corrente.

Nel primo periodo di applicazione si verificheranno notevoli presenze di sali sull'intonaco che dovranno essere rimosse oltre all'eventuale rifacitura dell'intonaco stesso nelle parti più deteriorate.

INTONACI AERANTI

L'umidità delle pareti potrà essere rimossa anche con l'impiego di intonaci aeranti ottenuti miscelando con la malta anche delle sostanze attive che introducono nell'intonaco un livello di

porosità tale da creare un'azione di aspirazione per capillarità dell'acqua contenuta nel muro da risanare.

L'applicazione di tale intonaco dovrà essere eseguita, dopo un'idonea preparazione del supporto e dopo un'attenta valutazione della quantità d'acqua di risalita che dovrà avere quantità e periodicità ridotte e tali da rendere efficace questo sistema; nel caso di manifestazioni di umidità continue ed abbondanti si dovrà ricorrere a sistemi più invasivi ed efficaci.

Resta da escludersi l'impiego di questo sistema nel caso di presenza di acqua di falda (continua) ed in quantità rilevanti.

Gli intonaci aeranti a porosità elevata dovranno, inoltre, essere applicati esclusivamente nelle seguenti condizioni:

- a) livello elevato di aerazione naturale o artificiale degli ambienti di applicazione per garantire, anche nel futuro, la riuscita del trattamento e soprattutto la produzione di livelli di umidità interna in grado di essere controllati dalle strutture di ventilazione presenti;
- b) spessori e strutture murarie tali da non costituire impedimento all'azione di traspirazione e di capillarità;
- c) azione accurata di rimozione dei sali, specialmente nei primi periodi dopo l'applicazione, per evitare occlusioni della porosità dell'intonaco e quindi inefficacia del trasporto per capillarità.

Nel caso di applicazioni in ambienti esterni, allo strato di intonaco aerante dovrà essere sovrapposto uno strato di prodotti traspiranti per garantire la protezione e la buona riuscita dell'intonaco stesso.

TITOLO IV - PRESCRIZIONI PER IL CONSOLIDAMENTO DELLE STRUTTURE

Art. XVI Strutture di fondazione

Prima di dare inizio ai lavori è bene accertare la consistenza delle strutture di fondazione e la natura del terreno su cui esse gravano. Si dovranno quindi eseguire scavi a pozzo di dimensioni tali da consentire lo scavo a mano e l'estrazione del materiale di risulta, in condizioni da non pregiudicare la stabilità dell'edificio (cantieri di larghezza 1,2-1,5 m).

Deve essere, inoltre, attentamente valutata la resistenza delle strutture interrate, in vista anche di eventuali variazioni di carico.

Gli scavi devono essere eseguiti fino al piano di posa della fondazione e, in relazione alla natura del terreno ed alla profondità raggiunta, è opportuno siano sbadacchiati secondo la natura del terreno.

Interventi su fondazioni dirette in muratura o pietrame

Le operazioni preliminari di ogni intervento sulle fondazioni consistono in:

- c) esecuzione dello scavo su uno o ambo i lati della fondazione fino al piano di progetto;
- d) puntellatura della struttura che può essere effettuato in tre modi:
 - puntellatura lignea di contenimento: realizzazione di un incasso nella muratura, preparazione della platea con tavolati, messa in opera di puntelli con incassatura a mezzo di cunei;
 - puntellatura lignea di contenimento e sostegno: apposizione di travi in legno sui tavolati aderenti alla muratura, messa in opera di puntelli fra trave e platea;
 - puntellatura provvisoria per opere di sottofondazione: predisposizione degli appoggi per i sostegni, esecuzione di fori per il passaggio dei traversi, zeppatura dei traversi con cunei di legno.

Sulla base delle informazioni riguardanti i dissesti e le loro cause scaturite da approfondite analisi geologiche e prove in loco, si definiscono i lavori di consolidamento in:

- interventi sulla costruzione e sul suolo al fine di ridurre le tensioni nelle zone maggiormente colpite della struttura;
- interventi sul terreno volti a migliorare le caratteristiche, contenerne i movimenti, ridurne le spinte.

Per contrastare un cedimento intermedio e terminale dovranno essere eseguite travi cordolo in c.a. collegate mediante traversi. Le modalità operative saranno:

- getto di spianamento in magrone di calcestruzzo;
- esecuzione di varchi nella muratura;
- posa in opera di armature di collegamento e di cordoli in c.a.;
- casseratura;
- getto in conglomerato;
- foratura della muratura dopo l'indurimento:
- predisposizione delle armature dei traversi;
- getto con cemento espansivo.

Nel caso in cui la sezione sia insufficiente, dovranno essere usate travi cordolo in c.a. con precompressione del terreno. Tale precompressione sarà realizzata mediante martinetti idraulici che, in presenza di terreni cedevoli, comprimono e compattano gli strati sottostanti ma che, se utilizzati al contrario, mettono in carico la muratura soprastante. Alla fine sarà effettuato un getto di completamento.

Per attenuare i fenomeni di ritiro del calcestruzzo, soprattutto nel getto dei traversi, è necessario inumidire con getti periodici d'acqua, applicazione di teli umidi, segatura, terra o speciali pellicole o vernici protettive. La stagionatura umida è consigliata anche in caso di conglomerato additivato o a ritiro compensato.

La costruzione muraria, o sottomurazione con muratura di mattoni e malta di cemento, viene eseguita in presenza di uno strato di terreno compatto non molto profondo. Essa aumenta la capacità portante della fondazione poiché allarga, mediante una gradonatura con materiale nuovo, la base di carico. Dopo aver asportato terreno al di sotto delle fondazioni esistenti, verrà effettuato

un getto di calcestruzzo per nuove fondazioni sul quale sarà eseguita la costruzione della muratura in mattoni pieni e malta di cemento. Durante la costruzione bisogna avere cura di mantenere la continuità tra sottofondazioni e struttura esistente mediante cunei in legno duro di contrasto e usando leganti a stabilità volumetrica. I giunti dovranno essere sigillati con malta.

Anche la soletta in c.a. viene realizzata per cantieri di lunghezza variabile secondo la consistenza muraria. Il collegamento delle armature longitudinali dei vari cantieri deve essere curato al fine di non scomporre la soletta in tanti tronchi. Dopo aver asportato terreno al di sotto delle fondazioni esistenti, verrà effettuato un getto di spianamento in magrone di calcestruzzo, sul quale verranno pose in opera le armature con funi di collegamento.

Sottofondazioni

I lavori di sottofondazione non devono turbare né la stabilità del sistema murario da consolidare né quella degli edifici adiacenti.

Dovranno essere adottati tutti gli accorgimenti e le precauzioni necessari al rispetto di tale requisito. Nel caso di un muro continuo di spina la sottofondazione dovrà essere simmetrica. Inoltre, una volta eseguite le puntellature delle strutture in elevazione e individuati i cantieri di lavoro, si pratica uno scavo a fianco della muratura di fondazione fino a raggiungere il piano su cui si intende impostare la sottofondazione. A seconda dello spessore della muratura lo scavo verrà eseguito da un lato e le pareti dello scavo dovranno essere opportunamente sbadacchiate, mano a mano che lo scavo si approfondisce.

In seguito si scava al di sotto della vecchia fondazione, interponendo puntelli tra l'intradosso della muratura ed il fondo dello scavo e si esegue la muratura di sottofondazione.

- Sottofondazioni in muratura di mattoni. Si deve costruire una muratura di mattoni e malta pozzolanica o al più cementizia, ma priva di sali per evitare il fenomeno di risalita di sali nella muratura soprastante, lasciando fra vecchia e nuova muratura lo spazio equivalente ad un filare di mattoni e all'interno del quale si dovranno inserire dei cunei di legno duro che, dopo 3-4 giorni si provvederà a sostituire con cunei più grossi per compensare l'abbassamento della nuova muratura. Ad abbassamento avvenuto si provvederà a fare estrarre i cunei e a collocare l'ultimo filare di mattoni, riempiendo in forza l'intercapedine.
- Sottofondazioni in conglomerato cementizio gettato a piè d'opera. È richiesto un lungo tempo prima di poterle incassare sotto la muratura. Infatti prima di poterle utilizzare dovranno attendersi i 28 giorni necessari affinché il conglomerato cementizio raggiunga le sue caratteristiche di portanza e di resistenza meccanica. Trascorso tale tempo si possono inserire sotto la fondazione da consolidare.
- Sottofondazioni con cordoli o travi di cemento armato. Occorre eseguire gli scavi da ambedue i
 lati del tratto di muratura interessata fino a raggiungere il piano di posa della fondazione. Una
 volta rimossa la terra di scavo si effettuerà un getto di spianamento in magrone di calcestruzzo e
 si procederà poi alla predisposizione dei casseri, delle armature e al successivo getto dei cordoli.
 Dopo l'indurimento del getto per mettere in forza l'intercapedine si consiglia di usare cemento
 espansivo.

Allargamenti fondazionali

- Allargamento mediante lastra in c.a. Si raggiunge con lo scavo il piano della fondazione esistente operando per campioni e si costruisce una lastra in c.a. opportunamente svincolata dalla muratura; successivamente si esegue al di sopra e ad opportuna distanza una soletta in c.a. adeguatamente collegata alla muratura mediante cavalletti in acciaio, barre passanti di adeguata rigidezza, elementi in c.a.; si pongono nell'intercapedine tra lastra e soletta dei martinetti che, messi in pressione, trasmettono al terreno un carico di intensità nota; si pongono elementi distanziatori nell'intercapedine, si asportano i martinetti e infine si riempie l'intercapedine con calcestruzzo a ritiro controllato.
- Procedimento Schultze. Vengono ammorsati elementi in c.a. a sezione triangolare di 2,00 m di altezza e 0,65 di profondità posti a 1,65 m d'interasse e che vengono incastrati ai due lati della

muratura, mediante dentellatura intagliata in questa e solidarizzata alla stessa con tiranti in acciaio passanti. Al di sotto di questi elementi sul fondo dello scavo praticato ai lati della muratura per campioni vengono realizzate due travi in c.a. che verranno caricate tramite martinetti posti tra travi ed elementi triangolari.

Pali di fondazione

I pali impiegati nel consolidamento sono quelli preforati, per i quali il foro viene eseguito perforando il terreno con un tubo-forma, e asportando il materiale attraversato. La perforazione si esegue con la sonda che può avanzare mediante percussione oppure mediante rotazione, che risulta essere più adatta poiché arreca poco disturbo dinamico alla costruzione.

I fori vengono intubati, cioè protetti da un tubo forma in lamiera che avanza durante la perforazione. Solo in presenza di terreni coerenti si può effettuare la perforazione mediante la sola trivellazione. I fori, praticati con le diverse tecniche, vengono riempiti con calcestruzzo, che viene man mano pistolato mediante l'immissione di un vibratore. I pali possono essere armati in parte o per tutta la loro lunghezza.

In presenza di terreni in cui è presente una falda affiorante, l'esecuzione del foro si effettuerà immettendo fanghi bentonitici per evitare lo smottamento delle pareti del foro.

- Pali Strauss. Nel palo Strauss originario, un procedimento di battitura pone in contatto forzato il calcestruzzo con il terreno laterale, favorendo la resistenza ad attrito lungo la superficie di contatto. Prima del getto di ogni strato, la mazza deve essere ritirata.
- Pali Wolfsholz. Per eseguire questi pali si affonda il tubo di forma (che funge da cassero) durante la trivellazione e, man mano che il tubo scende, si riempirà spontaneamente dell'acqua di falda. Quando la forma ha raggiunto la profondità prestabilita, si arma il palo e si chiude l'estremità superiore con un robusto tappo a tenuta d'aria, munito di tre fori, uno per l'aria a bassa pressione, uno per l'aria ad alta pressione, ed uno per la malta di cemento pure sotto pressione. Il foro per la malta è collegato ad un tubo che scende fino alla base del palo ed è collegato esternamente a una miscelatrice a tenuta d'aria. Un compressore, mediante un tubo, fornisce aria compressa alla miscelatrice, e ai due fori. Si immette dapprima la bassa pressione, in modo da espellere l'acqua dal tubo di forma, in seguito si apre il rubinetto adduttore della malta, effettuando il getto. Una volta riempito il tubo di forma, si apre l'alta pressione. Il tubo, chiuso ermeticamente, viene spinto verso l'alto, e la malta, sotto pressione, si insinua nelle pareti terrose, liberate dal tubo, tanto più quanto più il terreno è ghiaioso e sciolto. Con questa manovra la superficie superiore della malta nel tubo subisce una depressione dovuta alla parte di essa che è andata a riempire la parete cilindrica terrosa. Per aggiungere altra malta nel tubo, si chiude l'alta pressione, immettendo poi un nuovo getto. Si prosegue fino alla completa costruzione del palo e al totale recupero del tubo di forma.
- Pali a tronchi prefabbricati o conci (pali Mega). Si interviene al di sotto della fondazione esistente infiggendo nel terreno i tronchi, di cui il primo a punta conica, mediante martinetti idraulici, fino a raggiungere un terreno solido. Tra tronco e tronco si getta uno strato di malta, e alla fine si collega la sommità dell'ultimo tronco con la fondazione esistente, tramite elemento distanziatore metallico nel quale viene eseguito il getto di conglomerato.

Micropali

I micropali hanno dimensioni diametrali ridotte, che vanno da 50 ai 300 mm. La perforazione viene eseguita utilizzando una trivella munita di corona tagliente. L'apparecchiatura deve consentire di orientare la trivellazione in qualsiasi direzione. Eseguito il foro si infila in questo un tubo, con all'interno un'armatura costituita da una o più barre d'acciaio nervato di grosso diametro, oppure da una gabbia costituita da barre longitudinali collegate da una spirale, oppure da un profilato d'acciaio. Si esegue quindi il betonaggio sotto pressione, impiegando un microconglomerato dosato a 500/600 kg di cemento al mc. Il microconglomerato è premuto ad aria compressa, durante il contemporaneo sfilaggio del tubo, e penetra nel terreno circostante in quantità proporzionale alla densità dello stesso.

Art. XVII Strutture in muratura

Interventi su murature in mattoni o pietrame

Prima di qualsiasi intervento dovranno predisporsi opere provvisionali e di sostegno. La struttura deve essere puntellata e, a tal fine, potrà aversi una puntellatura:

- di contenimento, le cui modalità operative sono: realizzazione di un incasso nella muratura, preparazione della platea con tavolati in laterizio, messa in opera dei puntelli con incassatura a mezzo di cunei;
- di contenimento e sostegno, le cui fasi sono: disposizione sulla muratura di tavolati lignei, preparazione della platea con tavolati in laterizio, apposizione di travi in legno su tavolati aderenti alla muratura, messa in opera di puntelli fra travi e platea.

Inoltre si dovrà, preliminarmente ad ogni altra opera, asportare l'intonaco scrostato se privo di interesse artistico, mediante spicconatura.

Se la malta ha perso le sue proprietà leganti, si eseguirà la stilatura dei giunti con malta non troppo porosa, dopo aver effettuato la scarnitura profonda dei giunti ed il lavaggio con acqua.

Nel caso di piccole lesioni e fessurazioni, queste potranno essere risanate in due modi:

- riprendendole con malta speciale. È necessario eliminare dalle fessure e dai giunti delle parti deboli e distaccate fino alla parte sana, pulendo le parti con aria compressa e bagnando con acqua di lavaggio. Alla fine sarà effettuata la stuccatura sulla superficie così preparata;
- cementandole con colaggio di boiacca di cemento. La muratura dovrà essere perforata ed i fori dovranno essere otturati da un solo lato con malta di gesso. Si procederà quindi alla stuccatura dei giunti ed al lavaggio interno dei muri. Nei fori verranno quindi inseriti degli imbuti collegati a boccagli per il colaggio del cemento.

Nel caso di vuoti e lesioni saranno effettuate iniezioni a base di malte cementizie o di resine dopo aver praticato una scarnitura profonda dei giunti murari e dopo aver effettuato lavaggio con acqua a pressione fino a rifiuto. I giunti dovranno essere stilati con malta di cemento e sabbia a grana grossa. A questo punto saranno eseguiti dei fori nei quali si inseriranno e si fisseranno dei tubi di iniezione tramite i quali sarà immessa la miscela.

L'intervento di cuci-scuci si applicherà solo quando non potranno essere applicate altre tecniche. L'intervento consiste nell'inserire a contrasto ed opportunamente ammorsata una muratura di mattoni pieni o di blocchi. Si opera a tratti alternati al fine di non interrompere la continuità statica della muratura ricostruendo una muratura in blocchi e malta di cemento magra. I cunei di contrasto in legno, una volta tolti, vengono sostituiti con mattoni allettati e malta fluida fino a rifiuto.

Nel caso in cui sia diminuita la resistenza della muratura, si ricorrerà all'uso di tiranti che possono essere realizzati con barre o con trefoli di acciaio armonico. Per porre in opera tali tiranti, dovranno eseguirsi dei fori nella muratura eseguendo uno scasso per l'inserimento delle piastre di ancoraggio.

Il piano di posa sarà preparato con malta a ritiro compensato. A questo punto saranno messe in opera in apposite scanalature lungo la muratura sia le barre filettate agli estremi, già preparate e tagliate, sia le piastre. Dopo aver messo in tensione i tiranti dovranno sigillarsi le scanalature con malta a ritiro compensato.

Le iniezioni armate hanno lo scopo di aumentare la resistenza a trazione della muratura e di impedire la dilatazione trasversale in caso di schiacciamento. Le barre ad aderenza migliorata, devono essere posizionate inclinate in appositi fori eseguiti nella muratura ed accuratamente lavati con acqua a bassa pressione fino a saturazione. Le imperniature saranno poi sigillate con iniezioni a bassa pressione di legante e, a presa avvenuta, le barre saranno tagliate a filo del muro.

La tecnica delle lastre armate consiste nell'asportazione delle parti di muratura incoerenti o già distaccate e nella spolverizzazione delle lesioni con aria compressa. A queste operazioni preliminari seguono: l'esecuzione di fori obliqui nella muratura, la stuccatura delle lesioni e delle fessure ed il fissaggio su ambo i lati del muro di una rete elettrosaldata, applicando sulle pareti betoncino di malta.

Interventi su colonne e pilastri in muratura

Per quanto riguarda i pilastri o le colonne le manifestazioni di dissesto sono analoghe a quelle delle murature, mentre differiscono le metodologie d'intervento.

La cerchiatura è un intervento atto a contrastare il fenomeno dello schiacciamento. Le barre d'acciaio sono messe in opera a caldo per cui, contraendosi, durante il loro raffreddamento, imprimono al pilastro una compressione radiale. Le cerchiature possono anche essere fatte a freddo con messa in carico dei cerchi mediante chiave dinamometrica. L'applicazione della cerchiatura inizia nella zona più deformata per proseguire verso le estremità.

La cerchiatura viene spesso sostituita dai frettaggi con microbarre in acciaio inserite all'interno della colonna ed invisibili ad intervento ultimato. Le staffature in ottone o acciaio inossidabile vengono messe in opera inclinate a 45°e solidarizzate alle colonne con iniezioni di resina.

L'inserimento di barre verticali e staffe metalliche diventa necessario per migliorare le caratteristiche di resistenza a pressoflessione di un pilastro o colonna. Le barre e le staffe vengono inserite in perfori realizzati in corrispondenza dei ricorsi di mattoni, saldate fra di loro e sigillate con resine epossidiche.

Un consolidamento più completo può prevedere oltre alle staffature anche il rinforzo in caso di pilastri rettangolari con profilati metallici, colatura di boiacca e betoncino armato. Dopo la posa delle barre ad aderenza migliorata, si provvede, entro fori predisposti, alla colatura di boiacca cementizia dal basso verso l'alto. Gli angolari metallici, la rete metallica e le barre vengono saldati fra di loro prima dell'esecuzione delle lastre di betoncino.

Interventi su murature a sacco con laterizio esterno

Il ripristino di una muratura a sacco con paramenti esterni in laterizio si esegue solo se lo stato dei paramenti è in buone condizioni senza eccessivi rigonfiamenti e lesioni diffuse.

Partendo dal basso si asporta un elemento laterizio ogni due per file parallele sul lato interno, si applica sulla parete opposta di un foglio di polietilene puntellato a terra e si sigillano lesioni e fessure sulla parete interna. Nei vani creati vengono inseriti tronconi di tubi di ferro e si sigillano con malta di cemento. Si inserisce entro questi vani acqua di lavaggio e si cola una boiacca di cemento fino a rifiuto, ripetendo l'operazione a presa avvenuta e per le successive file superiori.

Interventi su superfici esterne verticali di mattoni o pietre

Se sono state messe in evidenza fessurazioni, scheggiature, rotture, si deve intervenire mediante sigillature ed iniezioni con stucchi epossidici o malte a base di resine al fine di rendere la superficie più omogenea e meno deteriorabile dall'acqua, dagli agenti chimici e da quelli inquinanti.

A volte la pulizia, se realizzata con prodotti adatti ed in modo adeguato, liberando l'involucro dalle pericolose croste nere comporta un sufficiente risanamento. Generalmente lo scopo della pulizia, preceduta da un consolidamento superficiale, è quello di preparare le superfici all'intervento di protezione.

Nel caso di rotture o frammenti con scagliature dovute a gelività o a piccole lesioni si ricorre alle già descritte tecniche della stilatura profonda dei giunti o alla ripresa delle piccole lesioni con malta speciale.

I metodi di protezione delle superfici, nel caso di perdita di resistenza dell'involucro superficiale, sono:

- impregnazione, che consiste nell'aspersione di materiale consolidante a penetrazione strutturale
- impregnazione sottovuoto, che consiste nell'immissione controllata di resine sintetiche dopo aver avvolto il manufatto con fogli di polietilene sostenuti da rete metallica e nell'aspirazione dell'aria, gas residui, umidità. I fogli saranno rimossi a fine operazione.

Interventi di rinforzo in materiale fibrorinforzato (FRP)

L'utilizzo di FRP è giustificato dalla comprovata capacità di:

- trasmettere gli sforzi di trazione sia tra elementi contigui che all'interno di singoli elementi strutturali;
- collegare gli elementi che collaborano nel resistere all'azione esterna;

- irrigidire i solai conseguendo un funzionamento a diaframma rigido;
- confinare le colonne per aumentare la resistenza e la duttilità del materiale.

La progettazione del consolidamento delle strutture murarie con FRP deve prestare la massima cura nel prevedere l'estensione dei rinforzi sino alle zone di muratura compressa, in modo da coinvolgere l'intera struttura nel resistere alle sollecitazioni agenti.

In particolare si può intervenire prevedendo l'uso di FRP nel consolidamento di:

- pannelli, archi o volte, incrementandone la resistenza;
- colonne, mediante cerchiatura, per incrementarne la resistenza a compressione e la duttilità;
- strutture spingenti, riducendo la componente orizzontale delle forze agenti;
- strutture orizzontali non spingenti, rafforzandole e irrigidendole;
- un edificio nella sua interezza, fasciandolo lateralmente all'altezza degli impalcati o della copertura.

Ai fini delle verifiche di sicurezza degli elementi rafforzati con FRP si possono adottare le Istruzioni CNR-DT 200/04.

Art. XVIII Strutture in calcestruzzo

Interventi su superfici esterne verticali in calcestruzzo

Nel caso di degrado iniziale che non ha ancora compromesso l'armatura, una volta distaccate le parti incoerenti e pulite le fessurazioni fino alla parte sana, si può ripristinare la superficie originaria con la tecnica del ponte d'aggancio previa predisposizione di casseri per il getto. In caso di riporti di elevato spessore, si può applicare una rete elettrosaldata. Le malte epossidiche a base di resina possono essere applicate a più strati con cazzuola o gettate entro casseri previo ponte d'aggancio.

Dopo aver applicato il ponte d'aggancio le superfici possono essere rasate a zero per eliminare fori di evaporazione.

La pulizia delle superfici in calcestruzzo è di tipo meccanico mediante sabbiatura o pulizia a vapore con rimozione delle croste, cere e olio, mediante spazzola metallica, mola o flessibile con sistema di polverizzazione. La pulizia, intesa come preparazione, prevede anche la regolarizzazione delle fessurazioni e l'asportazione delle schegge con particolari strumenti, quali windsor router, martello scalpellatore, ecc.

Gli interventi di protezione esterna del calcestruzzo si suddividono in interventi con funzione idrorepellente e interventi con funzione di anticarbonatazione. I primi sono simili a quelli presi in esame nel caso delle murature. La protezione superficiale contro il fenomeno della carbonatazione si esegue applicando un primer ed uno strato di protezione.

Interventi su strutture in c.a.

Gli interventi localizzati non possono prescindere da una verifica del complessivo.

Nel caso di integrazione dell'inerte, vengono ampliate le fessure fino al materiale sano, pulite dalla polvere le superfici, realizzato anche un eventuale ponte d'aggancio e ripristinata la superficie con un getto di calcestruzzo, spruzzo di betoncino o rifacimento a cazzuola con malta.

Se le fessure non superano i 3-4 mm, si impiegano iniezioni a base di resine organiche.

Se è necessario integrare le armature a causa del distacco del copriferro, bisogna avere cura di pulire i ferri esistenti dalla ruggine, collegare ad essi le nuove armature (rete elettrosaldata, profili in acciaio, barre) mediante legatura a mano o saldatura ed eseguire il getto di calcestruzzo previo eventuale ponte d'aggancio con adesivo epossidico.

Nel caso di perdita delle caratteristiche meccaniche si ricorrerà alla tecnica dell'impregnazione sottovuoto.

Interventi su colonne in c.a.

Nel caso di colonne, per contrastare gli sforzi di compressione assiale, si aumenta la sezione resistente dell'elemento disponendo le armature di progetto posizionando una casseratura cilindrica e, dopo aver predisposto dei fori di inumidimento, eseguendo il getto del calcestruzzo entro i casseri.

Interventi su pilastri in c.a.

Per i pilastri a sezione rettangolare molto lesionati e dove non sia possibile aumentare la sezione, si applicano agli spigoli dei profilati metallici previa applicazione di una miscela di adesivo epossidico e sabbia silicea finissima in parti uguali. Per garantire l'aderenza immediata i profilati vengono fissati con chiodi sparati o con puntelli di sostegno.

Se è possibile aumentare la sezione dovrà prevedersi un'incamiciatura con betoncino armato con tondino o rete metallica, saldati a loro volta ai profilati.

Per aumentare le prestazioni dell'elemento in presenza di nuovi stati di sollecitazione e di sforzi di taglio, si possono applicare degli angolari sugli spigoli e delle piastre di collegamento sulle facce del pilastro incollandole con resine epossidiche e puntellandole fino a presa avvenuta. Poi si salda a punti con una rete metallica e si spruzza il betoncino per uno spessore di 3-4 cm.

Art. XIX Strutture in acciaio

Su tutte le parti metalliche esistenti, prima di effettuare qualunque tipo di intervento, dovranno essere eseguite una serie di operazioni preparatorie necessarie a garantire la predisposizione delle superfici da sottoporre ai trattamenti di ripristino e finitura.

Il tipo di lavori da eseguire sono rappresentati dalle seguenti tre fasi:

- pulitura e rimozione delle parti ossidate (con eventuale sostituzione di pezzi particolarmente compromessi);
- preparazione delle superfici con trattamenti protettivi;
- applicazione dei prodotti di finitura.

Le operazioni di pulitura dovranno preparare le superfici metalliche in modo da offrire la massima capacità di ancoraggio per i trattamenti protettivi e di finitura; l'esecuzione degli interventi di pulizia potrà avvenire in modo manuale, meccanico o con procedimenti di sabbiatura e la scelta del trattamento da utilizzare dovrà essere fatta sulla base delle valutazioni effettuate in accordo con il direttore dei lavori.

PULIZIA MANUALE

Questo tipo di preparazione dovrà essere utilizzata nei casi in cui è richiesta una cura particolare anche in questa fase oppure nelle situazioni di difficile accessibilità degli attrezzi meccanici. Gli strumenti da impiegare saranno spazzole metalliche, scalpelli o carta vetrata, dovranno essere di materiali idonei al tipo di supporti da trattare e verranno impiegati, alternativamente, in base alle condizioni delle varie superfici. Al termine dei lavori verrà eseguita una spazzolatura finale per la rimozione dei residui e delle parti distaccate.

Nel caso le superfici da trattare dovessero presentare parti di olio o grasso, le operazioni di pulizia dovranno essere precedute e seguite da un trattamento con solventi in grado di eliminare queste sostanze.

PULIZIA MECCANICA

La pulizia meccanica sarà effettuata su superfici estese e parti non caratterizzate da decorazioni di pregio o particolarmente compromesse dai processi di ossidazione. Le operazioni di preparazione e pulizia delle superfici metalliche potranno essere eseguite con spazzole rotanti, scalpelli elettrici o pneumatici o altri utensili (scalpelli, raschietti, etc.) azionati elettricamente.

I lavori dovranno interessare esclusivamente le zone ossidate e le parti di verniciatura da rimuovere avendo cura di fermare l'azione abrasiva non appena raggiunto lo strato metallico in buone

condizioni; prima della pulizia meccanica si dovranno rimuovere eventuali tracce di olio o grassi con idonei solventi e l'operazione andrà ripetuta, se necessario, anche a conclusione del ciclo di pulizia generale.

Si dovranno evitare imperfezioni o disomogeneità delle superfici dovute a permanenze eccessive delle spazzole elettriche su uno stesso punto e tali da causare deformazioni non risolvibili con i normali trattamenti di verniciatura.

Nel caso di stratificazioni di ruggine sarà opportuno procedere utilizzando scalpelli elettrici per la rimozione delle scaglie ossidate per poi completare la pulizia con spazzole rotanti.

SABBIATURA

Le operazioni di sabbiatura verranno eseguite, salvo diverse indicazioni del direttore dei lavori, con il metodo a secco utilizzando come abrasivi sostanze inerti a base di sabbia silicea (esenti da argilla e polvere) oppure granuli metallici applicati con pressione dell'aria e diametro dell'ugello di uscita definiti in funzione del tipo di supporto e delle condizioni dello stesso.

a) Consolidamento di struttura piana con soletta in c.a.

Questo tipo di intervento riguarda solo la parte estradossata delle travi metalliche per cui la demolizione dovrà interessare esclusivamente le pavimentazioni ed i sottofondi fino alla messa a nudo delle travi metalliche. Effettuata la pulizia della parte superiore si procederà con la saldatura di tondini di ferro posti ad una distanza di ca. 20 cm. sulla parte superiore della putrella e sagomati diagonalmente in modo tale da collegare le travi stesse e renderle solidali con la soletta da gettare.

Sopra questi collegamenti si dovrà predisporre un'armatura distribuita e collegata anche alle parti superiori dei muri perimetrali esistenti prima di effettuare il getto di calcestruzzo che dovrà essere preceduto da un'efficace bagnatura delle superfici.

b) Consolidamento di struttura piana con staffatura delle travi.

In questo caso l'intervento viene effettuato sull'estradosso delle travi metalliche per cui la demolizione interesserà soltanto i sottofondi e le pavimentazioni fino alla messa a nudo delle travi metalliche; dopo la pulizia della parte superiore si procederà con l'eliminazione di fasce di laterizio poste tra le varie travi, con intervalli di ca. 20-25 cm., creando degli spazi nei quali verranno poste delle staffe inclinate a 45ø e saldate sotto le ali delle putrelle in modo tale da collegare tutte le travi esistenti inserendo, inoltre, anche dei ferri di collegamento con la soletta in c.a. ed una eventuale armatura di irrigidimento integrativa.

Il getto della soletta in calcestruzzo dovrà essere preceduto da un'efficace bagnatura delle superfici.

c) Consolidamento di struttura piana con inserimento di travi in ferro.

Prima di eseguire i lavori di consolidamento si procederà con la demolizione e rimozione dei sottofondi e delle pavimentazioni esistenti inclusi anche i laterizi posti tra le varie travi metalliche per poter posizionare, ortogonalmente al verso di tessitura delle travi stesse, una seconda orditura di putrelle o piastre saldate alle travi esistenti. Le analisi statiche di progetto definiranno la necessità di un'eventuale soletta in c.a. che, nel caso, sarà realizzata con armatura integrativa e getto in calcestruzzo previa bagnatura delle superfici.

Art. XX Strutture in legno

CONSOLIDAMENTO DI STRUTTURE IN LEGNO

Per questo materiale tutti gli interventi da eseguire dovranno essere preceduti da un'analisi accurata delle condizioni fisiche delle varie parti e della capacità di resistenza al carico ancora in grado di sviluppare in relazione alle condizioni di lavoro finali.

Effettuata questa verifica si dovrà procedere con la pulizia delle parti di legno valutate in buone condizioni ed alla rimozione di quelle non accettabili.

RICOSTRUZIONI DELLE PARTI DEGRADATE

Per questo tipo di lavorazione sono previsti vari tipi di interventi che, soprattutto nel caso manufatti di rilevante importanza storica, dovranno essere eseguiti con la massima cautela e sotto il continuo controllo del direttore dei lavori:

- a) ricostruzione di parti di legno con l'impiego di conglomerati di resina e barre di acciaio o conglomerati di resina rinforzati con fibre di vetro ricoperti con strisciature di legno della stessa essenza (da considerare l'eventuale presenza di decorazioni superficiali non alterabili) questo tipo di intervento dovrà essere eseguito per ricostituire la capacità dei vari elementi di assolvere la loro funzione strutturale compromessa dallo stato di deterioramento raggiunto;
- b) situazioni di stabilità strutturale con presenza di danni solo superficiali che potranno essere risolti, considerando sempre l'eventuale presenza di decorazioni superficiali non alterabili, con interventi di sostituzione parziale e trattamenti volti ad arrestare processi di deterioramento.

In tutti e due i casi si dovrà procedere alla valutazione e realizzazione del tipo di ponteggio idoneo a svolgere le funzioni di supporto strutturale e di sostegno per la mano d'opera nelle varie fasi di lavorazione.

Successivamente si dovranno rimuovere il tavolato e le eventuali pavimentazioni per rendere ciascun punto di ogni trave perfettamente raggiungibile avendo cura di valutare la posizione e lo stato di eventuali decorazioni.

Dopo aver localizzato, in base alle indicazioni degli elaborati di progetto, i punti dove praticare i fori definiti dal progetto, per posizionare le barre di rinforzo si procederà con l'esecuzione dei fori stessi e la pulizia totale da tutti i residui di perforazione presenti con getti d'aria compressa; in seguito si introdurranno le barre di rinforzo opportunamente collocate all'interno del foro con l'impiego di distanziatori necessari ad ottenere la posizione voluta (al centro del foro) con successive iniezioni di un impasto di resine, trucioli di legno e sostanze essiccate per ridare la massima omogeneità alla superficie finale.

In caso di deterioramento di ampie zone delle parti lignee si procederà ad una rimozione accurata, alla pulizia ed alla predisposizione di un getto su casseforme adeguate per ripristinare le forme originarie; il getto verrà eseguito con un impasto di resine preparato secondo le indicazioni della casa produttrice ed inserito, anche a pressione, nelle casseforme predisposte.

CONSOLIDAMENTO CON ELEMENTI METALLICI

Quando sia compatibile con il contesto e nel caso di compromissioni strutturali irreversibili delle travi, si potrà ricorrere all'utilizzo di rinforzi realizzati con elementi metallici che avranno le seguenti caratteristiche:

- a) profili o rinforzi posizionati all'interno (o all'esterno) delle travi compromesse e fissati con sistemi di ancoraggio compatibili con lo stato di solidità della trave stessa;
- b) putrelle metalliche collocate sull'estradosso (parte superiore) della trave in legno ed ancorate alle superfici murarie poste in opera dopo aver rimosso la pavimentazione e collegate con la trave di legno attraverso delle staffe in grado di trasmettere il carico del solaio alla putrella;

- c) putrelle metalliche poste all'intradosso (parte inferiore) delle travi in legno ed alloggiate in sedi opportunamente ricavate nella muratura perimetrale; il collegamento tra la putrella e la trave in legno dovrà essere realizzato con cravatte metalliche conformi alle prescrizioni progettuali;
- d) posizionamento di tiranti per l'irrigidimento dei solai alloggiati lungo le diagonali strutturali sulle quali dovrà essere predisposta una sede adeguata (posta al di sotto della pavimentazione) per ricevere il tirante; la sede dovrà essere perfettamente piana e complanare con i fori di uscita sulle pareti perimetrali e sui quali verranno applicate le piastre di ancoraggio i tiranti saranno pretesi e collegati alle travi della struttura con delle cravatte metalliche;
- e) realizzazione di una soletta in cemento armato posta al di sopra del tavolato e con armatura orizzontale con rete elettrosaldata e ferri ripartitori oltre a perni di collegamento inseriti nelle travi e fissati con resine appropriate e saldati o legati all'armatura superiore della soletta che dovrà, inoltre, essere collegata al muro perimetrale.

TRATTAMENTI DEL LEGNO

Il trattamento impregnante del legno dovrà essere utilizzato per conferire a questo materiale una maggiore resistenza agli agenti atmosferici, all'attacco dei parassiti ed un miglioramento generale delle caratteristiche meccaniche. Questi diversi tipi di risultati dovranno essere ottenuti con prodotti diversi e destinati ad essere applicati, in funzione delle necessità, sia su legnami di nuova posa in opera che su elementi in legno destinati al consolidamento.

Nel caso di utilizzo di prodotti a base di resine acriliche queste, prima dell'applicazione, dovranno essere miscelate con idoneo solvente; in mancanza di specifiche tecniche progettuali si dovranno preferire le miscele a base di resine epossidiche o poliuretaniche con viscosità finale, dopo l'aggiunta di solvente polare, inferiore a 10 cPs.

Questo tipo di materiali verranno applicati nei seguenti modi:

- a) a pennello, dopo accurata pulizia delle superfici, iniziando la prima mano con miscele di resine particolarmente diluite per concludere con la mano finale a resina molto concentrata da applicare fino al rifiuto della superficie;
- b) a spruzzo con nebulizzazione del prodotto impregnante che sarà applicato sulla superficie, previa pulizia anche con solvente, fino al completo rifiuto;
- c) con iniezioni eseguite con iniettori da 2-4 mm. di diametro e posti in profondità nel legno alimentati da un compressore a pressione controllata con valori fissati in funzione del tipo di consolidamento una volta estratto l'iniettore verrà introdotto una chiusura a scomparsa e, impiegando resine poliuretaniche, a maturazione avvenuta l'aumento della resistenza a compressione sarà di ca. 2,5 volte i valori originari; nello studio delle miscele si dovrà aver cura di scegliere una resina con modulo elastico simile a quello dell'essenza trattata, si dovrà favorire il processo di polimerizzazione con quantità di solvente costanti e opportune protezioni.

Tutti i trattamenti previsti dovranno prevedere un'ulteriore finitura da eseguire con stuccature o rasature delle superfici esterne da realizzare con resine epossidiche o miscele conformi alle prescrizioni tecniche da applicare in modo omogeneo sulle superfici da trattare.

DISINFESTAZIONE DEL LEGNO

I trattamenti antisettici dovranno prevedere una serie di applicazioni di insetticidi o biocidi da eseguire sulle superfici esterne interessate dalla presenza di insetti; la diffusione delle miscele dovrà essere estesa a tutte le zone esposte e, se necessario, effettuata anche in profondità con sistemi di iniezione a pressione.

Nel caso di applicazioni curative si procederà ad interventi anche ravvicinati nel periodo primaverile quando l'insetto si avvicina alla superficie per lo sfarfallamento. Le sostanze potranno essere

distribuite a spruzzo o a pennello utilizzando solventi organici non acquosi per migliorare la capacità di penetrazione del legno.

In linea generale i prodotti potranno essere:

- 1) nel caso di capricorno delle case e di hesperophanes cineres sostanze a base di pentaclorofenolo, ossido tributilico di stagno, tetraclorofenolo ed esaclorocicloesano;
- 2) nel caso di miceti i prodotti più efficaci sono a base di composti di cromo ed arsenico o pentaclorofenolo avendo inoltre cura di controllare il livello di umidità in modo da non facilitare il ripetersi del fenomeno il trattamento potrà prevedere anche l'eliminazione delle parti infestate e l'applicazione diffusa del biocida anche nelle fessurazioni delle pareti in questo caso si dovrà trattare tutta la superficie esposta, le giunzioni, incastri, buchi utilizzando anche una pasta al 50% di fluoruri e sali arsenicati di sodio e 50% di acqua gli interventi andranno ripetuti ogni due anni con applicazioni a spruzzo fino alla totale scomparsa del problema.

TRATTAMENTI IGNIFUGHI

Per ottenere un trattamento di ignifugazione del legno si potranno usare una serie di sostanze con caratteristiche diverse:

- a) azoto, biossido di carbonio, etc. in grado di produrre, ad alta temperatura, gas inerti che impediscono il passaggio dell'ossigeno verso il legno;
- b) borati, fosfati, etc. che formano, ad alta temperatura, uno strato protettivo poroso;
- c) sostanze a base di sali che, ad alta temperatura, vetrificano proteggendo il legno ed impedendo il passaggio dell'ossigeno.

I prodotti da utilizzare per il trattamento di ignifugazione saranno dei tipi descritti e verranno applicati, secondo le indicazioni delle case produttrici, a pennello in tre mani nelle diluizioni fissate per ogni mano e con l'aggiunta di eventuali integratori.

Art. XXI Strutture orizzontali

INTERVENTI SU SOLAI LIGNEI

Prima di effettuare qualsiasi intervento occorrerà eseguire l'eventuale:

- asportazione del pavimento e sottofondo;
- rimozione dell'intonaco sui muri perimetrali in corrispondenza del solaio;
- asportazione del tavolato o di parte dell'orditura secondaria:
- disinfestazione e protezione del legno.

Nel caso in cui sia diminuita la rigidezza del solaio con piano in tavolato, si sovrapporrà un nuovo tavolato a quello originario, chiodando il nuovo sul vecchio tavolato mediante chiodatura e mettendo in opera cunei in legno tra il nuovo tavolato ed i muri perimetrali. A fine operazione di procederà alla levigatura del nuovo tavolato.

Se il vecchio tavolato non è più in buone condizioni occorre sostituire il tavolato o piano laterizio esistente con nuovo tavolato in legno. Dopo aver rimosso il piano esistente, il nuovo tavolato deve essere trattato con sostanze antifungo, antitermiti, antincendio. La posa avverrà mediante chiodatura.

La soletta indipendente apporta un miglioramento della rigidezza del solaio, ma rappresenta un un carico aggiuntivo alla struttura originale. Si procede riempiendo eventuali vuoti o discontinuità del solaio e proteggendo l'intradosso con posa di fogli di nylon. La rete elettrosaldata viene a sua volta collegata al solaio rendendola solidale con questo mediante un getto in conglomerato cementizio.

L'uso di tiranti e cravatte è consigliabile per aumentare la rigidezza del solaio soprattutto in caso di zone sismiche. Si praticano dei fori nelle murature nei quali vengono poste in opera le piastre di ancoraggio dei tiranti e successivamente i tiranti, che devono essere ancorati a questi ed al solaio per mezzo di cravatte.

L'inserimento di tirante preteso aderente alla trave consegue sia un irrigidimento della trave sia una connessione ai muri perimetrali. Il tirante infatti viene introdotto in fori predisposti e sigillato con resine epossidiche previa pretensione con chiave dinamometrica. L'ancoraggio alle murature avviene mediante piastre con cunei o dadi filettati.

Nel caso di connessione solaio-muro, i tiranti sono collegati al tavolato di legno per una lunghezza non inferiore a 1 m; ogni collegamento viene effettuato ogni 1,5-3 m e da ogni punto di collegamento, mediante chiodatura o bullonatura, si dipartono due tiranti formanti un angolo di 45°-60°. Nel caso di piastra di ancoraggio si prati cano due fori a partire dalla faccia esterna del muro ricavando due sedi per le piastre metalliche, contigue e ortogonali all'asse di perforazione. L'estremità del tirante può essere ad asola per i cunei o filettata per i dadi. Se il collegamento avviene con apparecchi a coda di rondine, il tirante è chiodato o bullonato sul tavolato e saldato alla gabbia metallica già predisposta nella muratura e sigillata con calcestruzzo.

Nel caso di connessione trave-muro valgono le stesse considerazioni fatte per l'intervento precedente.

L'inserimento di un'anima di rinforzo o piastra di sostegno consente di risolvere molti problemi come fratture, lesioni da schiacciamento, deterioramento dovuto ad agenti patogeni, ecc. l'intervento consiste nell'incidere sul materiale risanato una scanalatura dove si esegue un getto di malta epossidica, si inserisce una piastra d'acciaio, e si realizza un secondo getto.

La trave può essere riparata mediante elementi metallici, eseguendo dei fori inclinati, ponendo in opera il ferro piatto e collegando il ferro con la trave con chiavarde o bulloni.

Lo stesso risultato si può ottenere con barre in vetroresina lungo il piano orizzontale e verticale, fissando le travi con miscele epossidiche.

I profili metallici possono essere posti sia all'estradosso, creando un collegamento tra trave e putrella mediante cravatte metalliche tirate, sia all'intradosso, realizzando nella muratura degli alloggi per le teste delle putrelle e ponendo quindi due putrelle ai lati della trave.

Nel caso in cui la testata della trave sia ammalorata possono inserirsi barre in vetroresina dopo aver rimosso le parti ammalorate e dopo aver eseguito dei fori nella trave; oppure si possono realizzare nuovi appoggi senza sostituzione delle estremità, fissando una mensola metallica al muro ed creando una connessione tra trave e mensola. Una volta creato il nuovo supporto si asporta la parte deteriorata, ripristinandola con materiale sano.

Se la vecchia trave è ormai inaffidabile occorre sostituirla liberando e sfilando la trave dalla muratura, mettendo in opera la nuova trave e realizzando il contrasto con i travetti mediante biette in legno.

INTERVENTI SU SOLAI IN FERRO E LATERIZIO

Nel caso di solai in ferro e laterizio è opportuno precisare che tutti gli interventi devono essere preceduti da pulizia dei ferri con smerigliature ed eventuali trattamenti antiruggine, antincendio e protettivi.

Se il laterizio è danneggiato o inaffidabile, occorre sostituire gli elementi deteriorati. Le fasi operative consistono in:

- demolizione del laterizio;
- posa del tavellonato appoggiato all'ala inferiore dei travetti e del materiale d'alleggerimento sopra il tavellonato:
- saldatura di tondino sagomato sull'ala superiore della putrella;
- posa di rete elettrosaldata;
- irrorazione con acqua;
- getto di calcestruzzo.

Nel caso in cui le travi abbiano perso rigidezza può eseguirsi un consolidamento all'estradosso mediante cappa armata.

Il collegamento tra solaio e muro perimetrale può essere migliorato in due modi:

- collegamento della singola trave: si esegue liberando la testata della trave, saldando un tondino all'anima della putrella ed una eventuale piastra alla faccia inferiore dell'ala di estradosso. Dopo aver bagnato con acqua si esegue il getto di calcestruzzo dentro la casseratura;
- collegamento continuo: si esegue perforando la muratura, inserendo barre in ferro ad aderenza migliorata e sigillando con boiacca di cemento o resine. Le barre sono poi saldate ad una sezione metallica ad L.

Se la sezione della trave in ferro è originariamente insufficiente si esegue il consolidamento all'intradosso con posa in opera di nuovo sistema di travi in ferro senza rimuovere pavimento e sottofondo. Si rimuove l'eventuale controsoffitto e, dopo aver posto in opera travi a sistema semplice (ortogonali alla struttura esistente) o doppio (parallele a quelle originarie), si crea il collegamento degli elementi metallici nelle zone di contatto, appoggiando le travi al muro mediante inserimento di ciascuna testa previa saldatura di tondini, oppure realizzando un cordolo in c.a. sul quale appoggiare le teste delle putrelle.

Il consolidamento può anche essere effettuato all'estradosso con intervento sulle travi in ferro. Le staffe vengono fissate alle travi e, dopo aver bagnato tutta la parte interessata dal getto, si esegue questo entro l'ala delle putrelle.

INTERVENTI SU SOLAI IN LATERO-CEMENTO

Anche in questo caso prima di procedere con qualunque tipo di intervento, occorre puntellare il solaio e pulire le travi in c.a.

Il collegamento tra solaio e muri perimetrali può essere migliorato con:

- spezzoni di ferro, realizzando un cordolo armato e, dopo aver forato la muratura, inserendo spezzoni di ferro collegandoli con l'armatura del cordolo;
- apparecchi a coda di rondine, demolendo i tratti del cordolo in corrispondenza di ogni ancoraggio e, dopo aver collegato le armature della gabbia e quelle del cordolo, eseguendo un getto degli apparecchi a coda di rondine e reintegrazione del cordolo.

Se il solaio risulta essere inaffidabile si può sostituire il vecchio solaio dopo averlo demolito e dopo aver demolito anche una fascia di muro per realizzare un cordolo in c.a. Si procederà quindi all'eventuale posa di spezzoni di ferro o a coda di rondine. Dopo aver posto in opera i ferri di armatura delle travi entro casseri o di travi prefabbricate, si esegue il getto sul quale verranno posati i laterizi. L'intervento si conclude con la bagnatura ed un getto di completamento.

Se le travi in c.a. hanno perso resistenza si potrà procedere al rafforzamento per mezzo di piastre metalliche o di armature suppletive.

INTERVENTI SU PAVIMENTI

Per la preparazione del supporto per la posa di malta si procede ad una pulizia e bagnatura dello stesso. La malta deve essere stesa con un "rigone" e spolverata, quando indurita, da polvere di cemento; le piastrelle vanno posate a giunto unito o aperto con appositi distanziatori (listelli di legno). I giunti fra le piastrelle, una volta posate, devono essere sigillati con boiacca, posata a spatola non metallica e tolta, se in eccesso, con tela di iuta. Le piastrelle non smaltate devono essere pulite con soluzione acida.

La posa del collante si realizza in caso di posa su supporto liscio sul quale vengono pressate fino a totale adesione le nuove piastrelle che devono venire stuccate nei giunti e pulite con spugna bagnata.

La posa dello strato legante per la posa di pavimentazione lapidea, consiste nella stesura di malta normale di cemento sulla quale viene applicata malta bastarda. Le lastre posate vengono stuccate con cemento bianco addizionato con pigmenti colorati e, dopo venti giorni circa, levigate e lucidate. L'impermeabilizzazione dei pavimenti in cotto avviene con posa di olio di lino crudo dopo avere atteso due giorni dal lavaggio con acqua e acido muriatico al 20%. Dopo quattro ore dalla stesura dell'olio di lino si procede alla ceratura del pavimento.

Art. XXII Strutture inclinate

INTERVENTI SU SCALE

Nel caso di scala in pietra con rottura parziale della parte anteriore della pedata di un gradino, si può provvedere alla ricostruzione del pezzo mancante, fuori cantiere, e al suo incollaggio con resine epossidiche o, al limite, boiacca di cemento.

Nel caso di gradini in pietra o c.a. con doppio incastro, sconnessi con la muratura o rotti, si provvede alla loro sostituzione con ricostituzione del vano d'incastro mediante malta di cemento, eventualmente ad indurimento avvenuto.

Quando i gradini in pietra o c.a. sono a sbalzo, è necessario predisporre un'impalcatura di sostegno.

Nel caso di sconnessione totale della scala a doppio incastro, si procede alla sua demolizione previa impalcatura di sostegno.

Art. XXIII Volte in muratura

Le operazioni preliminari nel caso di interventi su volte sono:

- predisposizione di ponti di servizio;
- puntellatura della volta;
- dismissioni di pavimenti, sottofondo e materiale di rivestimento;
- rimozioni a partire dalla zona di chiave, rimozione degli elementi delle volte a botte procedendo per tratti di uguale dimensione da ambedue i lati;
- rimozione dalla faccia estradossale mediante spazzole metalliche, raschietti, getti di aria compressa, delle malte leganti degradate e dei detriti di lavorazione.

In caso di legante inconsistente e presenza di soluzioni di continuità, si esegue il consolidamento della volta estradossale mediante colatura di boiacca di cemento o iniezioni a pressione (preliminare a molte altre operazioni).

I rinfianchi cellulari contrastano il cedimento intermedio. Le fasi operative sono:

- innalzamento dei frenelli con mattoni e malta cementizia:
- microchiodature con barre di acciaio per ancorare i frenelli alla volta;
- foratura dei frenelli;
- collocamento sui frenelli di tavelloni di laterizio o travetti in laterizio armati;
- getto di una soletta armata.

La controvolta in c.a. viene utilizzata nel caso di una ridotta sezione strutturale. Le fasi operative sono:

- pulitura della superficie estradossale;
- posa di rete elettrosaldata e dell'armatura;
- esecuzione di getto in calcestruzzo della controvolta e del cordolo perimetrale;
- ancoraggio del cordolo con imperniature ammorsate nella muratura.

In zone sottoposte al rischio sismico l'inserimento di travi metalliche e tiranti costituisce una riserva di sicurezza poiché il carico viene trasferito dalla volta alle travi soprastanti che entrano in carico solo in caso di spostamenti differenziati delle imposte e perdita di portanza della volta. La posa delle travi su un cordolo perimetrale in c.a. è preceduta da risarcitura delle lesioni e consolidamento con cappa armata.

Per ovviare al fenomeno della pressoflessione nelle strutture di sostegno dovranno essere inseriti dei cavi tesi di acciaio, seguendo le successive fasi operative:

- rigenerazione delle murature;
- perforo inclinato nella muratura e inserimento di una barra di acciaio;

- collegamento della barra a lastre di ancoraggio o a bulbi fondali;
- tesatura della barra:
- iniezioni di acqua nei fori;
- immissione a pressione di miscela a base cementizia o formulati epossidici.

Per eliminare le componenti di spinta orizzontale, saranno utilizzati i tiranti in sospensione. Le fasi operative dell'intervento sono:

- perforazioni all'interno della parte superiore della volta attraversanti la muratura;
- aspirazione dei detriti di perforazione;
- posizionamento dei cavi:
- colaggio di una malta epossidica adatta all'ancoraggio dei tiranti alla volta;
- a indurimento della malta avvenuto, tesatura dei cavi mediante giunti di tensione (a manicotto o a gabbia).

L'ancoraggio della volta ad un solaio preesistente deve seguire le sotto elencate fasi operative:

- dismissione di pavimento, sottofondo e riempimento;
- perforazioni sull'estradosso della volta;
- costruzione dei frenelli lasciando al loro interno i cavi per l'alloggiamento dei tiranti;
- posa dei laterizi e dei ferri d'armatura del solaio;
- inserimento dei tiranti lungo i fori praticati nei frenelli fino al raggiungimento di quelli praticati sulla volta;
- collegamento dei tiranti con l'armatura del solaio;
- iniezione di cemento e getto del calcestruzzo per la formazione del solaio.

L'uso di catene metalliche annulla le componenti di spinta orizzontale. Il procedimento è il seguente:

- rimozione dell'intonaco e del paramento esterno;
- segnalazione dei livelli e degli assi dei tiranti;
- preparazione della sede di posa mediante sonde rotative (diametro 25-30 mm);
- creazione di scanalature per la posa delle piastre;
- imperniature per il fissaggio delle piastre (lato di 20-30 cm);
- fissaggio provvisorio delle stesse;
- taglio e preparazione dei tiranti, aventi filettatura, per circa 10 cm da ogni lato della muratura;
- posizionamento della catena mediante dadi filettati;
- saldature della piastra alle imperniature e della catena alla piastra;
- a malta indurita, tensione dei tiranti con chiavi dinamometriche (max 50% della tensione ammissibile dell'acciaio);
- saldatura del dado filettato;
- riempimento della sede di posa con iniezioni di malta cementizia.

Anche la strallatura annulla le spinte orizzontali. La volta deve essere preventivamente consolidata con cappa in c.a.

Art. XXIV Coperture in legno

Gli interventi preliminari a qualsiasi operazione sono:

- puntellamento della struttura portante;
- eventuale rimozione del manto di copertura;
- disinfestazione e protezione del legno da funghi;
- disinfestazione e protezione da insetti o organismi marini.

Per consolidare ed irrigidire il legno della grossa orditura mediante posa in opera di nuovo tavolato in legno ortogonale alla pendenza di falda, occorre rimuovere il manto di copertura ed il suo piano d'appoggio; si pone poi in opera il tavolato in legno di abete o larice dello spessore variabile da 2,5 a 4 cm, rifilato e intestato a perfetto contatto e chiodato ai puntoni o travicelli partendo dalla linea di gronda e per corsi paralleli. Si pone infine il manto di copertura.

Nel caso in cui si voglia irrigidire le falde senza porre mano al manto di copertura, si può inserire fra puntoni o travicelli, nella parte mediana della falda, un travetto, di dimensioni 8x8 o 10x10 cm, collegato con quattro piastre di ancoraggio angolari per ogni travetto. Nella muratura del timpano si

predispone la piastra di ancoraggio dello staffone, che può essere ancorato con cunei o dadi filettati e collegato dall'altra estremità con i travetti, i dormienti ed il colmo. La controventatura si effettua per ogni falda con due tavole da 25 mm disposte a croce di Sant'Andrea.

In relazione alle capriate i dissesti più comuni possono essere l'ammaloramento del nodo puntone-catena, della catena, la precarietà dei collegamenti.

Il nodo puntone-catena può essere rinforzato con l'inserimento di barre in vetroresina e con eventuale ricostruzione delle parti asportate, perché troppo ammalorate, con conglomerato epossidico.

Nel caso in cui si debba intervenire sulle testate ammalorate di una catena si provvede all'incuffiamento delle testate stesse con scatole metalliche, collegate fra loro con ferri piatti incollati lungo i lati della catena. Le parti asportate vengono ricostruite con malte epossidiche.

Nel caso di ammaloramento della testata di una trave si può provvedere alla realizzazione di nuovi appoggi senza sostituzione delle estremità fissando all'intradosso della trave una mensola metallica in acciaio inox. Eseguiti i collegamenti necessari, si asporta la parte deteriorata della trave e si ripristina con i metodi suddetti.

In caso di trave danneggiata in modo non grave, si ricostruisce la parte asportata o mancante e si rinforza la sezione con l'applicazione di piastre sulle facce laterali opposte della trave mediante chiavarde passanti, opportunamente tirate.

In caso di trave sottoposta ad azione flettente, si applica al suo estradosso o intradosso una piastra metallica in ferro o acciaio, connessa alla trave con tacche imbullonate o chiavardate.

Per eliminare le componenti di spinta e rafforzare i collegamenti, nel caso di capriate, si inseriscono tiranti metallici. Questo intervento può essere complementare a quelli di ripristino delle parti mancanti e di ricostruzione dei nodi con piatti metallici, e consiste nel porre in opera una catena metallica di rinforzo dopo aver restituito la geometria originaria della capriata con funi metalliche presollecitate. La zona lignea placcata con lamiera nervata deve essere preconsolidata con formulati poliuretanici.

Nel caso di struttura a puntoni, l'intervento si esegue con tavolame in legno posto come una catena, e ferri di collegamento della trave di colmo con i travicelli o i puntoni.

Per ripristinare il collegamento fra le falde ed i muri d'appoggio si realizzerà un cordolo in c.a. senza rimuovere il coperto. Il cordolo viene eseguito per un'altezza minima di 20 cm e per tutta la lunghezza della muratura. Il cordolo viene collegato al dormiente con barre d'acciaio filettate e imbullonate ad una estremità a passo ravvicinato, circa ogni 50 cm. I travicelli o i puntoni sono collegati al cordolo mediante chiodatura o fasce metalliche. Nel caso il dormiente non venga conservato si ricorre ad un cuneo di legno per l'appoggio dei travicelli collegati al cordolo con zanche in ferro piatto.

Nel caso di deterioramento della piccola orditura, se la si può sostituire, si procede con la rimozione del manto di copertura con annessi torrini, camini, canali di gronda, pluviali, del tavolato e dei tavelloni, dei correnti, degli arcarecci e delle nervature varie. Se il legno è ancora in buono stato o si può disinfestare e consolidare viene riutilizzato e rimontato in sito.

In caso di legno troppo deteriorato, si sostituisce anche la grossa orditura portante previa rimozione degli elementi suddetti, nella ricostruzione si può porre in opera una nuova struttura di copertura in legno, trattato e stagionato, putrella e tavelloni, oppure una struttura secondaria in lamiera (zincata, in fibrocemento, ecc.) o ancora strutture composite in acciaio, legno e calcestruzzo alleggerito.

Art. XXV Infissi esterni

Nel caso di essenze poco pregiate è necessario nascondere i difetti con vernici coprenti a smalto o ad olio, previo trattamento con olio di lino lasciato assorbire in profondità.

Le essenze pregiate vengono impregnate con olio trasparente, riducendo al minimo le stuccature con pasta colorata con additivi e usando come fondo isolante la vernice finale diluita con solvente.

Il ripristino della verniciatura segue generalmente le operazioni di rimozione delle parti distaccate o degradate e di stesura di una mano di fondo isolante.

La manutenzione dell'infisso verniciato necessita di una totale pulitura del metallo fino al vivo e di una pulizia meccanica per eliminare lo strato bluastro di calamina in presenza del quale la vernice non dura e si sfalda.

La manutenzione degli infissi d'alluminio si limita al controllo delle guarnizioni di gomma che possono fuoriuscire dalla sede a causa della dilatazione termica.

Art. XXVI Balconi in ferro e laterizio

Il consolidamento dei profilati a sbalzo degradati in modo non eccessivo si articola nelle seguenti modalità operative:

- messa in opera di un puntone inclinato a 45°,
- pulizia delle parti esposte dei profilati esistenti mediante spazzolatura e scartavetratura;
- preparazione dei cavi sottostanti il profilato per accogliere il puntone;
- allargamento della parte per il fissaggio del puntone anche mediante saldatura di spezzone di ferro:
- infissione e bloccaggio con malta di cemento;
- saldatura dell'altro estremo del puntone al vecchio profilato;
- verniciatura protettiva delle parti metalliche.

Nel caso in cui l'estradosso del solaio si presenti degradato occorrerà rimuovere il pavimento, il massetto ed il gretonato o caldana sottostante, ricostruire la caldana del massetto e porre in opera il nuovo pavimento.

<u>TITOLO V – PRESCRIZIONI TECNICHE PER L'ESECUZIONE, IL CONSOLIDAMENTO ED IL COLLAUDO DEGLI EDIFICI</u>

Le costruzioni esistenti devono avere i livelli di sicurezza definiti dai principi normativi fondamentali riportati nel D.M. 14/01/2008 "Nuove norme tecniche per le costruzioni" e alla relativa circolare esplicativa del 2 febbraio 2009 dove sono descritti i criteri di intervento e i risultati da perseguire. Quando ricorrono particolari complessità a livello di acquisizione dati e di processo conoscitivo, come nei casi di edifici storico-monumentali ed artistici di grande significatività e complessità, la

come nei casi di edifici storico-monumentali ed artistici di grande significatività e complessità, la valutazione della sicurezza potrà essere fondata su una accurata anamnesi storica della costruzione e su processi logico-deduttivi, ed espressa e motivata con un "giudizio esperto" formulato da una commissione di tre esperti, di acclarato valore.

Per le strutture per le quali non sia reperibile il progetto esecutivo dell'opera, la relazione di calcolo, i disegni costruttivi ovvero le indagini originali sui materiali e sui terreni di sedime, si potrà impostare una campagna di accertamenti in situ possibilmente mediante prove non distruttive ed indagini che non alterino il comportamento dei terreni di fondazione.

La valutazione della sicurezza deve permettere di stabilire se:

- l'uso della costruzione possa continuare senza interventi;
- l'uso debba essere modificato nel verso di un minore cimento statico (declassamento);
- debba essere necessario procedere ad aumentare la capacità portante (consolidamento);
- debba essere necessario procedere a ripristinare la capacità portante preesistente ad un danno (riparazione);
- debba essere necessario adeguare la sicurezza dell'opera, in tutto od in parte, alle prescrizioni della presente norma (adeguamento).

Le costruzioni esistenti devono essere sottoposte a valutazione della sicurezza quando ricorrono le seguenti situazioni:

- scadenza della vita di servizio a partire dalla fine della costruzione ovvero dalla data del collaudo statico;
- in caso di evidente riduzione della capacità resistente dei materiali o elementi strutturali nel loro insieme;
- a seguito di azioni ambientali (sisma, vento, neve e temperatura) che abbiano compromesso la capacità resistente della struttura;
- per degrado e decadimento delle caratteristiche meccaniche dei materiali dei componenti strutturali della struttura nel suo complesso;
- in caso di azioni accidentali (urti, incendi, esplosioni), e di situazioni di funzionamento ed uso anomalo:
- in presenza di distorsioni significative imposte da deformazioni del terreno di fondazione;
- per riscontrati errori di progetto o di costruzione;
- a seguito di trasformazione delle condizioni d'uso della struttura;
- a seguito di un cambio della destinazione d'uso della costruzione con variazione dei carichi variabili sulla costruzione;
- per aumentato cimento statico delle strutture.

Nella valutazione della sicurezza degli edifici esistenti, fermo restando l'azione dei carichi, la resistenza ed il comportamento delle strutture potrà essere valutata con i più avanzati metodi dell'ingegneria strutturale.

Art. XXVII – Edifici in tutto o in parte a muratura portante⁸³

La conoscenza dell'edificio in muratura oggetto della verifica risulta di fondamentale importanza ai fini di una adeguata analisi, e può essere conseguita con diversi livelli di approfondimento, in funzione dell'accuratezza delle operazioni di rilievo, delle ricerche storiche, e delle indagini sperimentali. Tali operazioni saranno funzione degli obiettivi preposti ed andranno ad interessare

⁸³ Si veda come riferimento NTC 2008 "nuove norme tecniche per le costruzioni"

tutto o in parte l'edificio, a seconda della ampiezza e della rilevanza dell'intervento previsto. Il piano delle indagini fa comunque parte sia della fase diagnostica che del progetto vero e proprio, e dovrà essere predisposto nell'ambito di un quadro generale volto a mostrare le motivazioni e gli obiettivi delle indagini stesse.

La conoscenza della geometria strutturale di edifici esistenti in muratura deriva di regola da operazioni di rilievo. Tale operazione comprende il rilievo, piano per piano, di tutti gli elementi in muratura e di eventuali nicchie, cavità, canne fumarie, il rilievo delle volte (spessore e profilo), dei solai e della copertura (tipologia e orditura), delle scale (tipologia strutturale), la individuazione dei carichi gravanti su ogni elemento di parete e la tipologia delle fondazioni. La rappresentazione dei risultati del rilevo verrà effettuata attraverso piante, alzati e sezioni. Dovrà inoltre essere rilevato e rappresentato l'eventuale quadro fessurativo, classificando ciascuna lesione secondo la tipologia (distacco, rotazione, scorrimento, spostamenti fuori del piano, ...), e deformativo (evidenti fuori piombo, rigonfiamenti, depressioni nelle volte, ...). La finalità è di consentire, nella successiva fase diagnostica, l'individuazione dell'origine e delle possibili evoluzioni delle problematiche strutturali dell'edificio.

I dettagli costruttivi da esaminare sono relativi ai seguenti elementi:

- qualità del collegamento tra pareti verticali;
- qualità del collegamento tra orizzontamenti e pareti ed eventuale presenza di cordoli di piano o di altri dispositivi di collegamento;
- esistenza di architravi strutturalmente efficienti al di sopra delle aperture;
- presenza di elementi strutturalmente efficienti atti ad eliminare le spinte eventualmente presenti;
- presenza di elementi, anche non strutturali, ad elevata vulnerabilità;
- tipologia della muratura (a un paramento, a due o più paramenti, con o senza collegamenti trasversali, ...), e sue caratteristiche costruttive (eseguita in mattoni o in pietra, regolare, irregolare, ...).

Si distinguono:

Verifiche in situ limitate: sono basate su rilievi di tipo visivo effettuati ricorrendo, di regola, a rimozione dell'intonaco e saggi nella muratura che consentano di esaminarne le caratteristiche sia in superficie che nello spessore murario, e di ammorsamento tra muri ortogonali e dei solai nelle pareti. In assenza di un rilievo diretto, o di dati sufficientemente attendibili, dovranno comunque essere assunte, nelle successive fasi di modellazione, analisi e verifiche, le ipotesi più cautelative.

Verifiche in situ estese ed esaustive: sono basate su rilievi di tipo visivo, effettuati ricorrendo, di regola, a saggi nella muratura che consentano di esaminarne le caratteristiche sia in superficie che nello spessore murario, e di ammorsamento tra muri ortogonali e dei solai nelle pareti. L'esame degli elementi di cui ai punti da a) ad f) dovrà estendersi in modo sistematico all' intero edificio.

Particolare attenzione dovrà essere riservata alla valutazione della qualità muraria, con riferimento agli aspetti legati al rispetto o meno della "regola dell'arte". L'esame della qualità muraria e l'eventuale valutazione sperimentale delle caratteristiche meccaniche hanno come finalità principale quella di stabilire se la muratura in esame è capace di un comportamento strutturale idoneo a sostenere le azioni statiche e dinamiche prevedibili per l'edificio in oggetto. Di particolare importanza risulta la presenza o meno di elementi di collegamento trasversali (es. diatoni), la forma, tipologia e dimensione degli elementi, la tessitura, l'orizzontalità delle giaciture, il regolare sfalsamento dei giunti, la qualità e consistenza della malta. Di rilievo risulta anche la caratterizzazione di malte (tipo di legante, tipo di aggregato, rapporto legante/aggregato, livello di carbonatazione), e di pietre e/o mattoni (caratteristiche fisiche e meccaniche) mediante prove sperimentali. Malte e pietre si preleveranno in situ, avendo cura di prelevare le malte all'interno (ad almeno 5-6 cm di profondità nello spessore murario).

Si distinguono:

Indagini in situ limitate: servono a completare le informazioni sulle proprietà dei materiali ottenute dalla letteratura, o dalle regole in vigore all'epoca della costruzione. Sono basate su esami visivi della superficie muraria. Tali esami visivi saranno condotti dopo la rimozione di una zona di intonaco di almeno 1m x 1m, al fine di individuare forma e dimensione dei blocchi di cui è costituita, eseguita

preferibilmente in corrispondenza degli angoli, al fine di verificare anche le ammorsature tra le pareti murarie. Dovrà essere valutata, anche in maniera approssimata, la compattezza della malta. Dovrà essere valutata la capacità degli elementi murari ad assumere un comportamento monolitico in presenza delle azioni sismiche, valutandone la qualità della connessione interna e trasversale attraverso saggi localizzati, che interessino lo spessore murario.

Indagini in situ estese: le indagini di cui al punto precedente devono essere effettuate in maniera estesa e sistematica, con saggi superficiali ed interni per ogni tipo di muratura presente. Prove con martinetto piatto doppio e prove di caratterizzazione della malta (tipo di legante, tipo di aggregato, rapporto legante/aggregato...), e eventualmente di pietre e/o mattoni. È richiesta una prova per ogni tipo di muratura presente. Metodi di prova non distruttivi (prove soniche, prove sclerometriche, penetrometriche per la malta, ...) possono essere impiegati a complemento delle prove richieste. Qualora esista una chiara, comprovata corrispondenza tipologica per materiali, pezzatura dei conci, dettagli costruttivi, in sostituzione delle prove sull'edificio oggetto di studio possono essere utilizzate prove eseguite su altri edifici presenti nella zona dell'edificio. Le Regioni potranno, tenendo conto delle specificità costruttive del proprio territorio, definire zone omogenee a cui riferirsi a tal fine.

Indagini in situ esaustive: servono per ottenere informazioni quantitative sulla resistenza del materiale. Si richiede, in aggiunta alle verifiche visive, ai saggi interni ed alle prove di cui ai punti precedenti, di effettuare una ulteriore serie di prove sperimentali che, per numero e qualità, siano tali da consentire di valutare le caratteristiche meccaniche della muratura.

La misura delle caratteristiche meccaniche della muratura si ottiene mediante esecuzione di prove, in situ o in laboratorio (su elementi non disturbati prelevati dalle strutture dell'edificio). Le prove possono in generale comprendere prove di compressione diagonale su pannelli o prove combinate di compressione verticale e taglio. Metodi di prova non distruttivi possono essere impiegati in combinazione, ma non in sostituzione di quelli sopra descritti. Qualora esista una chiara, comprovata corrispondenza tipologica per materiali, pezzatura dei conci, dettagli costruttivi, in sostituzione delle prove sull'edificio oggetto di studio possono essere utilizzate prove eseguite su altri edifici presenti nella zona dell'edificio.

I risultati delle prove devono essere esaminati e considerati nell'ambito di un quadro di riferimento tipologico generale che tenga conto dei risultati delle prove sperimentali disponibili in letteratura sino a quel momento per le tipologie murarie in oggetto, e che consenta di valutare, anche in termini statistici, la effettiva rappresentatività dei valori trovati.

Art. XXVIII – Edifici in conglomerato cementizio armato o in acciaio

Per le prescrizioni generali, l'esecuzione ed il consolidamento di edifici in conglomerato cementizio semplice o armato, si seguiranno le norme del d.p.r. n. 380/01 e successive modifiche ed integrazioni

Per il calcolo, l'esecuzione ed il collaudo delle strutture in c.a. normale e precompresso e per le strutture metalliche si fa riferimento al D.M. 14/01/08 "Nuove norme tecniche per le costruzioni" ed alla relativa circolare esplicativa n.617 del 02/02/09.

Tutte le opere in cemento armato facenti parte dell'opera appaltata saranno eseguite in base ai calcoli di stabilità accompagnati da disegni esecutivi e da una relazione, che dovranno essere redatti e firmati da un tecnico abilitato iscritto all'Albo professionale, e che l'impresa dovrà presentare presso gli uffici competenti (denuncia delle opere ex lege 1086/71 recepita dal D.P.R. n°380 del 6 giugno 2001) e consegnare alla Direzione dei Lavori entro il termine che le verrà prescritto.

L'impresa dovrà attenendosi agli schemi e disegni facenti parte del progetto ed allegati al contratto o alle norme che le verranno impartite, a sua richiesta, all'atto della consegna dei lavori. L'esame e verifica da parte della Direzione dei Lavori dei progetti delle varie strutture in cemento armato non esonera in alcun modo l'Impresa dalle responsabilità ad essa derivanti per legge e per le precise pattuizioni del contratto, restando contrattualmente stabilito che, malgrado i controlli di ogni genere eseguiti dalla Direzione dei Lavori nell'esclusivo interesse dell'Amministrazione, l'Impresa stessa rimane unica e completa responsabile delle opere, sia per quanto ha rapporto con la loro progettazione e calcolo, che per la qualità dei materiali e la loro esecuzione; di conseguenza essa

dovrà rispondere degli inconvenienti che avessero a verificarsi, di qualunque natura, importanza e conseguenze essi potessero risultare.

La conoscenza dell'edificio oggetto della verifica e consolidamento risulta di fondamentale importanza ai fini di una adeguata analisi, e può essere conseguita con diversi livelli di approfondimento, in funzione dell'accuratezza delle operazioni di rilievo, delle ricerche storiche, e delle indagini sperimentali. Tali operazioni saranno funzione degli obiettivi preposti ed andranno ad interessare tutto o in parte l'edificio, a seconda della ampiezza e della rilevanza dell'intervento previsto. Il piano delle indagini fa comunque parte sia della fase diagnostica che del progetto vero e proprio, e dovrà essere predisposto nell'ambito di un quadro generale volto a mostrare le motivazioni e gli obiettivi delle indagini stesse.

Le fonti da considerare per la acquisizione dei dati necessari sono:

- Documenti di progetto con particolare riferimento a relazioni geologiche, geotecniche e strutturali ed elaborati grafici strutturali;
- Eventuale documentazione acquisita in tempi successivi alla costruzione;
- Rilievo strutturale geometrico e dei dettagli esecutivi;
- Prove in situ e in laboratorio.

In generale saranno acquisiti dati sugli aspetti seguenti:

- Identificazione dell'organismo strutturale che sarà ottenuto sulla base dei disegni originali di progetto opportunamente verificati con indagini in situ, oppure con un rilievo ex novo;
- Identificazione delle strutture di fondazione;
- Identificazione delle categorie di suolo di fondazione;
- Informazione sulle dimensioni geometriche degli elementi strutturali, dei quantitativi delle armature, delle proprietà meccaniche dei materiali, dei collegamenti;
- Informazioni su possibili difetti locali dei materiali;
- Informazioni su possibili difetti nei particolari costruttivi (dettagli delle armature, eccentricità travi-pilastro, eccentricità pilastro-pilastro, collegamenti trave-colonna e colonna-fondazione, collegamenti tra le pareti in muratura, collegamenti tra orizzontamenti e pareti murarie, etc.);
- Informazioni sulle norme impiegate nel progetto originale incluso il valore delle azioni sismiche di progetto;
- Descrizione della destinazione d'uso attuale e futura dell'edificio con identificazione della categoria di importanza;
- Rivalutazione dei carichi variabili, in funzione della destinazione d'uso;
- Informazione sulla natura e l'entità di eventuali danni subiti in precedenza e sulle riparazioni effettuate.

La quantità e qualità dei dati acquisiti determina il metodo di analisi e i valori dei fattori di confidenza da applicare alle proprietà dei materiali da adoperare nelle verifiche di sicurezza.

Ai fini della scelta del tipo di analisi e dei valori dei fattori di confidenza, si distinguono i tre livelli di conoscenza seguenti:

- LC1: Conoscenza Limitata;
- LC2: Conoscenza Adeguata;
- LC3: Conoscenza Accurata.

Gli aspetti che definiscono i livelli di conoscenza sono:

- geometria, ossia le caratteristiche geometriche degli elementi strutturali,
- dettagli strutturali, ossia la quantità e disposizione delle armature, compreso il passo delle staffe e la loro chiusura, per il c.a., i collegamenti per l'acciaio, i collegamenti tra elementi strutturali diversi, la consistenza degli elementi non strutturali collaboranti,
- materiali, ossia le proprietà meccaniche dei materiali.

Il livello di conoscenza acquisito determina il metodo di analisi e i fattori di confidenza da applicare alle proprietà dei materiali. Le procedure per ottenere i dati richiesti sulla base dei disegni di progetto e/o di prove in situ sono descritte nel seguito per gli edifici in c.a. e acciaio.

La scelta del tipo, della tecnica, dell'entità e dell'urgenza dell'intervento dipende dai risultati della precedente fase di valutazione, tenendo inoltre conto degli aspetti seguenti:

- errori grossolani devono essere eliminati;
- nel caso di edifici fortemente irregolari (in termini di resistenza e/o rigidezza) l'intervento deve mirare a correggere tale sfavorevole situazione;
- una maggiore regolarità può essere ottenuta tramite il rinforzo di un ridotto numero di elementi o con l'inserimento di elementi aggiuntivi;
- sono sempre opportuni interventi volti a migliorare la duttilità locale;
- è necessario verificare che l'introduzione di rinforzi locali non riduca la duttilità globale della struttura;
- negli edifici in acciaio sono sempre opportuni interventi volti a migliorare la stabilità locale e flesso-torsionale degli elementi e globale della struttura.

L'intervento può appartenere a una delle seguenti categorie generali o a particolari combinazioni di esse:

- rinforzo o ricostruzione di tutti o parte degli elementi;
- modifica dell'organismo strutturale: aggiunta di nuovi elementi resistenti come, ad esempio, pareti in c.a., pareti di controvento in acciaio;
- modifica dell'organismo strutturale: saldatura di giunti tra corpi fabbrica, disposizione di materiali atti ad attenuare gli urti in giunti inadeguati o ampliamento dei medesimi, eliminazione di elementi particolarmente vulnerabili, eliminazione di eventuali piani "deboli";
- introduzione di un sistema strutturale aggiuntivo in grado di resistere per intero all'azione sismica di progetto;
- eventuale trasformazione di elementi non strutturali in elementi strutturali, ad esempio con incamiciatura in c.a. di pareti in laterizio;
- negli edifici in acciaio, incremento della resistenza dei collegamenti;
- negli edifici in acciaio, miglioramento dei dettagli costruttivi nelle zone dissipative e nei collegamenti trave-colonna;
- negli edifici in acciaio, introduzione di indebolimenti locali controllati, finalizzati ad un miglioramento del meccanismo di collasso;
- introduzione di una protezione passiva mediante strutture di controvento dissipative e/o isolamento alla base;
- riduzione delle masse:
- limitazione o cambiamento della destinazione d'uso dell'edificio;
- demolizione parziale.

Incamiciatura in acciaio

Camicie in acciaio possono essere applicate principalmente a pilastri o pareti per conseguire tutti o alcuni dei seguenti obiettivi:

- aumento della resistenza a taglio;
- aumento della capacità deformativa:
- miglioramento dell'efficienza delle giunzioni per sovrapposizione;
- aumento della capacità portante verticale (effetto del confinamento).

Le camicie in acciaio applicate a pilastri rettangolari sono generalmente costituite da quattro profili angolari sui quali vengono saldate piastre continue in acciaio o bande di dimensioni e interasse adeguati, oppure avvolti in nastri in acciaio opportunamente dimensionati. I profili angolari possono essere fissati con resine epossidiche o semplicemente resi aderenti al calcestruzzo esistente. Le bande possono essere preriscaldate prima della saldatura e i nastri presollecitati, in modo da fornire successivamente una pressione di confinamento.

Il contributo della camicia alla resistenza a taglio può essere considerato aggiuntivo alla resistenza preesistente purché la camicia rimanga interamente in campo elastico. Tale condizione è necessaria affinché essa limiti l'ampiezza delle fessure e assicuri l'integrità del conglomerato, consentendo il funzionamento del meccanismo resistente dell'elemento preesistente.

L'effetto di confinamento di una camicia in acciaio si valuta come per le staffe, con riferimento alla percentuale geometrica di armatura presente in ciascuna delle direzioni trasversali. er le proprietà del conglomerato confinato possono essere impiegate le espressioni di comprovata validità.

Le camicie in acciaio possono fornire un'efficace azione di serraggio nelle zone di giunzione per aderenza. Per ottenere questo risultato occorre che:

- la camicia si prolunghi per una lunghezza pari almeno al 50% della lunghezza della zona di sovrapposizione;
- nella zona di sovrapposizione la camicia è mantenuta aderente in pressione contro le facce dell'elemento mediante almeno due file di bulloni ad alta resistenza;
- nel caso in cui la sovrapposizione sia alla base del pilastro, le file di bulloni devono venire disposte una alla sommità della zona di sovrapposizione, l'altra ad un terzo dell'altezza di tale zona misurata a partire dalla base.

Placcatura e fasciatura in materiali fibrorinforzati (FRP)

L'uso del FRP nel rinforzo sismico di elementi in c.a. è finalizzato agli obiettivi seguenti:

- aumento della resistenza a taglio di pilastri e pareti mediante applicazione di fasce di FRP con le fibre disposte secondo la direzione delle staffe;
- aumento della duttilità e/o della resistenza nelle parti terminali di travi e pilastri mediante fasciatura con FRP con fibre continue disposte lungo il perimetro;
- miglioramento dell'efficienza delle giunzioni per sovrapposizione, sempre mediante fasciatura con FRP con fibre continue disposte lungo il perimetro;

Ai fini delle verifiche di sicurezza degli elementi rafforzati con FRP si possono adottare le Istruzioni CNR-DT 200/04.

Art. XXIX – Edifici realizzati in zona sismica

Per gli edifici realizzati in zona sismica si applicheranno le prescrizioni di cui al D.M. 14 gennaio 2008 – Nuove norme tecniche per le costruzioni ed alla relativa circolare n 617 del 2/02/09.

Art. XXX – Collaudo statico degli edifici

Il collaudo statico è una parte del collaudo generale tecnico amministrativo dell'opera e riguarda il giudizio sul comportamento e le prestazioni delle parti dell'opera che svolgono funzione portante. Il collaudo statico di tutte le opere di ingegneria civile regolamentate dalle presenti norme tecniche, deve comprendere i seguenti adempimenti:

- controllo del corretto adempimento delle prescrizioni formali di cui agli articoli 58 e 65 del D.P.R.
 6.6.2001 n. 380:
- controllo degli adempimenti specifici per le opere eseguite con materiali diversi da quelli regolamentati dal D.P.R. 6.6.2001 n. 380;
- ispezione dell'opera nelle varie fasi costruttive degli elementi strutturali e dell'opera nel suo complesso, con particolare riguardo alle parti strutturali più importanti.
- D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni Capitolo 9 e 11 per l'accettazione in cantiere dei materiali.

L'ispezione dell'opera verrà eseguita con processo ricognitivo alla presenza del Direttore dei lavori e del Costruttore, confrontando in contraddittorio il progettato con il costruito.

Il Collaudatore statico controllerà altresì che siano state messe in atto le prescrizioni progettuali e siano stati eseguiti i controlli sperimentali. Quando la costruzione è eseguita in procedura di garanzia di qualità, il Collaudatore deve validare i documenti di controllo qualità ed il registro delle non-conformità. Per nessuna opera il collaudo statico potrà proseguire o concludersi qualora esistano non-conformità irrisolte:

- controllo delle certificazioni e dei documenti di accettazione dei materiali e dei prodotti;
- esame del modello geologico e delle indagini geotecniche eseguite nelle fasi di progettazione e costruzione, e delle prove di carico sul terreno e sui pali, come prescritte nel presente testo;
- controllo dei verbali e dei risultati delle prove di carico fatte eseguire dal Direttore dei lavori su componenti strutturali o sull'opera.

Il Collaudatore, nell'ambito delle sue responsabilità, dovrà inoltre esaminare il progetto dell'opera e la verifica numerica (calcoli statici) della sicurezza dell'opera come costruita e dare giudizio dell'impostazione generale della progettazione strutturale, degli schemi di calcolo e delle azioni considerate e della valutazione della sicurezza in essi contenuti recepire e dare parere sulla relazione a strutture ultimate del Direttore dei lavori esaminare e recepire il piano di manutenzione dell'opera collaudata fornita dalla direzione dei lavori, con riferimento alla vita utile dell'opera ed a quella delle sue parti strutturali.

Inoltre, nell'ambito della propria discrezionalità, il Collaudatore potrà richiedere di effettuare tutti quegli accertamenti, studi, indagini, sperimentazioni e ricerche utili per formarsi il convincimento della sicurezza, della durabilità e della collaudabilità dell'opera, quali in particolare:

- prove di carico:
- prove sui materiali messi in opera, anche mediante prove non distruttive, nel caso delle strutture di conglomerato cementizio armato il controllo della resistenza del calcestruzzo in opera va effettuato come specificato nel D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" e relativa circolare 617 del 2 febbraio 2009:
- monitoraggio programmato di grandezze significative del comportamento dell'opera, da proseguire anche dopo il collaudo della stessa.

Il collaudo statico, tranne casi particolari, va eseguito in corso d'opera quando vengono posti in opera elementi strutturali non più ispezionabili, controllabili e collaudabili, a seguito del proseguire della costruzione.

Le prove di carico, ove ritenute necessarie dal Collaudatore, non potranno avere luogo prima che la struttura o il componente strutturale da provare, abbia la configurazione di funzionamento finale. I materiali degli elementi sottoposti a collaudo devono aver raggiunto le resistenze previste per il loro funzionamento finale in esercizio.

Il programma delle prove, stabilito dal Collaudatore, con l'indicazione delle procedure di carico e delle prestazioni attese (deformazioni, livelli tensionali, reazione dei vincoli, ecc.) deve essere sottoposto al Direttore dei lavori ed al Progettista e reso noto al Costruttore per accettazione.

Nel caso di mancata accettazione da parte del Progettista e/o del Costruttore, il Collaudatore, con relazione motivata, potrà chiederne l'esecuzione al Direttore dei lavori, ovvero dichiarare l'opera non collaudabile.

Le prove di carico si devono svolgere con le modalità indicate dal Collaudatore che se ne assume la piena responsabilità, mentre, per quanto riguarda la loro attuazione, è responsabile il Direttore dei lavori.

Le azioni di prova devono raggiungere i valori massimi di progetto ovvero quelle che provocano il massimo cimento statico previsto nelle calcolazioni di progetto. In relazione al tipo della struttura ed alla natura dei carichi le prove devono essere convenientemente protratte nel tempo, ovvero ripetute su più cicli.

Il giudizio sull'esito della prova è completa responsabilità del Collaudatore.

L'esito della prova va valutato sulla base dei seguenti elementi:

- le deformazioni si accrescano all'incirca proporzionalmente ai carichi;
- nel corso della prova non si siano prodotte lesioni, deformazioni o dissesti che compromettono la sicurezza o la conservazione dell'opera;
- la deformazione residua dopo la prima applicazione del carico massimo non superi una quota parte di quella totale commisurata ai prevedibili assestamenti iniziali di tipo anelastico della struttura oggetto della prova. Nel caso invece che tale limite venga superato, prove di carico successive accertino che la struttura tenda ad un comportamento elastico.
- la deformazione elastica risulti non maggiore di quella calcolata.

Le prove di carico sono prove di comportamento delle opere sotto le azioni di esercizio.

Il Collaudatore dovrà a priori stabilire una congrua numerosità statistica di prove ovvero il numero di cicli di prova a seconda del componente strutturale o dell'opera da collaudare. Nel caso che l'opera preveda diversi componenti strutturali, le prove dovranno essere ripetute per ogni tipologia di componente.

Le prove statiche possono essere integrate da prove dinamiche che giudicano il comportamento dell'opera attraverso la risposta dinamica della struttura. In questo caso, il periodo di vibrazione fondamentale deve risultare non maggiore di quello calcolato. La validità delle prove dinamiche diventa significativa quando possono essere confrontati con prove statiche standard.

TITOLO VI - PRESCRIZIONI TECNICHE PER L'ESECUZIONE DELLE OPERE STRUTTURALI

Art. XXXI Materiali per opere strutturali

I materiali in genere occorrenti per la costruzione delle opere proverranno da quelle località che l'Impresa riterrà di sua convenienza, purché ad insindacabile giudizio della Direzione dei Lavori, siano riconosciuti della migliore qualità e rispondano ai requisiti appresso indicati.

ACQUA, CALCI AEREE, CALCI IDRAULICHE, LEGANTI CEMENTIZI, POZZOLANE, GESSO, ADDITIVI

L'acqua dovrà essere dolce, limpida, priva di materie terrose, priva di sali (particolarmente solfati e cloruri) in percentuali dannose e non essere aggressiva. Per la definizione dei requisiti cui l'acqua deve conformarsi può essere fatto utile riferimento a quanto contenuto nella norma UNI EN 1008:2003, come prescitto al § 11.2.9.5 delle NTC 2008. Riferirsi anche alle UNI EN 459-1/2/3:2002 per le specifiche delle calci per costruzioni.

Le calci aeree dovranno rispondere ai requisiti di accettazione vigenti al momento dell'esecuzione dei lavori. Le calci aeree si dividono in:

- calce grassa in zolle, di colore pressoché bianco, è il prodotto della cottura di calcari di adatta composizione morfologica e chimica;
- calce magra in zolle è il prodotto della cottura di calcari a morfologia e composizione chimica tali da non dare calci che raggiungano i requisiti richiesti per le calci di cui alla lettera a).
- calce idrata in polvere è il prodotto dello spegnimento completo delle calci predette, fatto dallo stabilimento produttore in modo da ottenerla in polvere fina e secca.

Si dicono calci aeree magnesiache quelle contenenti più del 20% di MgO. Per le calci aeree devono essere soddisfatte le seguenti limitazioni, nelle quali le quantità sono espresse percentualmente in peso:

pccc.				
CALCI AEREE		Contenuto in CaO + MgO	Contenuto in umidità	Contenuto in carboni e impurità
Calce grassa in zolle		94%		
Calce magra in zolle		94%		
Calce idrata in polvere	Fiore di calce	91%	3%	6%
	C. idrata da costruzione	82%	3%	6%

e devono rispondere ai seguenti requisiti fisico-meccanici:

CALCI AEREE	Rendimento in grassello	Residuo al vaglio da 900 maglie /cmq	Residuo al vaglio da 4900 maglie/cmq	Prova di stabilità di volume
Calce grassa in zolle	2,5 mc./tonn.			
Calce magra in zolle	1,5 mc./tonn.			
Calce idrata in polvere	fiore di calce	1%	5%	sì
	calce da costruzione	2%	15%	sì

La calce grassa in zolle dovrà provenire da calcari puri, essere recente, perfetta e di cottura uniforme, non bruciata né vitrea né lenta ad idratarsi. Infine sarà di qualità tale che, mescolata con la sola quantità di acqua dolce necessaria alla estinzione, si trasformi completamente in una pasta soda a grassello tenuissimo, senza lasciare residui maggiori del 5% dovuti a parti non bene decarburate, silicose od altrimenti inerti.

La calce viva in zolle al momento dell'estinzione dovrà essere perfettamente anidra; non sarà usata quella ridotta in polvere o sfiorita: si dovrà quindi preparare la calce viva nella quantità necessaria e conservarla in luoghi asciutti ed al riparo dall'umidità.

Dopo l'estinzione la calce dovrà conservarsi in apposite vasche impermeabili rivestite di tavole o di muratura, mantenendola coperta con uno strato di sabbia. La calce grassa destinata agli intonaci dovrà essere spenta almeno sei mesi prima dell'impiego; quella destinata alle murature da almeno 15 giorni. L'estinzione delle calci aeree in zolle sarà eseguita a bagnolo o con altro sistema idoneo, ma mai a getto.

Le calci idrauliche si dividono in:

- calce idraulica in zolle: prodotto della cottura di calcari argillosi di natura tale che il prodotto cotto risulti di facile spegnimento;
- calce idraulica e calce eminentemente idraulica naturale o artificiale in polvere: prodotti ottenuti con la cottura di marne naturali oppure di mescolanze intime ed omogenee di calcare e di materie argillose, e successivi spegnimento, macinazione e stagionatura;
- calce idraulica artificiale pozzolanica: miscela omogenea ottenuta dalla macinazione di pozzolana e calce aerea idratata;
- calce idraulica siderurgica: miscela omogenea ottenuta dalla macinazione di loppa basica di alto forno granulata e di calce aerea idratata.

L'uso della calce idrata dovrà essere preventivamente autorizzato dalla Direzione dei Lavori.

Per le calci idrauliche devono essere soddisfatte le seguenti limitazioni:

Calci idrauliche	Perdita al fuoco	Contenuto in MgO	Contenuto in carbonati	Rapporto di costituzione	Contenuto in Mno	Residuo insolubile
Calce idraulica naturale in zolle	10%	5%	10%			
Calce idraulica naturale o artificiale in polvere		5%	10%			
Calce eminentemente idraulica naturale o artificiale in polvere		5%	10%			
Calce idraulica artificiale pozzolanica in polvere		5%	10%	1,5%		
Calce idraulica artificiale siderurgica in polvere	5%	5%			5%	2,5%

Devono inoltre essere soddisfatti i sequenti requisiti fisico-meccanici:

Calci idrauliche in polvere	Resistenze meccaniche su malta normale battuta 1:3 tolleranza del 10%			di
	Resistenza a trazione dopo 28 giorni di stagionatura	Resistenza a compressione dopo 28 giorni di stagionatura		
Calce idraulica naturale o artificiale in polvere	5 Kg/cmq	10 Kg/cmq	sì	
Calce eminentemente idraulica naturale o artificiale	10 Kg/cmq	100 Kg/cmq	sì	
Calce idraulica artificiale pozzolanica	10 Kg/cmq	100 Kg/cmq	sì	
Calce idraulica artificiale siderurgica	10 Kg/cmq	100 Kg/cmq	sì	

È ammesso un contenuto di MgO superiore ai limiti purché rispondano alla prova di espansione in autoclave. Tutte le calci idrauliche in polvere devono:

- lasciare sul setaccio da 900 maglie/cmq un residuo percentuale in peso inferiore al 2% e sul setaccio da 4900 maglie/cmq un residuo inferiore al 20%;
- iniziare la presa fra le 2 e le 6 ore dal principio dell'impasto e averla già compiuta dalle 8 alle 48 ore del medesimo;
- essere di composizione omogenea, costante, e di buona stagionatura.

Dall'inizio dell'impasto i tempi di presa devono essere i seguenti:

- inizio presa: non prima di un'ora
- termine presa: non dopo 48 ore

I cementi, da impiegare in qualsiasi lavoro dovranno rispondere, per composizione, finezza di macinazione, qualità, presa, resistenza ed altro, alle norme di accettazione di cui alla normativa vigente. Come prescritto al § 11.2.9.1 delle NTC 2008, per le opere strutturali devono impiegarsi esclusivamente i leganti idraulici dotati di certificato di conformità - rilasciato da un organismo europeo notificato - ad una norma armonizzata della serie UNI EN 197 ovvero ad uno specifico Benestare Tecnico Europeo (ETA), purchè idonei all'impiego previsto nonchè, per quanto non in contrasto, conformi alle prescrizioni di cui alla Legge 26/05/1965 n.595.

L'impiego dei cementi richiamati all'art.1, lettera C della legge 26/5/1965 n. 595, è limitato ai calcestruzzi per sbarramenti di ritenuta.

Per la realizzazione di dighe ed altre simili opere massive dove è richiesto un basso calore di idratazione devono essere utilizzati i cementi speciali con calore di idratazione molto basso conformi alla norma europea armonizzata UNI EN 14216, in possesso di un certificato di conformità rilasciato da un Organismo di Certificazione europeo Notificato.

Qualora il calcestruzzo risulti esposto a condizioni ambientali chimicamente aggressive si devono utilizzare cementi per i quali siano prescritte, da norme armonizzate europee e fino alla disponibilità di esse, da norme nazionali, adeguate proprietà di resistenza ai solfati e/o al dilavamento o ad eventuali altre specifiche azioni aggressive.

La norma UNI EN 197-1 definisce e specifica 27 distinti prodotti di cemento comune e i loro costituenti. La definizione di ogni cemento comprende le proporzioni di combinazione dei costituenti per ottenere questi distinti prodotti, in una gamma di sei classi di resistenza. La definizione

comprende anche i requisiti che i costituenti devono rispettare e i requisiti meccanici, fisici e chimici, inclusi, quando necessario, i requisiti relativi al calore d'idratazione dei 27 prodotti, e le classi di resistenza. La EN 197-1 definisce, inoltre, i criteri di conformità e le rispettive regole. Sono indicati, infine, i requisiti di durabilità necessari.

Il cemento conforme alla EN 197-1, definito cemento CEM, opportunamente dosato e miscelato con aggregato e acqua, deve essere in grado di produrre una malta o un calcestruzzo capace di conservare la lavorabilità per un periodo di tempo sufficiente e di raggiungere, dopo determinati periodi, livelli di resistenza meccanica prestabiliti nonché di possedere una stabilità di volume a lungo termine. L'indurimento idraulico del cemento CEM è dovuto principalmente all'idratazione dei silicati di calcio, ma anche di altri composti chimici, per esempio gli alluminati, possono partecipare al processo di indurimento. La somma dei contenuti di ossido di calcio (CaO) reattivo e ossido di silicio (SiO2) reattivo nel cemento CEM deve essere almeno il 50% in massa quando i contenuti percentuali sono determinati in accordo alla EN 196-2. I cementi CEM sono costituiti da materiali differenti e di composizione statisticamente omogenea derivanti dalla qualità assicurata durante processi di produzione e manipolazione dei materiali. I requisiti per i costituenti sono riportati nella norma UNI EN 197-1.

I 27 prodotti della famiglia dei cementi comuni conformi alla EN 197-1, e la loro denominazione, sono indicati nel prospetto 1 della norma. Essi sono raggruppati in cinque tipi principali di cemento come segue:

- CEM I cemento Portland
- CEM II cemento Portland composito
- CEM III cemento d'altoforno
- CEM IV cemento pozzolanico
- CEM V cemento composito

La composizione di ciascuno dei 27 prodotti della famiglia dei cementi comuni deve essere conforme a quanto riportato nel prospetto.

La resistenza normalizzata di un cemento è la resistenza a compressione a 28 giorni, determinata in accordo alla EN 196-1, che deve essere conforme ai requisiti riportati nella tabella seguente. Sono contemplate tre classi di resistenza normalizzata: classe 32,5, classe 42,5 e classe 52,5.

La resistenza iniziale di un cemento è la resistenza meccanica a compressione determinata a 2 o a 7 giorni in accordo alla EN 196-1; tale resistenza deve essere conforme ai requisiti riportati in tabella.

Per ogni classe di resistenza normalizzata si definiscono due classi di resistenza iniziale, una con resistenza iniziale ordinaria, contrassegnata dalla lettera N, e l'altra con resistenza iniziale elevata, contrassegnata dalla lettera R.

Il tempo di inizio presa e l'espansione, determinati in accordo alla EN 196-3, devono soddisfare i requisiti riportati in tabella.

Il calore d'idratazione dei cementi comuni a basso calore non deve superare il valore caratteristico di 270 J/g, determinato in accordo alla EN 196-8 a 7 giorni oppure in accordo alla EN 196-9 a 41 h.

I cementi comuni a basso calore sono indicati con LH.

Classe di	Resistenza a [MPa]	istenza alla compressione a]				Stabilità
resistenza	Resistenz	za iniziale	Resistenza n	ormalizzata	presa [min]	(espansione) [mm]
	2 giorni	7 giorni	28 g	iorni		
32,5 N	-	≥ 16,0	≥ 32,5	≤ 52,5	≥ 75	≤ 10
32,5 R	≥ 10,0	-	≥ 32,5	≥ 52,5	275	≥ 10

42,5 N	≥ 10,0	-	≥ 42,5	≤ 62,5	≥ 60
42,5 R	≥ 20,0	-	2 42,5	≥ 02,5	≥ 00
52,5 N	≥ 20,0	-	> 50 5		> 15
52,5 R	≥ 30,0	-	≥ 52,5	-	≥ 45

Le proprietà dei cementi del tipo e della classe di resistenza riportati rispettivamente nelle colonne 3 e 4 della tabella seguente devono essere conformi ai requisiti riportati nella colonna 5 di detta tabella quando sottoposti a prova secondo le norme cui si fa riferimento nella colonna 2.

1	2	3	4	5
Proprietà	Metodo di riferimento	Tipo di cemento	Classe di resistenza	Requisiti
Perdita al fuoco	EN 196-2	CEM III	Tutte le classi	≤ 5,0 %
Residuo insolubile	EN 196-2	CEM III	Tutte le classi	≤ 5,0 %
Tenore in solfato		CEM I CEM II	32,5 N 32,5 R 42,5 N	≤ 3,5 %
(come SO ₃)	EN 196-2	CEM IV CEM V	42,5 R 52,5 N 52,5 R	≤ 4,0 %
		CEM III	Tutte le classi	
Tenore in cloruro	EN 196-21	Tutti i tipi	Tutte le classi	≤ 0,10 %
Pozzolanicità	EN 196-5	CEM IV	Tutte le classi	Esito positivo della prova

In molte applicazioni, in particolare in condizioni ambientali severe, la scelta del cemento ha una influenza sulla durabilità del calcestruzzo, della malta, e della malta per iniezione per esempio in termini di resistenza al gelo, resistenza chimica e protezione dell'armatura. La scelta del cemento, nell'ambito della EN 197-1, con particolare riguardo al tipo e alla classe di resistenza per diverse applicazioni e classi di esposizione, deve rispettare le norme e/o i regolamenti adeguati relativi al calcestruzzo e alla malta, validi nel luogo di utilizzo.

La conformità dei 27 prodotti alla EN 197-1 deve essere verificata in maniera continua in base al controllo di campioni puntuali.

Il costruttore ha l'obbligo della buona conservazione del cemento che non debba impiegarsi immediatamente nei lavori, curando tra l'altro che i locali, nei quali esso viene depositato, siano asciutti e ben ventilati. L'impiego di cemento giacente da lungo tempo in cantiere deve essere autorizzato dal Direttore dei Lavori sotto la sua responsabilità.

I cementi, gli agglomeranti cementizi e le calci idrauliche in polvere debbono essere forniti o:

- in sacchi sigillati;
- in imballaggi speciali a chiusura automatica a valvola che non possono essere aperti senza lacerazione;
- alla rinfusa.

Se i leganti idraulici sono forniti in sacchi sigillati essi dovranno essere del peso di 50 chilogrammi chiusi con legame munito di sigillo. Il sigillo deve portare impresso in modo indelebile il nome della ditta fabbricante e del relativo stabilimento nonché la specie del legante.

Deve essere inoltre fissato al sacco, a mezzo del sigillo, un cartellino resistente sul quale saranno indicati con caratteri a stampa chiari e indelebili:

la qualità del legante;

- lo stabilimento produttore;
- la quantità d'acqua per la malta normale;
- le resistenze minime a trazione e a compressione dopo 28 giorni di stagionatura dei provini.

Se i leganti sono forniti in imballaggi speciali a chiusura automatica a valvola che non possono essere aperti senza lacerazione, le indicazioni di cui sopra debbono essere stampate a grandi caratteri sugli imballaggi stessi.

I sacchi debbono essere in perfetto stato di conservazione; se l'imballaggio fosse comunque manomesso o il prodotto avariato, la merce può essere rifiutata.

Se i leganti sono forniti alla rinfusa, la provenienza e la qualità degli stessi dovranno essere dichiarate con documenti di accompagnamento della merce.

Le calci idrauliche naturali, in zolle, quando non possono essere caricate per la spedizione subito dopo l'estrazione dai forni, debbono essere conservate in locali chiusi o in sili al riparo degli agenti atmosferici. Il trasporto in cantiere deve eseguirsi al riparo dalla pioggia o dall'umidità.

Le pozzolane saranno ricavate da strati depurati da cappellaccio ed esenti da sostanze eterogenee o di parti inerti: qualunque sia la provenienza dovranno rispondere a tutti i requisiti prescritti dalla normativa vigente.

Agli effetti delle suddette prescrizioni si intendono per pozzolane tutti quei materiali di origine vulcanica che impastati intimamente con calce danno malte capaci di far presa e di indurire anche sott'acqua e che presentano un residuo non superiore al 40% ad un attacco acido basico. Si considerano materiali a comportamento pozzolanico tutti quelli che, pur non essendo di origine vulcanica, rispondono alle condizioni della precedente definizione.

Agli effetti delle presenti norme si dividono in pozzolane energiche e pozzolane di debole energia.

Le pozzolane ed i materiali a comportamento pozzolanico devono dar luogo alle seguenti resistenze con la tolleranza del 10%.

	Resistenza a trazione (su malta normale) dopo 28 gg.:	Resistenza a pressione (su malta normale) dopo 28 gg.:	Composizione della malta normale
POZZOLANE ENERGICHE	5 Kg/cm2	25 Kg/cm2	 tre parti in peso del materiale da provare una parte in peso di calce normale Dopo 7 giorni di stagionatura in ambiente umido non deve lasciare penetrare più di mm 7 l'ago di Vicat del peso di kg 1 lasciato cadere una sola volta dall'altezza di mm 30.
POZZOLANE DI DEBOLE ENERGIA	3 Kg/cm2	12 Kg/cm2	 - tre parti in peso di pozzolana - una parte in peso di calce normale Dopo 7 giorni di stagionatura in ambiente umido non deve lasciare penetrare più di mm 10 l'ago di Vicat del peso di kg 1 lasciato cadere una sola volta dall'altezza di mm 30.

La pozzolana ed i materiali a comportamento pozzolanico devono essere scevri da sostanze eterogenee. La dimensione dei grani della pozzolana e dei materiali a comportamento pozzolanico non deve superare 5 mm.

Il gesso dovrà essere di recente cottura, perfettamente asciutto, di fine macinazione in modo da non lasciare residui sullo staccio di 56 maglie a centimetro quadrato, scevro da materie eterogenee e senza parti alterate per estinzione spontanea. Il gesso dovrà essere conservato in locali coperti e ben riparati dall'umidità.

L'uso di esso dovrà essere preventivamente autorizzato dalla Direzione dei Lavori.

Gli additivi sono sostanze di diversa composizione chimica, in forma di polveri o di soluzioni acquose, classificati secondo la natura delle modificazioni che apportano agli impasti cementizi. La norma UNI EN 934-1/08 classifica gli additivi aventi, come azione principale, quella di:

- fluidificante e superfluidificante di normale utilizzo che sfruttano le proprietà disperdenti e bagnanti di polimeri di origine naturale e sintetica. La loro azione si esplica attraverso meccanismi di tipo elettrostatico e favorisce l'allontanamento delle singole particelle di cemento in fase di incipiente idratazione le une dalle altre, consentendo così una migliore bagnabilità del sistema, a parità di contenuto d'acqua;
- aerante, il cui effetto viene ottenuto mediante l'impiego di particolari tensioattivi di varia natura, come sali di resine di origine naturale, sali idrocarburi solfonati, sali di acidi grassi, sostanze proteiche, ecc. Il processo di funzionamento si basa sull'introduzione di piccole bolle d'aria nell'impasto di calcestruzzo, le quali diventano un tutt'uno con la matrice (gel) che lega tra loro gli aggregati nel conglomerato indurito. La presenza di bolle d'aria favorisce la resistenza del calcestruzzo ai cicli gelo-disgelo;
- ritardante, che agiscono direttamente sul processo di idratazione della pasta cementizia rallentandone l'inizio della presa e dilatando l'intervento di inizio e fine-presa. Sono principalmente costituiti da polimeri derivati dalla lignina opportunamente solfonati, o da sostanze a tenore zuccherino provenienti da residui di lavorazioni agro-alimentari;
- accelerante, costituito principalmente da sali inorganici di varia provenienza (cloruri, fosfati, carbonati, etc.) che ha la proprietà di influenzare i tempi di indurimento della pasta cementizia, favorendo il processo di aggregazione della matrice cementizia mediante un meccanismo di scambio ionico tra tali sostanze ed i silicati idrati in corso di formazione;
- antigelo, che consente di abbassare il punto di congelamento di una soluzione acquosa (nella fattispecie quella dell'acqua d'impasto) e il procedere della reazione di idratazione, pur rallentata nella sua cinetica, anche in condizioni di temperatura inferiori a 0°.

Per ottenere il massimo beneficio, ogni aggiunta deve essere prevista ed eseguita con la massima attenzione, seguendo alla lettera le modalità d'uso dei fabbricanti.

AGGREGATI

Gli aggregati, naturali o di frantumazione, devono essere costituiti da elementi non gelivi e non friabili, privi di sostanze organiche, limose ed argillose, di gesso, ecc., in proporzioni nocive all'indurimento del conglomerato od alla conservazione delle armature.

Gli aggregati, quando non espressamente stabilito, possono provenire da cava in acqua o da fiume, a seconda della località dove si eseguono i lavori ed in rapporto alle preferenze di approvvigionamento: in ogni caso dovranno essere privi di sostanze organiche, impurità ed elementi eterogenei.

Gli aggregati devono essere disposti lungo una corretta curva granulometrica, per assicurare il massimo riempimento dei vuoti interstiziali.

Tra le caratteristiche chimico-fisiche degli aggregati occorre considerare anche il contenuto percentuale di acqua, per una corretta definizione del rapporto a/c, ed i valori di peso specifico assoluto per il calcolo della miscela d'impasto. La granulometria inoltre dovrà essere studiata scegliendo il diametro massimo in funzione della sezione minima del getto, della distanza minima tra i ferri d'armatura e dello spessore del copriferro.

La ghiaia o il pietrisco devono avere dimensioni massime commisurate alle caratteristiche geometriche della carpenteria del getto ed all'ingombro delle armature.

Gli inerti normali sono, solitamente, forniti sciolti; quelli speciali possono essere forniti sciolti, in sacchi o in autocisterne. Entrambi vengono misurati a metro cubo di materiale assestato su automezzi per forniture di un certo rilievo, oppure a secchie, di capacità convenzionale pari ad 1/100 di metro cubo nel caso di minimi quantitativi.

La sabbia naturale o artificiale dovrà risultare bene assortita in grossezza, sarà pulitissima, non avrà tracce di sali, di sostanze terrose, limacciose, fibre organiche, sostanze friabili in genere e sarà costituita di grani resistenti, non provenienti da roccia decomposta o gessosa.

Essa deve essere scricchiolante alla mano, non lasciare traccia di sporco, non contenere materie organiche, melmose o comunque dannose; deve essere lavata ad una o più riprese con acqua dolce, qualora ciò sia necessario, per eliminare materie nocive e sostanze eterogenee.

La ghiaia deve essere ad elementi puliti di materiale calcareo o siliceo, bene assortita, formata da elementi resistenti e non gelivi, scevra da sostanze estranee, da parti friabili, terrose, organiche o comunque dannose.

La ghiaia deve essere lavata con acqua dolce, qualora ciò sia necessario per eliminare le materie nocive.

Qualora invece della ghiaia si adoperi pietrisco questo deve provenire dalla frantumazione di roccia compatta, durissima, silicea o calcarea pura e di alta resistenza alle sollecitazioni meccaniche, esente da materie terrose, sabbiose e, comunque, eterogenee, non gessosa né geliva, non deve contenere impurità né materie pulverulenti, deve essere costituito da elementi, le cui dimensioni soddisfino alle condizioni indicate per la ghiaia.

Il pietrisco dev'essere lavato con acqua dolce qualora ciò sia necessario per eliminare materie nocive.

Sono idonei alla produzione di calcestruzzo per uso strutturale gli aggregati ottenuti dalla lavorazione di materiali naturali, artificiali, ovvero provenienti da processi di riciclo conformi alla norma europea armonizzata UNI EN 12620 e, per gli aggregati leggeri, alla norma europea armonizzata UNI EN 13055-1.

Il sistema di attestazione della conformità di tali aggregati, ai sensi del DPR n.246/93 è indicato nella seguente tabella.

Specifica Tecnica Europea armonizzata di riferimento	Uso Previsto	Sistema di Attestazione della Conformità
Aggregati per calcestruzzo UNI EN 12620 e UNI EN 13055-1	Calcestruzzo strutturale	2+

È consentito l'uso di aggregati grossi provenienti da riciclo, secondo i limiti di cui alla tabella seguente, a condizione che la miscela di calcestruzzo confezionata con aggregati riciclati, venga preliminarmente qualificata e documentata attraverso idonee prove di laboratorio. Per tali aggregati, le prove di controllo di produzione in fabbrica di cui ai prospetti H1, H2 ed H3 dell'annesso ZA della norma europea armonizzata UNI EN 12620, per le parti rilevanti, devono essere effettuate ogni 100 tonnellate di aggregato prodotto e, comunque, negli impianti di riciclo, per ogni giorno di produzione.

Origine del materiale da riciclo	Classe del calcestruzzo	percentuale di impiego
demolizioni di edifici (macerie)	=C 8/10	fino al 100 %
demolizioni di solo calcestruzzo e c.a.	≤C30/37	≤ 30 %
	≤C20/25	Fino al 60 %
Riutilizzo di calcestruzzo interno negli stabilimenti di prefabbricazione		

qualificati - da qualsiasi classe		
da calcestruzzi >C45/55	≤C45/55	fino al 15%
	Stessa classe del calcestruzzo di origine	fino al 5%

Per quanto concerne i requisiti chimico-fisici, aggiuntivi rispetto a quelli fissati per gli aggregati naturali, che gli aggregati riciclati devono rispettare, in funzione della destinazione finale del calcestruzzo e delle sue proprietà prestazionali (meccaniche, di durabilità e pericolosità ambientale, ecc.), nonché quantità percentuali massime di impiego per gli aggregati di riciclo, o classi di resistenza del calcestruzzo, ridotte rispetto a quanto previsto nella tabella sopra esposta si faccia riferimento a quanto prescritto nelle norme UNI 8520-1:2005 e UNI 8520-2:2005.

Per quanto riguarda gli eventuali controlli di accettazione da effettuarsi a cura del Direttore dei Lavori, questi sono finalizzati almeno alla determinazione delle caratteristiche tecniche riportate nella tabella seguente. I metodi di prova da utilizzarsi sono quelli indicati nelle Norme Europee Armonizzate citate, in relazione a ciascuna caratteristica.

Caratteristiche tecniche				
Descrizione petrografica semplificata				
Dimensione dell'aggregato (analisi granulometrica e contenuto dei fini)				
Indice di appiattimento				
Dimensione per il filler				
Forma dell'aggregato grosso (per aggregato proveniente da riciclo)				
Resistenza alla frammentazione/frantumazione (per calcestruzzo Rck ≥ C50/60)				

MALTE ESPANSIVE

Sono malte speciali che impiegate esclusivamente sotto stretto controllo del dosaggio e del tipo di applicazione in rapporto ai dati forniti dalla casa costruttrice. L'agente espansivo dovrà essere miscelato a secco con legante ed inerti se di tipo in polvere, o preventivamente in acqua se di tipo liquido. Particolare attenzione andrà posta all'interazione con altri additivi, nel qual caso sarà preferibile ricorrere ai prodotti di un'unica ditta.

MATERIALI COMPOSITI

I materiali fibrorinforzati a matrice polimerica (Fibre Reinforced Polymer), composti essenzialmente da fibre e resine, stanno trovando notevole sviluppo e largo impiego nel consolidamento e nel rinforzo anche di strutture civili. I vantaggi sono molteplici: leggerezza, elevate proprietà meccaniche, caratteristiche anticorrosive,

Gli FRP sono costituiti da due o più materiali di diversa natura, macroscopicamente distinguibili e con proprietà fisiche e meccaniche sufficientemente differenti; in particolare sono costituiti da una matrice polimerica di natura organica e da fibre di rinforzo, in genere composti del carbonio o del vetro, che garantiscono forza, stabilità ed elevate prestazioni dal punto di vista strutturale dati gli alti valori del modulo di elasticità che li caratterizzano. La matrice, generalmente di resina poliestere o vinilestere, unisce e protegge le fibre favorendo anche il trasferimento delle sollecitazioni tra le stesse..

La resistenza specifica dei compositi può garantire valori fino a quattro volte superiori rispetto a quelli dei materiali tradizionali; il loro modulo specifico valori superiori fino al doppio. A parità di rigidezza quindi una struttura in materiale composito presenta un peso pari alla metà di un'equivalente struttura in materiale tradizionale; nel caso delle fibre aramidiche le prestazioni migliorano ulteriormente garantendo una resistenza fino a quattro volte maggiore.

Art. XXXII Opere speciali di fondazione

Si premette che per criteri di progetto, le indagini geotecniche e la determinazione dei carichi limitedel singolo palo o della palificata devono essere conformi alle vigenti Nuove Norme Tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008".

Prima di iniziare il lavoro di infissione (o di trivellazione) l'Impresa esecutrice deve presentare un programma cronologico di infissione (o di trivellazione) dei pali, elaborato in modo tale da eliminare o quanto meno minimizzare gli effetti negativi dell'infissione (o trivellazione) sulle opere vicine e sui pali già realizzati, nel pieno rispetto delle indicazioni progettuali. Tale programma dovrà essere sottoposto all'approvazione della Direzione dei Lavori.

I pali di qualsiasi tipo devono essere realizzati secondo la posizione e le dimensioni fissate nei disegni di progetto con la tolleranza - sulle coordinate planimetriche del centro del palo - del 10% del diametro del palo e comunque non oltre i 10 cm per pali di medio e grande diametro e non oltre i 5 cm per pali di piccolo diametro.

Il calcestruzzo dei pali deve essere del tipo detto "a resistenza garantita"; qualora non diversamente prescritto si deve di norma usare cemento Portland; il rapporto in peso acqua/cemento non dovrà superare il valore di 0,40 - 0,45, tenendo conto anche del contenuto d'acqua degli inerti all'atto del confezionamento del calcestruzzo.

Posta D la dimensione massima dell'aggregato, il dosaggio del cemento (kg/mc), salvo diversa prescrizione progettuale, deve essere non inferiore a:

- 300 kg/mc per D=70 mm
- 330 kg/mc per D=50 mm
- 370 kg/mc per D=30 mm
- 450 kg/mc per D=20 mm.

Le resistenza caratteristiche per i calcestruzzi armati e precompressi non devono essere inferiori a quelle previste nelle Nuove Norme tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e la relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008", ed essere corrispondenti a quelle indicate dal progettista. Qualora fosse prescritto l'utilizzo di malta o di boiacca, questa dovrà essere costituita da cemento R 325 ed acqua nel rapporto A/C = 0.5 (200 kg di cemento secco ogni 100 lt di acqua).

Il calcestruzzo per la formazione dei pali va messo in opera con modalità dipendenti dalle attrezzature impiegate e in maniera tale che risulti privo di altre materie, specie terrose.

PALI DI PICCOLO DIAMETRO

I pali di piccolo diametro sono realizzati con tecnologie e attrezzature speciali ed armati per tutta la loro lunghezza. Essi hanno di norma diametro superiore a 80 mm ed inferiore a 320 mm.

La perforazione avviene con sistema a rotazione, a rotopercussione o con entrambi questi sistemi, attraverso terreni di qualsiasi natura e consistenza, nonché attraverso trovanti, murature e conglomerati semplici o armati. Qualora si presenti la necessità, il foro va rivestito in modo da assicurare la stabilità delle pareti prima di eseguire il getto. Al termine della perforazione il foro deve essere pulito dai detriti mediante il fluido di circolazione o l'utensile asportatore.

L'armatura è costituita da una barra di acciaio ad aderenza migliorata provvista di opportuni centratori, oppure da un tubo in acciaio eventualmente munito di valvole di non ritorno. L'armatura dovrà essere provvista di tre fori o finestre laterali (circa 3-4 cm2 ciascuna) disposti a 20 cm dall'estremità terminale. Lungo il tubo d'armatura saranno posti in opera dei centratori, ad interasse

massimo di 3 metri. Il collegamento tra i vari spezzoni dell'armatura (lunghezza ≥ 3 m), sarà realizzato con filettatura maschio-manicotto esterno-maschio o, in alternativa, con filettatura femmina-manicotto interno-femmina.

Il getto del palo avverrà per iniezione di boiacca di cemento attraverso il tubo d'armatura mediante l'utilizzo di un packer o di un apposito manicotto di collegamento con la culotta d'iniezione posizionati a boccaforo. La boiacca dovrà fluire dalla sommità del palo e risultare esente da elementi estranei prima di iniziare l'estrazione della colonna di rivestimento. Durante l'estrazione di quest'ultima si controllerà costantemente il livello della boiacca nel rivestimento e si provvederà a ripristinarlo quando se ne osservi l'abbassamento. L'ordine di esecuzione dei pali di piccolo diametro, per gruppi di pali, da sottoporre preventivamente al Direttore dei Lavori, deve garantire la non interferenza delle perforazioni con fori in corso di iniezione o in attesa di riempimento.

PALI INIETTATI A GRAVITÀ

L'iniezione deve essere eseguita a mezzo di idonea pompa con malta cementizia costituita da una miscela ternaria di acqua-sabbia-cemento R325 dosato a 600 kg per m3 oppure con miscela acqua-cemento (rapporto acqua/cemento max 0.5) ed eventuale additivo.

Si fa assoluto divieto di eseguire il getto del palo mediante immissione di malta dalla testa del foro e non dal tubo d'armatura o da apposito tubo di iniezione la cui estremità giunga alla base del palo.

L'armatura viene posta in opera previa accurata pulizia del fondo del foro. Qualora il foro sia rivestito, si inizia ad estrarre il rivestimento quando la malta iniettata è uscita pulita dalla testa del palo. Nel corso dell'estrazione, il livello della malta all'interno del rivestimento deve essere mantenuto costante con continui rabbocchi e la manovra di estrazione deve avvenire con continuità e lentamente. In assenza di rivestimento l'iniezione viene sospesa dopo la fuoriuscita della malta dalla testa del palo, ponendo cura affinché la prima emissione mista ad acqua di perforazione, fango o detriti, sia esaurita ed il materiale in uscita sia esente da impurità. Qualora non si verifichi la fuoruscita della malta dalla testa del foro si provvederà all'estrazione dell'armatura ed alla riperforazione del palo.

Le tolleranze rispetto ai valori teorici sono i seguenti:

- sulle coordinate planimetriche del centro del palo, in corrispondenza della sua estremità superiore: ± 3 cm;
- sulla verticalità: 3%;
- sulla lunghezza: ± 15 cm;
- sul diametro nominale: 5%; + 15%.

La trasmissione del carico dalle fondazioni al palo avviene per aderenza o per mezzo di staffe saldate al tubo di armatura.

PALI INIETTATI A PRESSIONE

L'iniezione viene eseguita con boiacca dosata a 50 kg di cemento Portland R325 ogni 25 I di acqua.

All'interno del foro viene introdotto un tubo di elevate caratteristiche meccaniche munito, nella parte terminale, per una lunghezza da definire in relazione alla lunghezza complessiva, di "finestre" per il passaggio della miscela cementizia. Quest'ultima viene iniettata in pressione dalla testa del tubo di armatura, in modo da occupare le intercapedini tubo-terreno e tubo esterno-tubo interno, fino a risalire a livello del piano campagna.

La trasmissione del carico dalle fondazioni al palo avviene per aderenza o per mezzo di staffe saldate al tubo d'armatura.

PROVE DI CARICO SUI PALI

Nell'esecuzione delle prove di carico sui pali per la determinazione del carico limite del palo singolo o per la verifica del comportamento dei pali realizzati valgono le indicazioni contenute nelle Nuove Norme Tecniche per le costruzioni contenute nel D.M. 14 Gennaio 2008 (NTC2008) e relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008".

Le prove dovranno essere nella misura non inferiore di:

- 1 se il numero di pali è inferiore o uguale a 20,
- 2 se il numero di pali è compreso tra 21 e 50,
- 3 se il numero di pali è compreso tra 51 e 100,
- 4 se il numero di pali è compreso tra 101 e 200,
- 5 se il numero di pali è compreso tra 201 e 500,
- il numero intero più prossimo al valore 5 + n/500, se il numero n di pali è superiore a 500.

Tali prove devono essere spinte ad un carico assiale pari a 1,5 volte l'azione di progetto utilizzata per le verifiche degli stati limite di esercizio.

Pali di prova

Prima dell'inizio della costruzione della palificata, se richiesto dalla Direzione dei Lavori, devono essere eseguiti pali pilota, il cui numero e la cui ubicazione devono essere indicati dalla medesima Direzione dei Lavori, e risultare esattamente dai verbali che verranno redatti sulle prove eseguite.

Le prove di carico per la determinazione del carico limite del palo singolo devono essere spinte fino a valori del carico assiale tali da portare a rottura il complesso palo-terreno, o comunque tali da consentire di ricavare significativi diagrammi abbassamenti-carichi e abbassamenti-tempi.

Prove di collaudo statico

Per le prove di collaudo i pali di prova vanno prescelti fra quelli costituenti l'intera palificata e indicati dalla Direzione dei Lavori.

Le prove di collaudo dei pali di diametro inferiore a 80 cm devono essere spinte fino ad 1,5 volte il carico ammissibile del palo singolo, con applicazione graduale del carico sul palo.

Ove previsto in progetto, l'Impresa è tenuta ad effettuare su pali prove di carico orizzontale, prove estensimetriche, carotaggi sonici, ecc.; le prove di carico verticale di cui alle norme vigenti sono integralmente a carico dell'Impresa, mentre per le prove di altro tipo sarà applicata la corrispondente voce dell'Elenco dei Prezzi Unitari.

DIAFRAMMI DI PALI (BERLINESE)

Il diaframma è costituito da uno a più allineamenti di pali di piccolo diametro posti ad interessi prefissati. Le modalità esecutive non si discostano da quelle sopradescritte, relative ai pali di piccolo diametro.

Nel caso di diaframma non sono previste prove di carico a meno che il diaframma non abbia, oltre che funzioni di sostegno di una parete di scavo, anche quelle di sostegno di strutture fuori terra.

Le giunzioni dei tubi di armatura, sottoposte a carichi orizzontali, dovranno essere definite dopo accurato calcolo e non dovranno essere poste alla medesima profondità lungo gli allineamenti dei pali. Non dovranno inoltre coincidere con la posizione degli ancoraggi.

ANCORAGGI

Con il termine di "ancoraggio" si intende un elemento strutturale operante in trazione, atto a trasmettere forze di coazione ai terreni ed alle rocce.

Le parti funzionali del tirante sono rappresentate da:

- testata: insieme degli elementi terminali atti a trasmettere alla struttura ancorata, o direttamente alla roccia in superficie, la forza di trazione del tirante;
- parte libera: insieme degli elementi atti a trasmettere la forza di trazione dalla testata alla fondazione;
- fondazione: insieme degli elementi atti a trasmettere al terreno le forze di trazione del tirante.

I tiranti, classificati in funzione della tensione nell'armatura dopo il collaudo, si distinguono in:

- pretesi: tiranti nella cui armatura viene indotta una forza di tesatura pari a quella di esercizio;
- parzialmente pretesi: tiranti nella cui armatura viene indotta una forza di tesatura inferiore a quella di esercizio;
- non pretesi: tiranti nella cui armatura non viene indotta alcuna forza di tesatura.

In base alla durata di esercizio si distinguono in:

- permanenti: tiranti destinati ad esercitare la loro funzione per un periodo uguale o superiore a due anni;
- provvisori: tiranti destinati ad esercitare la loro funzione per un periodo inferiore a due anni.

L'armatura dei tiranti può essere di tipo a barre, a fili o a trefoli.

La parte libera può essere semplice (una sola guaina per tutti gli elementi costituenti l'armatura), multipla (una guaina per ciascun elemento dell'armatura) o composta (una guaina per ciascun elemento più una guaina per tutti gli elementi costituenti l'armatura). La fondazione può invece essere senza guaina o con guaina (fondazione protetta).

Materiali ed elementi costruttivi

I materiali devono avere le seguenti caratteristiche:

- gli acciai devono essere conformi alle specifiche disposizioni in vigore al momento della posa in opera;
- le piastre di ripartizione vanno dimensionate in relazione alle caratteristiche del materiale di cui sono costituite e del materiale di contrasto;
- la scelta del cemento deve essere fatta tenendo conto dei seguenti fattori: ritiro, resistenza e lavorabilità della miscela, interazione cemento-acciaio, interazione cemento-ambiente circostante. Le caratteristiche del cemento devono essere determinate in conformità al D.M. 3 giugno 1968 e successivi aggiornamenti84. Devono essere utilizzati solo cementi con contenuto totale di cloro inferiore allo 0,05% del peso del cemento e contenuto totale di zolfo (da solfuri S--) inferiore allo 0,15% del peso del cemento, al fine di evitare pericolo di corrosione sotto tensione. L'idoneità del cemento deve essere certificata dal fabbricante. Il tempo di presa a 20°C deve essere superiore a tre ore, mentre il tempo di fine presa a 5°C deve essere inferiore a 24 ore;
- possono essere impiegati additivi per migliorare le caratteristiche delle miscele di iniezione, sempre che non introducano elementi pregiudizievoli nei riguardi della durabilità e dell'affidabilità di tutti i componenti del tirante.

⁸⁴ D.M. 20 novembre 1984 - Modificazioni al decreto ministeriale 3 giugno 1968 (G.U. n. 353 del 27 dicembre 1984) e D.M. 13 settembre 1993 - Abrogazione di alcune disposizioni contenute nel D.M. 3 giugno 1968 (G.U. n. 223 del 22 settembre 1993).

Tecnologie esecutive

Le perforazioni per l'esecuzione dei tiranti di ancoraggio devono essere condotte in modo tale da comportare il minimo disturbo del terreno e da evitare danni alle opere circostanti. Il metodo deve essere scelto in modo tale da:

- impedire il franamento della parete del foro, sia durante la perforazione sia durante la posa delle armature:
- ridurre al minimo la decompressione del terreno circostante;
- non alterare, per quanto possibile, le falde idriche e le relative distribuzioni delle pressioni.

Qualora le caratteristiche dei terreni o la presenza dell'acqua lo richiedesse, il foro potrà essere sostenuto mediante idonee tubazioni durante la perforazione e nelle fasi successive.

Il fluido di perforazione e gli eventuali additivi non devono risultare inquinanti in base alle vigenti leggi. Allo scopo di estrarre completamente i detriti al termine della perforazione si deve procedere in tutti i casi alla pulizia del foro con il fluido di perforazione senza azionare l'utensile tagliente.

I fori devono essere eseguiti rispettando le seguenti condizioni:

- per il diametro, quanto esplicitamente indicato in progetto; in ogni caso il diametro dell'utensile di perforazione deve essere almeno pari al diametro specificato per il foro;
- la riduzione di lunghezza del tratto di fondazione non può essere maggiore del 5% della lunghezza prevista per la fondazione stessa.

Prima di procedere alle iniezioni viene eseguita una *prova di tenuta del foro* con immissione di acqua su tutta la lunghezza del foro o sulla sola lunghezza di fondazione (perdita massima 1 l/min x metro x bar) oppure di miscela di iniezione (perdita massima 0.2 l/min x metro x bar) con pressione minima di 1 bar.

Nei terreni sciolti o coesivi la prova va eseguita esclusivamente con la miscela di iniezione. Nel caso di esito positivo della prova di tenuta eseguita con miscela di iniezione, è consentito inserire immediatamente il tirante nel foro, senza necessità di lavaggio. In caso di esito negativo va comunque prevista, dopo la bonifica della zona con iniezioni, la riperforazione. La confezione dei tiranti va effettuata preferibilmente in stabilimento onde assicurare la protezione di tutti i materiali dalle intemperie e la costanza della qualità.

Qualora fosse necessario procedere alla confezione in cantiere dovranno essere garantite condizioni equivalenti a quelle garantite in stabilimento. In entrambi i casi particolare cura dovrà essere dedicata al trasporto ed al deposito dei materiali, per evitare danneggiamenti in fase di manipolazione.

Nel caso di impiego di ancoraggi con armature a barre, per i quali l'assemblaggio è fatto in opera, le operazioni di assemblaggio devono essere eseguite da personale esperto e devono essere effettuate via via che la barra viene infilata nel foro avendo cura che il collegamento dei vari tronchi, mediante manicotti di giunzione, avvenga secondo le modalità previste dal costruttore e che parallelamente le sigillature dell'eventuale guaina siano accuratamente eseguite.

La posa in opera delle armature deve avvenire secondo modalità che ne assicurino il corretto posizionamento e l'efficacia della connessione al terreno. Sono da evitare franamenti parziali del foro, frammistioni di materiali detritici, danneggiamento degli elementi di protezione anticorrosivi o degli eventuali distanziatori.

Nel caso in cui ciò non possa essere garantito, si deve procedere al completo rivestimento del foro con tubazione da recuperare dopo la posa in opera dell'armatura.

Il tempo intercorrente tra la perforazione e la posa in opera delle armature e la successiva iniezione deve essere ridotto al minimo, soprattutto in terreni soggetti a fenomeni di rigonfiamento o soggetti a franare. Ove ciò non sia possibile, ogni foro deve essere opportunamente rivestito e protetto.

L'intercapedine fra armatura e terreno circostante deve essere intasata con miscela cementante, operando a semplice circolazione oppure con forzamento a pressione. La pressione di iniezione, normalmente limitata a 25 kPa (0.26 bar) per metro di profondità può essere spinta a valori maggiori fino all'80% del carico litostatico del terreno circostante, purché sotto controllo strumentale.

Nel caso di semplice riempimento con miscela cementizia dell'intercapedine tra armatura e parete del foro, devono essere previsti opportuni organi di sfiato per evitare inclusioni d'aria o fluido di perforazione.

Nel caso d'iniezione a pressione, in particolare nel tratto di fondazione, è necessario l'uso di un dispositivo otturatore. Qualora il tratto di fondazione debba essere protetto dalla corrosione con guaina corrugata, quest'ultima deve essere connessa all'armatura per mezzo di un'ulteriore operazione d'iniezione, che può essere fatta sia in sede di assemblaggio, sia in sito. Al momento della posa in opera i dispositivi di bloccaggio devono essere in perfette condizioni, privi di ruggine ed incrostazioni di qualsiasi natura.

Tesatura delle armature

La funzionalità dell'apparecchiatura di tesatura (pompa, collegamento elettroidraulici, martinetti), e l'affidabilità della strumentazione di controllo (manometri), devono essere verificate ad ogni turno di lavoro, oppure quando si riscontrino anomalie nella tesatura. In particolare il cantiere deve essere dotato di un manometro campione (debitamente tarato presso un laboratorio ufficiale in data non anteriore a 6 mesi) con la possibilità di montaggio sulla pompa in parallelo con il manometro di servizio. La tesatura del tirante deve poter procedere in conformità al programma di progetto (gradini di carico, tempi, misure e registrazioni, bloccaggio) con una tolleranza del ± 5% rispetto ai valori nominali.

Rapporto tecnico

Per ciascun tirante devono essere compilati i rapporti relativi alle varie fasi esecutive, sui quali devono essere almeno indicate tutte le informazioni inerenti:

- le tipologie di perforazione adottate e le caratteristiche sommarie dei terreni attraversati:
- la composizione del tirante e le protezioni adottate;
- le modalità esecutive delle iniezioni e le tipologie della miscela;
- le fasi di taratura e le modalità di controllo delle misurazioni.

Protezioni contro la corrosione

Un sistema di protezione contro la corrosione per tiranti nei terreni e nelle rocce:

- deve garantire la conservazione degli elementi meccanici del tirante, mantenendo nel contempo un proprio stato di conservazione chimico-fisico accettabile rispetto alle funzioni protettive da assolvere;
- non deve interagire in maniera dannosa con l'ambiente circostante;
- deve essere costituito da materiali mutuamente compatibili, da un punto di vista elettrochimico, con le parti meccaniche del tirante;
- deve poter superare le fasi iniziali di manipolazione, installazione e taratura delle parti meccaniche del tirante senza subire danni funzionali, con riferimento soprattutto alle giunzioni tra i diversi elementi ed alle zone di variazione geometrica delle sezioni trasversali degli elementi stessi.

Salvo espressa deroga contenuta nel progetto, dovranno essere adottati dispositivi di centraggio interni alla guaina tali da assicurare uno spessore minimo di ricoprimento dell'armatura di 5 mm, e dispositivi di centraggio esterni alla guaina tali da assicurare un ricoprimento minimo di 20 mm rispetto alla guaina. Essi dovranno essere costituiti da materiali che non inneschino processi di corrosione.

La testata del tirante ed il tratto immediatamente retrostante sono i punti più soggetti al

rischio di corrosione sia nelle varie fasi costruttive che in esercizio. Qualora per la protezione di tali zone vengano impiegati materiali diversi dalle comuni malte cementizie, la protezione anti-corrosiva dovrà consentire l'assestabilità delle parti meccaniche della testata senza che si producano discontinuità o fratture nello strato protettivo predisposto, il quale dovrà risultare agevolmente ripristinabile nel caso in cui debbano essere eseguiti successivi interventi di controllo e di ritesatura delle armature del tirante.

Ancoraggi preliminari di prova

Scopo delle prove e definizione

SI intendono per "ancoraggi preliminari di prova" quegli ancoraggi da realizzare nello stesso sito e con lo stesso sistema di perforazione di quelli definitivi, da sottoporre a prove distruttive (o comunque più severe di quelle eventuali di collaudo) e pertanto non utilizzabili per l'impiego successivo. Tali ancoraggi sono definiti preliminari in quanto finalizzati al dimensionamento definitivo degli ancoraggi da eseguire ed alla determinazione della forza limite ultima Nfu.

Gli ancoraggi preliminari di prova devono essere in ogni caso realizzati dopo l'esecuzione di quelle operazioni (scavi, riporti, mutamenti nel regime idraulico del terreno) che possono influire sulla resistenza della fondazione dell'ancoraggio.

Prescrizioni generali

Le prove devono essere eseguite da personale specializzato, nel rispetto delle norme che garantiscono la sicurezza degli operatori e di terze persone.

Le apparecchiature da impiegare nell'esecuzione delle prove devono essere tarate presso un Laboratorio Ufficiale e devono consentire la tesatura simultanea di tutti gli elementi costituenti l'armatura di ogni tirante. Gli allungamenti dei tiranti di prova devono essere misurati con riferimento ad un punto fisso esterno alla zona in cui si risentono significativamente le azioni trasmesse dall'ancoraggio stesso. Nel caso in cui vengano misurati solo gli allungamenti o la forza applicata, l'apparecchiatura impiegata deve consentire di effettuare le misure con le seguenti precisioni:

- per gli allungamenti: 1 mm
- per le forze applicate: 3% della forza limite ultima dell'ancoraggio con riferimento alla fondazione, valutata sulla base di criteri motivati (Nfu).

Nel caso in cui la prova richieda la misura degli incrementi d'allungamento e di carico, è necessario assicurare una precisione delle misure non inferiore a 0.1 mm per gli allungamenti e del 2% di Nfu per le forze.

Obbligatorietà delle prove

Le prove sui tiranti preliminari sono tutte obbligatorie qualora il numero totale dei tiranti da realizzare sia pari o superiore a 30. Qualora il numero sia inferiore a 30, non sono richiesti tiranti preliminari; la verifica del dimensionamento sarà effettuata con prove non distruttive sui primi tiranti eseguiti, secondo le modalità di collaudo successivamente indicate. Per ogni tipo di tirante e per ogni tipo di terreno, per determinare la forza limite ultima Nfu e per verificare che la forza teorica di utilizzazione NQ possa essere garantita, occorre sottoporre a prove preliminari una terna di tiranti. Il numero di tiranti da sottoporre a prova (primo, secondo e terzo tipo di prova) risulta dalla seguente tabella:

N°tiranti da eseguire

N° tiranti da sotto porre a prova del:

- 1 se il numero degli ancoraggi è inferiore a 30;
- 2 se il numero degli ancoraggi è compreso tra 31 e 50;

- 3 se il numero degli ancoraggi è compreso tra 51 e 100;
- 7 se il numero degli ancoraggi è compreso tra 101 e 200;
- 8 se il numero degli ancoraggi è compreso tra 201 e 500;
- 10 se il numero degli ancoraggi è superiore a 500.

Si considerano dello stesso tipo i tiranti adibiti alla medesima funzione, aventi uguale tipo e sezione di armatura, modalità e diametro di perforazione, modalità e pressione d'iniezione.

Allo steso fine si considerano dello stesso tipo quei terreni, ai quali le indagini consentono di attribuire lo stesso comportamento geotecnico.

Nel caso di tiranti inseriti nello stesso tipo di terreno, adibiti alla medesima funzione e realizzati con le stesse modalità di perforazione e di iniezione, ma con una forza teorica di utilizzazione diversa (e quindi con sezione di armatura e diametro di perforazione diversi), si può in alternativa:

- realizzare una terna di tiranti di prova per ogni gruppo di tiranti con uguale forza teorica di utilizzazione NQ;
- effettuare le prove solo per il gruppo di tiranti soggetti alla forza NQ più elevata; in questo caso dalle prove si ricava una tensione tangenziale limite convenzionale di aderenza tra fondazione e terreno e si dimensionano i tiranti assumendo una tensione tangenziale limite ultima pari all'85% di quella ricavata dalla prova.

Modalità generali di prova

Per ciascuno dei tiranti costituenti la terna sono previsti differenti modalità di prova.

Il primo tirante ha lo scopo di determinare la tensione tangenziale limite convenzionale d'aderenza tra la fondazione ed il terreno, per un dimensionamento di massima della fondazione dei tiranti da realizzare, ed ha quindi un'armatura sovradimensionata, ove possibile, oppure una lunghezza di fondazione ridotta rispetto ai tiranti da eseguire in modo da raggiungere la forza limite ultima di tale fondazione senza superare il limite convenzionale elastico dell'armatura. L'armatura del primo tirante deve essere di sezione maggiore (o l'acciaio di migliore qualità) rispetto a quella di progetto, in modo tale che la forza limite ultima della fondazione Nfu valutata con un primo dimensionamento possa essere prevedibilmente raggiunta senza superare nell'armatura lo 0,9 del limite convenzionale elastico dell'armatura sollecitata, operando in modo da non aumentare il diametro della perforazione.

Qualora ciò non risultasse possibile, la prova verrà invece effettuata su un tirante di armatura sempre maggiorata, ove possibile, ma con fondazione di lunghezza ridotta rispetto a quella prevista nel primo dimensionamento in modo da poter raggiungere lo stesso valore di Nfu senza superare lo 0,9 del limite convenzionale elastico o di snervamento dell'armatura cimentata, con un eventuale aumento della lunghezza libera pari alla riduzione della lunghezza della fondazione onde sperimentare il terreno alla stessa profondità della fondazione del tirante definitivo. Solo in questo caso la forza limite dei tiranti da realizzare verrà assunta convenzionalmente pari alla forza limite ultima misurata sul tirante di prova, moltiplicata per il rapporto delle lunghezze (Lprog/Lprova).

Nel caso infine di tiranti provvisori con ancoraggio ad espansione meccanica, la prova viene condotta su un tirante uguale a quello di cui è previsto l'impiego ed è spinta fino a raggiungere lo snervamento dell'armatura o lo sfilamento della fondazione. Il valore ultimo di prova viene assunto come forza limite ultima del tirante.

In ogni caso, la prova sul primo tirante comprende le seguenti fasi:

tesatura fino ad una forza pari a 0,1 della forza limite ultima dell'armatura sollecitata N'ys;

 tesatura per incrementi di carico pari a 0,1 di N'ys ogni 1' fino a raggiungere lo sfilamento o lo 0.9 del limite convenzionale elastico dell'armatura cimentata N'ys, con lettura del relativo allungamento, che dovrà essere soddisfacentemente elevato.

Il secondo tirante, dimensionato sulla scorta dei dati ricavati dal primo, ha lo scopo di determinare la forza limite ultima della fondazione Nfu ed è, pertanto, uguale ai tiranti da eseguire ma è dotato della massima armatura compatibile con il diametro di perforazione previsto.

Il secondo tirante di prova avrà le stesse caratteristiche dei tiranti da eseguire (diametro di perforazione, lunghezza di fondazione, ecc) con la sola maggiorazione, ove possibile, dell'armatura, che sarà la massima compatibile con il diametro previsto per la perforazione o un'armatura di caratteristiche meccaniche superiori a quelle dei tiranti definitivi.

La prova sul secondo tirante comprende le seguenti fasi:

- tesatura fino ad una forza di allineamento N0 pari a 0,1 N'ys (dove N'ys è la forza al limite caratteristico convenzionale elastico o di snervamento dell'armatura sollecitata); le misure degli allungamenti hanno inizio al termine di questa fase;
- tesatura per incrementi di carico pari a 0,15 N'ys (ultimo incremento pari a 0.05 N'ys) fino ad una fora massima uguale a 0.9 N'ys; per ciascun livello di carico la forza dovrà essere mantenuta costante per un periodo di tempo pari a:
 - 5 minuti per ancoraggi in roccia e terreni non coesivi, con misura dell'allungamento all'inizio ed alla fine di ciascun intervallo;
 - 30 minuti per ancoraggi in terreni coesivi con misura dell'allungamento a 0-2-4-8-15-30 minuti;
 - scarico fino alla forza N_0 in tre stadi, con sosta di 1 minuto per ogni gradino e con misura dell'allungamento residuo.

Al termine della prova viene tracciato il diagramma forze-allungamenti.

Per terreni coesivi vengono anche tracciate, in scala semilogaritmica, le curve dell'allungamento in funzione del logaritmo del tempo per tutte le soste a forza costante e l'andamento della pendenza finale $tg\alpha$ delle predette curve in funzione della forza applicata.

Si assume come forza limite ultima del tirante Nfu:

- nel caso di roccia o terreno non coesivo, il massimo valore della forza applicata durante la prova anche se non si è raggiunto lo sfilamento del tirante;
- nel caso di terreno coesivo, il valore della forza per cui il diagramma rappresentante l'andamento della pendenza finale tgα in funzione della forza applicata presenta un'evidente variazione di pendenza; o il massimo valore della forza applicata qualora non sia raggiunta, nel corso della prova, tale situazione. In base al valore della forza limite ultima così determinata ed ai valori dei coefficienti di sicurezza previsti (2,0 per tiranti temporanei, 2,5 per tiranti permanenti) viene confermata o corretta la lunghezza della fondazione originariamente prevista ovvero la forza teorica di utilizzazione NQ (nel caso in cui la lunghezza della fondazione sia limitata da particolari esigenze.

Il terzo tirante ha lo scopo oltre di confermare i risultati ottenuti col secondo, di verificare la forza teorica di utilizzazione NQ, di controllare il comportamento nel tempo e di stabilire i criteri di accettazione per il collaudo dei tiranti da eseguire.

Il terzo tirante è pertanto, uguale ai tiranti da eseguire ed il percorso di carico della prima parte della prova è identico a quello prescritto per il collaudo di tutti gli altri tiranti. Qualora i risultati ottenuti con il terzo tirante non confermassero le valutazioni tratte dal secondo, dovranno essere realizzati altri tiranti di prova; questi ulteriori tiranti sono da considerare in soprannumero rispetto al numero totale dei tiranti di prova stabilito nella precedente tabella.

Il terzo tirante di prova deve avere armatura ed ogni altra caratteristica uguale a quelle del tirante da realizzare e lunghezza di fondazione o forza teorica di utilizzazione stabilita in base ai risultati della prova sul secondo tirante.

La prova sul terzo tirante comprende le seguenti fasi:

- a) tesatura fino alla forza di allineamento N_0 =0,1NQ; le misure degli allungamenti hanno inizio dal termine di questa fase;
- b) tesatura fino alla forza di collaudo NC, pari ad 1,2 volte la forza teorica di utilizzazione NQ, per incrementi di 0,1NQ con sosta di 1 minuto ad ogni incremento di carico e misura dell'allungamento finale;
- c) sosta a forza costante per 5 minuti in roccia o terreni non coesivi e 15 minuti per terreni coesivi, con misura dell'allungamento alla fine della sosta;
- d) scarico fino alla forza N₀ in tre stadi, con sosta di 1 minuto per ogni gradino, con misura dell'allungamento residuo;
- e) tesatura per incrementi di carico pari a 0.15 Nys fino ad una forza massima uguale ad NQ; per ciascun livello di carico la forza dovrà essere mantenuta costante per un periodo di tempo minimo pari a: 5 minuti per ancoraggi in roccia e terreni non coesivi, con misura dell'allungamento all'inizio ed alla fine di ciascun intervallo; 30 minuti per ancoraggi in terreni coesivi con misura dell'allungamento a 0-2-4-8-15-30 minuti;
- f) bloccaggio e sosta alla forza pari a NQ per runa durata pari a quella prevista in progetto, comunque non inferiore a 24 ore per rocce o terreni non coesivi e di 72 ore per terreni coesivi, ad allungamento costante con misura della forza residua. Qualora il sistema di bloccaggio non consenta tale tipo di misura o gli spostamenti della testata siano tali da falsare le misure stesse, la sosta andrà effettuata mantenendo costante la forza al valore sopra indicato e misurando l'allungamento finale;
- g) scarico fino alla forza N₀ come al punto d). Al termine di questa fase viene tracciato il diagramma forze-allungamenti. Per terreni coesivi vengono anche tracciate, in scala semilogaritmica, le curve dell'allungamento in funzione del logaritmo del tempo per tutte le soste a forza costante e l'andamento della pendenza finale tga delle predette curve in funzione della forza applicata;
- h) l'esecuzione di un numero arbitrario di cicli di carico e scarico aventi come base la forza N₀, con incremento del carico ad ogni ciclo fino ad un valore pari a 0,9 Nys e sosta per ciascun ciclo pari a 5 minuti in terreni non coesivi e rocce e di 15 minuti in terreni coesivi. Per ciascun ciclo vengono misurati gli allungamenti corrispondenti a ogni tappa del percorso di carico. Al termine di questa fase viene costruito il relativo diagramma forze-deformazioni (tale prova può essere condotta a forza costante o ad allungamento costante).

La lunghezza della fondazione e la forza teorica di utilizzazione sono comunque valide se:

- i risultati ottenuti sono congruenti con quelli ricavati nella prova del secondo tirante;
- la lunghezza libera teorica II e la lunghezza libera effettiva IL del tirante verificano le seguenti condizioni: $0.9 \text{ II} \le \text{IL} \le \text{II} + 0.5 \text{ If}$;
- la variazione dell'allungamento registrato nella fase f) sia inferiore (nei primi 30 minuti) al 5% dell'allungamento teorico relativo allo stesso valore di forza;
- l'andamento dei valori degli allungamenti nel tempo, durante la fase f), deve tendere rapidamente ad un asintoto orizzontale.

Se anche una sola delle predette condizioni non risulta soddisfatta, occorre procedere alla realizzazione di un nuovo tirante di prova con lunghezza di fondazione maggiore o con forza teorica di utilizzazione minore, da sottoporre alle stesse modalità di prova del terzo tirante. La procedura va ripetuta finché non risultano soddisfatte tutte le predette condizioni.

Collaudi e controlli

Si definisce collaudo di un tirante la prova di tesatura non distruttiva per il controllo esecutivo di tutti i tiranti.

La prova consiste in un ciclo semplice di carico e scarico del tirante realizzato secondo le modalità di seguito riportate.

La forza di collaudo NC è pari a 1,2 NQ, essendo NQ la forza teorica di utilizzazione. Il tirante viene tesato, a partire da una forza di allineamento N0 (pari a 0,1 NQ), fino al valore della forza di collaudo NC con incrementi di carico pari a 0,1 NQ con sosta a ciascun incremento di 1 minuto, misurando il corrispondente allungamento.

La forza NC o l'allungamento vengono mantenuti costanti per un periodo di tempo ∆t pari a:

- $\Delta t = 5$ minuti per tiranti in roccia o in terreni non coesivi:
- $-\Delta t = 15$ minuti per tiranti in terreni coesivi.

Al termine di tale periodo dopo avere rilevato l'incremento di allungamento o la riduzione della forza $\Delta N'$, il tirante viene scaricato alla forza di allineamento N0 in tre stadi con sosta di 1 minuto per ogni gradino, rilevando il relativo allungamento permanente Δlp . Quindi il tirante viene tesato al valore della forza di tesatura Ni prevista dal progetto e bloccato a tale valore.

Accettazione dei tiranti

Per l'accettazione del singolo tirante devono essere verificate le seguenti condizioni:

- se la prova è condotta a carico costante la variazione di allungamento registrata all'apice del ciclo deve essere dello stesso ordine di grandezza di quella rilevata nella prova del terzo tirante con uno scostamento massimo del ±5%; se la prova è condotta ad allungamento costante la variazione della forza all'apice del ciclo deve essere inferiore al 5% della forza applicata (ΔN' < 5% NC);
 - la lunghezza libera effettiva deve verificare le seguenti condizioni: 0,9 II ≤ IL ≤ II + 0,5 If;
 - l'allungamento permanente ∆lp deve essere minore di 1,3 volte quello riscontrato nelle prove preliminari sul terzo tirante.

Nel caso in cui si sia effettuata la sola prova di sfilamento, le condizioni di accettazione che devono essere verificate sono:

- se la prova è condotta a carico costante, la variazione di allungamento registrata all'apice del ciclo deve essere inferiore al 5% dell'allungamento teorico relativo alla forza corrispondente;
- se la prova è condotta ad allungamento costante la variazione della forza all'apice del ciclo deve essere inferiore al 5% della forza applicata ($\Delta N' < 5\% NC$);
- la lunghezza libera effettiva deve verificare le seguenti condizioni:
 - la lunghezza libera effettiva deve verificare le seguenti condizioni: 0,9 Il ≤ IL ≤ II + 0,5 If ;
 - l'allungamento permanente Δ lp deve essere contenuto entro valori fissati dal Progettista.

I tiranti che non soddisfano i predetti requisiti di collaudo vanno sostituiti con nuovi tiranti od opportunamente declassati.

PARATIE E DIAFRAMMI

La paratia od il diaframma costituiscono una struttura di fondazione infissa o costruita in opera a partire dalla superficie del terreno con lo scopo di realizzare tenuta all'acqua ed anche a sostegno di scavi.

Le paratie ed i diaframmi potranno essere:

- del tipo a palancole metalliche infisse;
- del tipo a palancole prefabbricate con calcestruzzo armato centrifugato infisse;
- del tipo a pali in calcestruzzo armato di grosso diametro accostati;
- a diaframma gettato in opera di calcestruzzo armato.

PALANCOLATI

Le palancole metalliche, di sezione varia, devono rispondere comunque ai seguenti requisiti fondamentali: adeguata resistenza agli sforzi di flessione, facilità di infissione, impermeabilità delle giunzioni, facilità di estrazione e reimpiego (ove previsto), elevata protezione contro le corrosioni.

L'infissione delle palancole sarà effettuata con i sistemi normalmente in uso.

Il maglio dovrà essere di peso complessivo non minore del peso delle palancole comprensivo della relativa cuffia.

Dovranno essere adottate speciali cautele affinché durante l'infissione gli incastri liberi non si deformino e rimangano puliti da materiali così da garantire la guida alla successiva palancola. A tale scopo gli incastri prima dell'infissione dovranno essere riempiti di grasso.

Durante l'infissione si dovrà procedere in modo che le palancole rimangono perfettamente verticali non essendo ammesse deviazioni, disallineamenti o fuoriuscita dalle guide.

Per ottenere un più facile affondamento, specialmente in terreni ghiaiosi e sabbiosi, l'infissione, oltre che con la battitura potrà essere realizzata con il sussidio dell'acqua in pressione fatta arrivare, mediante un tubo metallico, sotto la punta della palancola.

Se durante l'infissione si verificassero fuoriuscite dalle guide, disallineamenti o deviazioni che a giudizio della Direzione dei lavori non fossero tollerabili, la palancola dovrà essere rimossa e reinfissa o sostituita, se danneggiata.

L'Impresa dovrà comunicare alla D.L. le modalità esecutive che intende adottare per le infissioni e

dovrà inoltre assicurare il rispetto delle Norme DIN 4150, in merito ai limiti delle vibrazioni, comunicando alla D.L. i provvedimenti che intende adottare nel caso dei superamenti dei limiti stessi. La D.L., a sua discrezione, può richiedere che l'Impresa provveda ad eseguire misure di controllo delle vibrazioni indotte, con oneri e spese relative a carico dell'Impresa stessa.

Si prescrive il rispetto delle seguenti tolleranze:

posizione planimetrica dell'asse mediano del palancolato : ± 3 cm
verticalità : ± 2 %
quota testa : ± 5 cm
profondità : ± 25 cm

Qualora l'infissione risultasse ostacolata l'Impresa, previo accordo della Direzione Lavori e previa verifica della congruità progettuale dell'opera, potrà limitare l'infissione a quote superiori, provvedendo al taglio della parte di palancola eccedente rispetto alla quota di testa prevista in progetto.

I piani di lavoro dovranno essere adeguati in relazione alle dimensioni delle attrezzature da utilizzare, la loro quota dovrà consentire di rispettare ovunque le quote di progetto relative alla testa del palancolato.

Dovranno essere utilizzati profilati aventi forma, sezione, spessore, lunghezza, conformi a quanto previsto dal progetto o, nel caso di impieghi di carattere provvisionale, comunque sufficienti a resistere alle massime sollecitazioni, sia in esercizio che durante le fasi di infissione ed estrazione.

Salvo differenti indicazioni riportate nei disegni di progetto, l'acciaio delle palancole dovrà avere le sequenti caratteristiche:

- tensione di rottura ft = 550 N/mm2
- limite elastico fy = 390 N/mm2.

bitume o altro materiale protettivo. I bordi di guida dovranno essere perfettamente allineati e puliti.

La realizzazione dei palancolati provvisori e definitivi richiede che vengano adottati tutti i provvedimenti necessari perchè l'opera abbia, senza eccezioni, i requisiti progettuali, in particolare per quanto riguarda la verticalità, la complanarità ed il mutuo incastro degli elementi costitutivi, la capacità di resistere ai carichi laterali.

L'attrezzatura d'infissione e di estrazione avrà caratteristiche conformi a quanto definito dall'Impresa allo scopo di assicurare il raggiungimento della profondità d'infissione richiesta nel contesto stratigrafico locale e la possibilità di estrazione degli elementi non definitivi.

L'infissione sarà realizzata a percussione, utilizzando un battipalo, o tramite vibrazione, con apposito vibratore. L'estrazione sarà preferibilmente eseguita mediante vibrazione.

Il battipalo sarà di tipo scorrevole su una torre con guide fisse e perfetto allineamento verticale, con caratteristiche in accordo alle prescrizioni di progetto, se esistenti.

Si potranno impiegare battipali a vapore o diesel, in ogni caso in grado di fornire l'energia sufficiente all'infissione entro i terreni presenti nel sito, adeguatamente alle condizioni della stratigrafia locale.

La massa battente del battipalo agirà su un cuffia o testa di battuta in grado di proteggere efficacemente la palancola da indesiderate deformazioni o danni.

Per ogni attrezzatura l'Impresa dovrà fornire le seguenti informazioni:

- marca e tipo del battipalo;
- principio di funzionamento;
- energia massima di un colpo e relativa possibilità di regolazione;
- n. di colpi al minuto e relativa possibilità di regolazione;
- caratteristiche della cuffia o testa di battuta;
- peso del battipalo.

Il vibratore sarà a masse eccentriche regolabili, a funzionamento idraulico o elettrico.

Le caratteristiche dell'attrezzatura (momento di eccentricità, numero di vibrazioni al minuto, forza centrifuga all'avvio, ampiezza ed accelerazione del minimo) saranno scelte dall'Impresa in relazione alle prestazioni da ottenere, eventualmente anche a seguito di prove tecnologiche preliminari.

Le palancole saranno di tipo metallico, con caratteristiche geometriche conformi alle prescrizioni di progetto.

Per quanto riguarda le armature metalliche si rimanda a quanto già esposto nel precedente paragrafo.

Le palancole saranno preferibilmente infisse con l'ausilio di uno scavo guida d'invito, di dimensioni adeguate.

L'Impresa dovrà comunicare alla Direzione Lavori il programma cronologico di infissione per tutte le palancole, prima dell'inizio dell'infissione stessa.

L'infissione per battitura avverrà con l'uso di un battipalo perfettamente efficiente e proseguirà fino al raggiungimento della quota di progetto o fino al raggiungimento del rifiuto, che, se non diversamente indicato, sarà considerato raggiunto quando si misureranno, per 50 colpi di maglio, avanzamenti non superiori a 10 cm.

L'Impresa potrà, informandone la Direzione Lavori, ricorrere a delle iniezioni di acqua in

pressione per facilitare il superamento di livelli granulari addensati, procurando la discesa della palancola per peso proprio con l'ausilio di una modesta battitura. Modalità, pressioni e portata del getto devono essere comunicate alla Direzione Lavori.

In caso di qualsiasi anomalia rilevata nel corso dell'infissione e comunque nel caso di mancato raggiungimento della prevista quota finale, sia nel caso di infissione per battitura che per vibrazione, l'Impresa dovrà immediatamente informare la Direzione Lavori.

Le palancole appartenenti ad opere provvisorie saranno estratte associando tiro e vibrazione.

Per la fase di estrazione si compilerà una scheda analoga a quella descritta per l'infissione.

A estrazione avvenuta, la palancola sarà esaminata ed il suo stato brevemente descritto, annotando la presenza di distorsioni, deformazioni o danni.

PARATIE COSTRUITE IN OPERA

Paratie a pali in calcestruzzo armato di grosso diametro accostati

Dette paratie saranno di norma realizzate mediante pali di calcestruzzo armato eseguiti in opera accostati fra loro e collegati in sommità da un cordolo di calcestruzzo armato. Per quanto riguarda le modalità di esecuzione dei pali, si rinvia a quanto fissato nel relativo articolo. Nel caso specifico particolare cura dovrà essere posta nell'accostamento dei pali fra loro e nel mantenere la verticalità dei pali stessi.

Diaframmi in calcestruzzo armato

In linea generale i diaframmi saranno costruiti eseguendo lo scavo del terreno a qualsiasi profondità con benna od altro sistema idoneo a dare tratti di scavo (conci) della lunghezza singola di norma non inferiore a 2,50 m.

Lo scavo verrà eseguito con l'ausilio di fango bentonitico per evacuare i detriti, e per il sostegno provvisorio delle pareti.

I fanghi di bentonite da impiegare nello scavo dovranno essere costituiti di una miscela di bentonite attivata, di ottima qualità, ed acqua, di norma nella proporzione di 8÷16 kg di bentonite asciutta per 100 litri d'acqua, salvo la facoltà della Direzione dei lavori di ordinare una diversa dosatura. Il contenuto in sabbia finissima dovrà essere inferiore al 3% in massa della bentonite asciutta.

Eseguito lo scavo e posta in opera l'armatura metallica interessante il concio, opportunamente sostenuta e mantenuta in posizione durante il getto, sarà effettuato il getto del conglomerato cementizio con l'ausilio di opportuna prolunga o tubo di getto, la cui estremità inferiore sarà tenuta almeno due metri al di sotto del livello del fango, al fine di provocare il rifluimento in superficie dei fanghi bentonitici e di eseguire senza soluzioni di continuità il getto stesso.

Il getto dovrà essere portato fino ad una quota superiore di circa 50 cm a quella di progetto. I getti dei calcestruzzi saranno eseguiti solo dopo il controllo della profondità di scavo raggiunta e la verifica della armatura da parte della Direzione dei lavori. Nella ripresa dei getti, da concio a concio, si adotteranno tutti gli accorgimenti necessari al fine di evitare distacchi, discontinuità e differenze nei singoli conci.

L'allineamento planimetrico della benna di scavo del diaframma sarà ottenuto di norma con la formazione di guide o corree in calcestruzzo anche debolmente armato.

Prove e verifiche sul diaframma

Oltre alle prove di resistenza sui calcestruzzi e sugli acciai impiegati previsti dalle vigenti norme, la Direzione dei lavori potrà richiedere prove di assorbimento per singoli pannelli, nonché eventuali carotaggi per la verifica della buona esecuzione dei diaframmi stessi.

PALIFICAZIONI

Le palificazioni sono costituite da elementi strutturali di fondazione infissi o costruiti dalla superficie del terreno in grado di trasmettere al sottosuolo le forze ed i carichi applicati dalle sovrastrutture.

Le palificazioni potranno essere composte da:

- pali di legno infissi;
- pali di calcestruzzo armato infissi;
- pali trivellati di calcestruzzo armato costruiti in opera.

PALI INFISSI

Pali di legno

I pali di legno devono essere di essenza forte o resinosa secondo le previsioni di progetto o le disposizioni che saranno impartite dalla Direzione dei Lavori. I pali dovranno essere scortecciati, ben diritti, di taglio fresco, conquagliati alla superficie ed esenti da carie.

La parte inferiore del palo sarà sagomata a punta e protetta da apposita puntazza in ferro di forma e peso adeguati agli sforzi indotti dall'infissione.

La parte superiore del palo, sottoposta ai colpi di maglio, dovrà essere munita di anelli di ferro e cuffia che impedisca durante la battitura ogni rottura.

I pali, salvo diverse prescrizioni, verranno infissi verticalmente nella posizione stabilita dal progetto.

Ogni palo che si spezzasse durante l'infissione o deviasse, dovrà essere, su richiesta della Direzione dei lavori, tagliato o divelto e sostituito con altro.

I pali dovranno essere battuti fino a rifiuto con maglio di peso adeguato.

Il rifiuto si intende raggiunto quando l'affondamento prodotto da un determinato numero di colpi del maglio, cadente sempre dalla stessa altezza, non supera il limite che il progettista avrà fissato in funzione del carico che il palo dovrà sopportare.

Le ultime volate dovranno essere sempre battute in presenza di un incaricato della Direzione dei lavori.

L'Appaltatore non potrà in alcun modo procedere alla recisione della testa del palo senza averne preventiva autorizzazione.

Al fine di consentire la verifica della portata di progetto, dovranno venire rilevati per ogni palo e trascritti su apposito registro, i seguenti elementi: profondità raggiunta, rifiuto, peso della cuffia o degli altri elementi di protezione, peso della massa battente, altezza di caduta del maglio, frequenza di colpi, energia d'urto, efficienza del battipalo.

A giudizio della Direzione dei Lavori la portata dei pali battuti potrà essere controllata mediante prove di carico dirette, da eseguire con le modalità e nel numero che sarà prescritto.

Pali di conglomerato cementizio armato

I pali prefabbricati saranno centrifugati a sezione cava. Il conglomerato cementizio impiegato dovrà avere una resistenza caratteristica a 28 *giorni* non inferiore a 40 *N/mm*² e dovrà essere esente da porosità o altri difetti.

Il cemento sarà pozzolanico, ferrico pozzolanico o d'altoforno e dovrà essere esente da porosità o altri difetti. La Direzione dei lavori potrà anche ordinare rivestimenti protettivi. Il copriferro dovrà essere di almeno tre centimetri.

I pali dovranno essere muniti di robuste puntazze metalliche ancorate al conglomerato. L'infissione verrà fatta con i sistemi ed accorgimenti previsti per i pali di legno. I magli, se a caduta libera, dovranno essere di peso non inferiore a quello del palo da infiggere. Allo scopo di evitare la rottura delle teste dei pali durante l'infissione, saranno applicate sopra di esse protezioni di legname entro cerchiature di ferro.

Lo spostamento planimetrico della posizione teorica dei pali non potrà superare 10 cm e l'inclinazione finale, rispetto all'asse teorico, non dovrà superare il 3%. Per valori degli spostamenti superiori a quelli indicati, la Direzione dei lavori potrà richiedere che i pali siano rimossi e sostituiti.

Per ogni palo dovranno venire rilevati e trascritti su apposito registro, i seguenti elementi: lunghezza, diametro esterno alla punta ed alla testa, diametro interno alla punta ed alla testa, profondità raggiunta, rifiuto, tipo di battipalo, peso del maglio, altezza di caduta del maglio, caratteristiche della cuffia, peso della cuffia, energia d'urto, efficienza del battipalo.

Occorrerà inoltre registrare il numero di colpi necessario all'affondamento del palo per ciascun tratto di 50 cm finché la resistenza alla penetrazione risulti minore di un colpo per ogni $1,5 \div 2$ cm, o per ciascun tratto di 10 cm quando la resistenza alla penetrazione superi i valori sopracitati. Sul fusto del palo dovranno essere riportate delle tacche distanziate tra loro di un metro a partire dalla punta del palo onde poterne controllare la penetrazione progressiva. Qualora durante l'infissione si verificassero scheggiature, lesioni di qualsiasi genere oppure deviazioni dell'asse, che a giudizio della Direzione dei lavori non fossero tollerabili, il palo dovrà essere rimosso e sostituito.

Pali speciali di conglomerato cementizio costruiti in opera (tipo Simplex, Franki, ecc.).

La preparazione dei fori destinati ad accogliere gli impasti dovrà essere effettuata senza alcuna asportazione di terreno mediante l'infissione delle tubo-forma, secondo le migliori norme tecniche d'uso della fattispecie, preventivamente approvata dalla Direzione dei lavori.

Per tolleranza degli spostamenti rispetto alla posizione teorica dei pali e per tutte le modalità di infissione del tubo-forma e relativi rilevamenti, valgono le norme descritte precedentemente per i pali prefabbricati in calcestruzzo armato centrifugato.

Ultimata l'infissione del tubo-forma si procederà anzitutto alla formazione del bulbo di base in conglomerato cementizio mediante energico costipamento dell'impasto e successivamente alla confezione del fusto, sempre con conglomerato cementizio energicamente costipato.

Il costipamento del getto sarà effettuato con i procedimenti specifici per il tipo di palo adottato, procedimenti che, comunque, dovranno essere preventivamente concordati con la Direzione dei lavori.

Il conglomerato cementizio impiegato sarà del tipo prescritto negli elaborati progettuali e dovrà risultare esente da porosità od altri difetti. Il cemento sarà pozzolanico o d'altoforno.

L'introduzione del conglomerato nel tubo-forma dovrà avvenire in modo tale da ottenere un getto omogeneo e compatto, senza discontinuità o segregazione; l'estrazione del tubo-forma, dovrà essere effettuata gradualmente, seguendo man mano la immissione ed il costipamento del conglomerato cementizio ed adottando comunque tutti gli accorgimenti necessari per evitare che si creino distacchi, discontinuità od inclusioni di materiali estranei del corpo del palo.

Durante il getto dovrà essere tassativamente evitata l'introduzione di acqua all'interno del tubo, e si farà attenzione che il conglomerato cementizio non venga trascinato durante l'estrazione del tubo-forma; si avrà cura in particolare che l'estremità inferiore di detto tubo rimanga sempre almeno 100 cm sotto il livello raggiunto dal conglomerato.

Dovranno essere adottati inoltre tutti gli accorgimenti atti ad evitare la separazione dei componenti del conglomerato cementizio ed il suo dilavamento da falde freatiche, correnti subacquee, ecc.

Quest'ultimo risultato potrà essere ottenuto mediante arricchimento della dose di cemento, oppure con l'adozione di particolari additivi o con altri accorgimenti da definire di volta in volta con la Direzione dei lavori. Qualora i pali siano muniti di armatura metallica, i sistemi di getto e di costipamento dovranno essere, in ogni caso, tali da non danneggiare l'armatura né alterarne la posizione rispetto ai disegni di progetto.

Le gabbie d'armatura dovranno essere verificate, prima della posa in opera, dalla Direzione dei lavori. Il copriferro sarà di almeno 5 cm.

La profondità massima raggiunta da ogni palo sarà verificata prima del getto dalla Direzione dei lavori e riportata su apposito registro giornaliero.

La Direzione dei lavori effettuerà inoltre gli opportuni riscontri sul volume del conglomerato cementizio impiegato, che dovrà sempre risultare superiore al volume calcolato sul diametro esterno del tubo-forma usato per l'esecuzione del palo.

Pali trivellati in cemento armato

Lo scavo per la costruzione dei pali trivellati verrà eseguito asportando il terreno corrispondente al volume del fusto del palo.

Il sostegno delle pareti dello scavo, in dipendenza della natura del terreno e delle altre condizioni cui l'esecuzione dei pali può essere soggetta, sarà assicurato in uno dei seguenti modi:

- mediante infissione di rivestimento tubolare provvisorio in acciaio;
- con l'ausilio di fanghi bentonitici in quiete nel cavo od in circolazione tra il cavo ed una apparecchiatura di separazione dei detriti.

Per i pali trivellati su terreno sommerso d'acqua si farà ricorso, per l'attraversamento del battente d'acqua, all'impiego di un rivestimento tubolare di acciaio opportunamente infisso nel terreno di imposta, avente le necessarie caratteristiche meccaniche per resistere agli sforzi ed alle sollecitazioni indotte durante l'infissione anche con uso di vibratori; esso sarà di lunghezza tale da sporgere dal pelo d'acqua in modo da evitare invasamenti e consentire sia l'esecuzione degli scavi che la confezione del palo.

Tale rivestimento tubolare costituirà cassero a perdere per la parte del palo interessata dal battente d'acqua. L'infissione del tubo-forma dovrà, in ogni caso, precedere lo scavo. Nel caso in cui non si impieghi il tubo di rivestimento il diametro nominale del palo sarà pari al diametro dell'utensile di perforazione.

Qualora si impieghi fango di perforazione per il sostegno delle pareti del foro, si procederà con le modalità stabilite per i diaframmi in calcestruzzo armato di cui al precedente articolo.

Raggiunta la quota fissata per la base del palo, il fondo dovrà essere accuratamente sgombrato dai detriti di perforazione, melma, materiale sciolto smosso dagli utensili di perforazione, ecc.

L'esecuzione del getto del conglomerato cementizio sarà effettuata con impiego del tubo di convogliamento, munito di imbuto di caricamento.

Il cemento sarà del tipo pozzolanico o d'altoforno.

In nessun caso sarà consentito di porre in opera il conglomerato cementizio precipitandolo nel cavo direttamente dalla bocca del foro.

L'Appaltatore dovrà predisporre impianti ed attrezzature per la confezione, il trasporto e la posa in opera del conglomerato cementizio di potenzialità tale da consentire il completamento delle operazioni di getto di ogni palo, qualunque ne sia il diametro e la lunghezza senza interruzioni.

Nel caso di impiego del tubo di rivestimento provvisorio, l'estrazione dello stesso dovrà essere eseguita gradualmente adottando tutti gli accorgimenti necessari per evitare che si creino distacchi, discontinuità od inclusioni di materiali estranei al corpo del palo.

Le armature metalliche dovranno essere assemblate fuori opera e calate nel foro prima dell'inizio del getto del conglomerato cementizio; nel caso in cui il palo sia armato per tutta la lunghezza, esse dovranno essere mantenute in posto nel foro, sospendendole dall'alto e non appoggiandole sul fondo.

Le armature dovranno essere provviste di opportuni dispositivi distanziatori e centratori atti a garantire una adeguata copertura di conglomerato cementizio sui ferri che sarà di 5 *cm*.

I sistemi di getto dovranno essere in ogni caso tali da non danneggiare l'armatura né alterarne la posizione, rispetto ai disegni di progetto.

A giudizio della Direzione dei lavori, i pali che ad un controllo, anche con trivellazione in asse, risultassero comunque difettosi, dovranno essere rifatti.

Pali trivellati di piccolo diametro di malta cementizia iniettata ed armata metallica

La perforazione, con asportazione del terreno, verrà eseguita con il sistema più adatto alle condizioni che di volta in volta si incontrano e che abbia avuto la preventiva approvazione da parte della Direzione dei lavori.

Lo spostamento planimetrico della posizione teorica dei pali non dovrà superare 5 cm e l'inclinazione, rispetto all'asse teorico, non dovrà superare il 3%. Per valori di scostamento superiori ai suddetti, la Direzione dei lavori deciderà se scartare i pali che dovranno eventualmente essere rimossi e sostituiti.

Qualora si impieghi fango di perforazione per il sostegno delle pareti del foro, si procederà con le modalità stabilite per i diaframmi di calcestruzzo armato di cui al precedente articolo.

Pali jet grouting

I pali tipo jet grouting, o colonne consolidate di terreno, saranno ottenuti mediante perforazione senza asportazione di materiale e successiva iniezione ad elevata pressione di miscele consolidanti di caratteristiche rispondenti ai requisiti di progetto ed approvata dalla Direzione dei lavori.

Alla stessa Direzione dei lavori dovrà essere sottoposto, per l'approvazione l'intero procedimento costruttivo con particolare riguardo ai parametri da utilizzare per la realizzazione delle colonne, e cioè la densità e la pressione della miscela cementizia, la rotazione ed il tempo di risalita della batteria di aste, ed alle modalità di controllo dei parametri stessi.

Art. XXXIII - Opere in calcestruzzo

L'Appaltatore deve rispettare tutte le leggi, decreti, norme, circolari, ecc. esistenti. In particolare si ricorda il sotto indicato elenco senza pertanto esimere l'Appaltatore dalla completa conoscenza ed applicazione di tutta la normativa esistente.

- Nuove Norme Tecniche D.M. 14 Gennaio 2008 (NTC2008);
- Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008";
- D.P.R. n. 380 del 6 giugno 2001;

APPROVVIGIONAMENTO ED ACCETTAZIONE DEI MATERIALI

Cementi

I requisiti meccanici dovranno rispettare la legge n. 595 del 26 maggio 1965 ed alle norme armonizzate della serie UNI EN 197 ed in particolare:

Per le resistenze a flessione e le modalità di prova, per i requisiti chimici ed altre caratteristiche vedasi la legge n. 595 del 26 maggio 1965.

Ghiaia e pietrisco costituenti gli aggregati

Dovranno essere costituiti da elementi lapidei puliti non alterabili dal freddo e dall'acqua.

Dovranno essere esenti da polveri, gessi, cloruri, terra, limi, ecc. e dovranno avere forme tondeggianti o a spigoli vivi, comunque non affusolate o piatte.

Gli aggregati impiegabili per il confezionamento dei calcestruzzi possono essere di origine naturale, artificiale o di recupero come da normativa UNI EN 12620 e UNI EN 13055-1.

La massima dimensione degli aggregati sarà funzione dell'impiego previsto per il calcestruzzo, del diametro delle armature e della loro spaziatura.

Orientativamente si possono ritenere validi i seguenti valori:

fondazioni e muri di grosso spessore:30 mm

travi, pilastri e solette:20 mm

solette di spessore < di 10 cm, nervature di solai e membrature sottili:
 12/13 mm

Sabbie (per calcestruzzo)

Dovranno essere costituite da elementi silicei procurati da cave o fiumi, dovranno essere di forma angolosa, dimensioni assortite ed esenti da materiali estranei o aggressivi come per le ghiaie; in particolare dovranno essere esenti da limi, polveri, elementi vegetali od organici.

Le sabbie prodotte in mulino potranno essere usate previa accettazione della granulometria da parte del Direttore Lavori.

In ogni caso l'Appaltatore dovrà provvedere a suo onere alla formulazione delle granulometrie delle sabbie usate ogni qualvolta la Direzione Lavori ne faccia richiesta; le granulometrie dovranno essere determinate con tele e stacci UNI 2331-2/80 ed UNI 2332-1/79.

Per tutto quanto non specificato valgono le norme del D.M. 14/1/66 e successive.

DOSATURA DEI GETTI

Il cemento e gli aggregati sono di massima misurati a peso, mentre l'acqua è normalmente misurata a volume.

L'Appaltatore dovrà adottare, in accordo con la vigente normativa, un dosaggio di componenti (ghiaia, sabbia, acqua, cemento) tale da garantire le resistenze indicate sui disegni di progetto. Dovrà inoltre garantire che il calcestruzzo possa facilmente essere lavorato e posto in opera, in modo da passare attraverso le armature, circondarle completamente e raggiungere tutti gli angoli delle casseforme.

Qualora non espressamente altrove indicato, le dosature si intendono indicativamente così espresse:

_	calcestruzzo magro:	cemento: sabbia: ghiaia:	150 kg 0,4 m ³ 0,8 m ³
_	calcestruzzo normale:	cemento:	300 kg
		sabbia:	$0,4 \text{ m}^3$
		ghiaia:	0.8 m^3
_	calcestruzzo grasso:	cemento:	350 kg
		sabbia:	$0,4 \text{ m}^3$
		ghiaia:	0.8 m^3

Dovranno comunque sempre essere raggiunte le caratteristiche e la classe di resistenza previste a progetto. Il rapporto acqua/cemento dovrà essere indicato e conforme alle prescrizioni di durabilità dettate dalla normativa.

Qualora venga utilizzato un additivo superfluidificante il rapporto acqua/cemento potrà essere usato a compensazione della quantità d'acqua; il dosaggio dovrà essere definito in accordo con le prescrizioni del produttore, con le specifiche condizioni di lavoro e con il grado di lavorabilità richiesto.

Come già indicato l'uso di additivi dovrà essere autorizzato dalla Direzione dei Lavori.

CONFEZIONE DEI CALCESTRUZZI

Dovrà essere eseguita in ottemperanza al D.M. 14 Gennaio 2008 (NTC2008) e la relativa Circolare n. 617 del 2 febbraio 2009 "Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008".

E' ammesso l'uso di calcestruzzo preconfezionato, con esplicita approvazione della Direzione Lavori. Tutte le cautele e le prescrizioni esposte precedentemente dovranno essere applicate anche dal produttore del calcestruzzo preconfezionato. La Direzione dei Lavori si riserva comunque il diritto, dopo accordi e con il supporto dell'Appaltatore, di accedere agli impianti di preconfezionamento, esequendo tutti i controlli e gli accertamenti che saranno ritenuti opportuni.

La Direzione dei Lavori richiederà comunque documenti comprovanti il dosaggio e la natura dei componenti del calcestruzzo fornito.

L'appaltatore è, comunque, responsabile unico delle dosature dei calcestruzzi e della loro rispondenza per l'ottenimento delle resistenze richieste nei disegni e documenti contrattuali.

Gli impianti a mano sono ammessi per piccoli getti non importanti staticamente e previa autorizzazione del Direttore dei Lavori.

GETTO DEL CALCESTRUZZO

Il getto verrà eseguito secondo le normative contenute nella Linee guida per la messa in opera del calcestruzzo strutturale e per la valutazione delle caratteristiche meccaniche del calcestruzzo indurito mediante prove non distruttive del febbraio 2008 a cura del Consiglio Superiore dei Lavori Pubblici.

Il getto dovrà essere eseguito con cura, opportunamente costipato ed eventualmente vibrato secondo le prescrizioni del Direttore dei Lavori.

Le interruzioni di getto dovranno essere evitate e comunque autorizzate dal Direttore dei Lavori. Le riprese dovranno essere eseguite in modo da trovarsi in zone di momento flettente nullo nelle strutture inflesse ed in modo da essere perpendicolari allo sforzo di compressione nelle strutture verticali.

Quando la ripresa avviene contro un getto ancora plastico, si dovrà procedere a previa boiaccatura del getto esistente. Se il getto esistente e' in fase di presa, occorre scalpellarlo e mettere a vivo la ghiaia quindi bagnare, applicare uno strato di malta di cemento di 1 - 2 cm. e procedere al nuovo getto.

Qualora richiesto dalla Direzione dei Lavori, l'appaltatore dovrà provvedere all'uso di additivi per la ripresa senza onere per il Committente.

Le strutture in fase di maturazione dovranno essere protette dal gelo, dal caldo eccessivo e dalle piogge violente; così pure sulle strutture suddette dovrà essere vietato il transito di persone, mezzi o comunque qualsiasi forma di sollecitazione.

La maturazione con riscaldamento locale diffuso e' ammessa solo previo accordo scritto con la Direzione dei Lavori.

Prescrizioni esecutive

I getti delle solette a sbalzo dovranno essere sempre eseguiti contemporaneamente al getto del solaio.

Nei getti dovranno essere inserite tutte le casserature, cassette, tubi, ecc. atti a creare i fori, le cavità, i passaggi indicati nei disegni delle strutture e degli impianti tecnologici, come pure dovranno essere messi in opera ferramenta varia (inserti metallici, tirafondi, ecc.) per i collegamenti di pareti e di altri elementi strutturali e/o di finitura.

Sono vietati, salvo approvazione della Direzione dei Lavori, i getti contro terra.

Indipendentemente dalle dosature, i getti di calcestruzzo eseguiti dovranno risultare compatti, privi di alveolature, senza affioramento di ferri; i ferri, nonché tutti gli accessori di ripresa (giunti di neoprene, lamierini, ecc.) e tutti gli inserti dovranno risultare correttamente posizionati; tutte le dimensioni dei disegni dovranno essere rispettate ed a tal fine il costruttore dovrà provvedere a tenere anticipatamente in considerazione eventuali assestamenti o movimenti di casseri ed armature.

Tutti gli oneri relativi saranno compresi nel costo del calcestruzzo, a meno che esplicito diverso richiamo venga fatto nell'elenco voci del progetto.

I getti delle strutture destinate a ricevere una finitura di sola verniciatura dovranno essere realizzati con casseri metallici atti a garantire una superficie del getto la più liscia possibile. Eventuali irregolarità dovranno essere rettificate senza oneri aggiuntivi.

Provini

Durante la confezione dei calcestruzzi l'appaltatore dovrà prevedere il prelievo e la conservazione dei provini di calcestruzzo in numero sufficiente secondo le norme e secondo le prescrizioni del Direttore dei Lavori.

Per ciò che concerne la normativa di prova di esecuzione, collaudo, conservazione, nonché le pratiche per la denuncia dei cementi armati, valgono tutte le leggi vigenti e quelle che venissero promulgate in corso d'opera.

Dovranno inoltre essere eseguiti provini sulle barre di armatura, secondo le prescrizioni contenute nelle Nuove Norme Tecniche di cui al D.M. 14/01/2008. Gli oneri relativi al prelievo, maturazione e certificazione dei provini sono a carico dell'impresa esecutrice dei lavori.

Vibrazione

Le norme ed i tipi di vibrazione dovranno essere approvati dal Direttore dei Lavori sempre restando l'Appaltatore responsabile della vibrazione e di tutte le operazioni relative al getto, L'onere delle eventuali vibrazioni e' sempre considerato incluso nel prezzo del getto.

Condizioni climatiche

Sono vietati i getti con temperatura sotto zero e con prevedibile discesa sotto lo zero.

Fino a temperatura -5 °C il Direttore dei lavori, d'accordo con l'Impresa, sarà arbitro di autorizzare i getti previa sua approvazione degli additivi e delle precauzioni da adottare, sempre restando l'appaltatore responsabile dell'opera eseguita; conseguentemente il Direttore dei Lavori e' autorizzato ad ordinare all'appaltatore di eseguire a proprio onere (dell'Appaltatore) la demolizione dei getti soggetti a breve termine a temperatura eccessivamente bassa e non prevista.

I getti con temperatura superiore a 32 °C dovranno essere autorizzati dalla Direzione Lavori.

L'appaltatore e' obbligato all'innaffiamento costante dei getti in fase di maturazione per un minimo di 8 giorni e/o nei casi di getti massicci secondo indicazioni della Direzione Lavori.

Tolleranze

La tolleranza ammessa nella planarità dei getti, misurata con una staggia piana di 3 m, è di +/-4 mm. per tutti gli orizzontamenti .

La tolleranza ammessa per la verticalità dei getti misurata sull'altezza di un interpiano (intervallo tra due orizzontamenti parziali o totali) è di +/- 1 cm. non accumulabile per piano.

La tolleranza globale ammessa per la verticalità dei getti, misurata sull'altezza totale degli elementi, è pari a 1/1000 della altezza stessa.

La tolleranza ammessa per le misure in piano, riferita ad ogni piano e non cumulabile, è pari 1 +/-1 cm. per la massima dimensione in pianta. Particolare cura dovrà essere posta nella esecuzione dei getti che dovranno ricevere elementi metallici.

Art. XXXIV - Ferro di armatura

Ferro per armature

Le barre per armature dovranno essere conformi a:

 UNI EN 10080:2005, UNI EN 10025-1:2005 e UNI EN 10025-2:2005, UNI EN 10277-1:2008, UNI EN 10277-2:2008;

PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO-

- UNI EN 10021:2007;
- UNI EN 6892-1:2009, UNI EN ISO 7438:2005.
- DM 14 gennaio 2008 "Nuove norme tecniche per costruzioni" Capitoli 2, 11;

Gli acciai impiegati, tondi, nervati, in cavo o fili, in rete elettrosaldata dovranno essere conformi al D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" e relativa circolare 617 del 2 febbraio 2009.

Armature

Dovranno essere conformi, come materiale ed assiemaggio, a quanto indicato nei disegni.

Tutte le armature dovranno essere classificate in base al tipo, alla qualità ed al lotto di provenienza dell'acciaio e dovranno essere corredate dai certificati prescritti dalle leggi e norme vigenti.

La sagomatura delle barre deve essere effettuata meccanicamente a mezzo di mandrini o con ogni altro procedimento che permetta di ottenere i raggi di curvatura stabiliti dal progetto esecutivo, evitando accentuazioni locali della curvatura stessa. E' vietata la piegatura a caldo.

E' obbligatorio il posizionamento di distanziatori in plastica per evitare l'affioramento della armatura sulle superfici dei getti (per i solai a resistenza al fuoco i distanziatori dovranno essere in calcestruzzo).

E' obbligatoria la pulizia delle armature da grassi, oli, terra, polvere, scaglie di ruggine, incrostazioni di calcestruzzo provenienti da getti precedenti. E' vietato effettuare giunzioni nelle armature delle travi salvo quando indicato dai disegni o autorizzato dalla Direzione Lavori, sentito il parere del progettista.

Le saldature di barre d'armatura dovranno essere autorizzate dalla Direzione Lavori e dovranno essere oggetto di una nota scritta di prescrizione delle modalità di esecuzione.Le giunzioni potranno essere effettuate mediante manicotti. Questi potranno essere sia del tipo "a pressare" che del tipo filettato, purché certificati da opportuna documentazione e verificati mediante l'esecuzione di tre provini di giunzione per ogni diametro da giuntare. Per le giunzioni pressate i provini dovranno essere eseguiti in cantiere, con la attrezzatura prevista per le normali operazioni e possibilmente dallo stesso addetto che opererà le giunzioni effettive.

La distanza delle armature dalle pareti dovrà rispettare le norme relative al calcestruzzo armato ordinario. La distanza fra ferro e ferro e' regolata dalle norme.

Le legature, i supporti ed i distanziatori devono sopportare tutte le azioni che si generano durante le operazioni di getto e costipamento, garantendo che le armature restino nelle posizioni volute.

Art. XXXV - Strutture in acciaio

APPROVVIGIONAMENTO ED ACCETTAZIONE DEI MATERIALI

I materiali devono essere nuovi ed esenti da difetti palesi ed occulti. In mancanza di una esplicita dichiarazione del produttore, per verificare che l'acciaio non sia effervescente deve essere effettuata la prova Bauman secondo UNI ISO 4968/83.

Acciaio laminato per profilati, lamiere, larghi piatti e tubi

Devono essere impiegati acciai definiti nelle "Nuove norme tecniche per costruzioni" del D.M. 14/01/2008; in particolare per le caratteristiche meccaniche gli acciai devono rispondere ai requisiti seguenti:

Acciaio tipo ST235 UNI EN 10025-1/05 e UNI EN10025-2/05

tensione di rottura a trazione: 360 N/mmq

tensione di snervamento:235 N/mmq

PROGETTO ESECUTIVO DI RIQUALIFICAZIONE DELLA SCUOLA ELEMENTARE "R. TATARELLI" - CAPITOLATO SPECIALE DI APPALTO-

resistenza al provino UNI KV a +20°.
 27 J

allungamento percentuale rottura:

per le lamiere 26%per i profilati 28%

Acciaio tipo ST275 UNI EN 10025-1/05 e UNI EN10025-2/05

tensione di rottura a trazione: 430 N/mmqtensione di snervamento: 275 N/mmq

resistenza al provino UNI KV a +20°.
 27 J

allungamento percentuale rottura:

per le lamiere 23%per i profilati 24%

Acciaio tipo ST325 UNI EN 10025-1/05 e UNI EN10025-2/05

tensione di rottura a trazione: 510 N/mmqtensione di snervamento: 355 N/mmq

resistenza al provino UNI KV a +20°.
 27 J

allungamento percentuale rottura:

per le lamiere 21%per i profilati 22%

All'Appaltatore saranno forniti i disegni di progetto di tutte le opere di sua competenza. I disegni relativi alle opere in acciaio conterranno le indicazioni necessarie a definire in maniera univoca le caratteristiche delle strutture (geometria, sezioni, tipologia dei collegamenti, etc.) Sulla base di questi disegni l'Appaltatore potrà, qualora lo ritenga necessario, sviluppare a sua cura e spese una serie di disegni di officina e le relative liste dei materiali.

Acciai laminati per strutture saldate

Oltre a quanto già precisato, gli acciai impiegati devono avere una composizione chimica contenuta entro i limiti prescritti dalle Norme Tecniche⁸⁵.

Ulteriori requisiti degli acciai

Per spessori di 40 mm e per strutture impegnative è necessario che i laminati impiegati siano in possesso del seguente requisito: deve essere eseguito un controllo con ultrasuoni, secondo le Tabelle UNI EN 10160/01, estendendolo anche ai bordi. Per l'accettazione dei difetti, questi devono rientrare nelle classi 1, 2 o 3.

Bulloni

I bulloni per giunzioni a taglio e/o ad alta resistenza devono essere conformi a quanto prescritto nel D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" e relativa circolare 617 del 2 febbraio 2009.

Lamiere grecate

Le lamiere grecate di acciaio sagomate a freddo dovranno essere del tipo indicato nei disegni e di spessore non inferiore a 0,6 mm. Verranno appoggiate all'orditura di sostegno in acciaio e fissate mediante punti di saldatura o chiodi sparati a testa larga in quantitativo, modalità e posizione, come da indicazioni progettuali, da sottoporre all'approvazione del progettista e della direzione lavori.

⁸⁵ D.M. 14 gennaio 2008 – "Nuove Norme tecniche per le costruzioni".

Lamiere striate

Le lamiere striate dovranno essere in acciaio S235JR UNI EN 10025/05 e presentare una striatura di almeno 2 mm. Dovranno essere fissate all'orditura di sostegno mediante cordoni a tratti di saldatura, come da indicazioni progettuali o secondo specifiche disposizioni della Direzione Lavori.

Grigliati elettrosaldati

I grigliati eseguiti mediante il procedimento di elettrosaldatura dovranno essere realizzati in acciaio S235JR UNI EN 10025/05 e presentare superfici superiori antisdrucciolo. Dovranno essere fissati all'orditura di sostegno mediante appositi attacchi atti ad impedire il distacco accidentale, come da indicazioni progettuali e/o secondo proposte dell'appaltatore, da sottoporre per modalità e quantità alla approvazione della Direzione Lavori.

Marcatura dei materiali

Tutti i prodotti di laminazione a piazzale devono essere contraddistinti con idoneo elemento di marchiatura secondo il tipo di materiale e la destinazione dello stesso. Nelle officine e nei cantieri i luoghi di deposito dei materiali dei vari tipi devono essere separati.

PRESCRIZIONI ESECUTIVE

Raddrizzamento

Il raddrizzamento e lo spianamento, quando necessari, devono essere fatti con dispositivi agenti per pressione.

Tagli e finitura

Le superfici dei tagli possono restare grezze, purché non presentino strappi, riprese, mancanze di materiale o sbavature. E' ammesso il taglio ad ossigeno purché regolare. I tagli irregolari devono essere ripassati con la smerigliatrice. La rettifica dei bordi delle lamiere e dei larghi piatti deve essere effettuata mediante rifilatura.

Forature

I fori devono essere preferibilmente eseguiti con trapano od anche col punzone purche' successivamente alesati. E' vietato l'uso della fiamma per l'esecuzione di fori.

Non sono ammesse al montaggio in opera eccentricità di fori corrispondenti maggiori del giuoco foro-bullone. Entro tale limite e' opportuno che venga ripreso il perfetto allineamento dei fori con utensile adatto. L'uso delle spine di acciaio e' ammesso in corso di montaggio esclusivamente per richiamare i pezzi nella giusta posizione.

Unioni bullonate

Valgono le prescrizioni riportate nel D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" e relativa circolare 617 del 2 febbraio 2009.

Unioni saldate - Procedimenti di saldatura

Possono essere impiegati i seguenti procedimenti, opportunamente qualificati ed omologati:

- saldatura manuale ad arco con elettrodi rivestiti;
- saldatura automatica ad arco sommerso;
- saldatura automatica o semiautomatica sotto gas protettore (CO2 o sue miscele).

Elettrodi

Per la saldatura manuale ad arco devono essere impiegati elettrodi rivestiti E44-38 omologati secondo UNI 2560/07, almeno di seconda classe.

Per gli altri procedimenti di saldatura si devono impiegare i fili, i flussi (o i gas) e la tecnica esecutiva usati per le prove di qualifica del procedimento di cui al punto seguente.

Gli elettrodi devono essere usati con il tipo di corrente (continua o alternata) e di polarità per cui sono stati omologati. Devono altresì essere adottate tutte le precauzioni prescritte dal produttore degli elettrodi con particolare riguardo alla conservazione all'asciutto e, in genere, alla pre-essicazione degli elettrodi a rivestimento basico. Il diametro dell'anima degli elettrodi rivestiti, per saldatura manuale, usati nella saldatura di un giunto, deve essere fissato in relazione allo spessore, al tipo di giunto ed alla posizione della passata nel giunto; in generale deve essere non maggiore di 6 mm. per saldatura in piano e di 5 mm. per saldatura in verticale.

Prove preliminari dei procedimenti di saldatura

Valgono le prescrizioni riportate nel D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" e relativa circolare 617 del 2 febbraio 2009.

Preriscaldo

In tutti i casi in cui lo spessore eccede certi limiti, è necessario preriscaldare localmente la parte su cui si salda; la temperatura deve essere adeguata al procedimento che si impiega e comunque non inferiore a quanto precisato nella seguente tabella:

spessore [mm]	Procedimento ad arco sommerso con saldatura sotto gas protettivo e con elettrodi basici	Procedimento con elettrodi a rivestimento non basico
tra 20 e 40	20 ℃	70 °C
tra 40 e 60	70 ℃	100 ℃
> 60	100 ℃	150 ℃

Se la temperatura scende al disotto di 5°C, i pezzi dovranno essere preriscaldati comunque ad almeno 50°C. Qualora sui pezzi siano presenti tracc e di umidità, deve comunque essere dato ad essi l'apporto di calore necessario per eliminarla.

Qualifica dei saldatori

Sia in officina sia in cantiere, le saldature da effettuare con elettrodi rivestiti devono essere eseguite da operai che abbiano superato le prove di qualifica indicate nella UNI 4634/60⁸⁶ per la classe relativa al tipo di elettrodo ed alle posizioni di saldatura previste. Nel caso di costruzioni tubolari si fa riferimento anche alla UNI 4633/60⁸⁷ per quanto riguarda i giunti di testa.

Le saldature da effettuare con altri procedimenti devono essere eseguite da operai sufficientemente addestrati all'uso delle apparecchiature relative ed al rispetto delle condizioni operative stabilite in sede di approvazione del procedimento.

Classi delle saldature

Valgono le prescrizioni riportate nel D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" e relativa circolare 617 del 2 febbraio 2009.

⁸⁶ Norma ritirata il 28/01/2009 senza sostituzione.

⁸⁷ Norma ritirata il 28/01/2009 senza sostituzione.

Tecnica esecutiva

Devono essere adottate le sequenze di saldatura e le condizioni di vincolo più opportune, al fine di ridurre per quanto possibile le tensioni residue da saldatura e facilitare l'esecuzione dei giunti saldati; devono essere osservate anche le prescrizioni che verranno stabilite per il preriscaldamento locale in relazione agli spessori, ai tipi di acciaio ed alla temperatura ambiente durante la costruzione. La superficie di ogni passata deve essere liberata dalla scoria prima che vengano effettuate le passate successive; egualmente la scoria deve essere localmente asportata in corrispondenza delle riprese di una medesima passata. Nella saldatura manuale si deve evitare l'accensione degli elettrodi sulle lamiere accanto al giunto.

Le estremità dei cordoni di saldatura dei giunti di testa, nella saldatura automatica e semiautomatica, devono essere sempre fatte su prolunghe; nel caso di saldatura manuale ciò deve essere fatto almeno per i giunti di 1[^] classe.

Nei giunti di testa ed in quelli a T a completa penetrazione effettuati con saldatura manuale, il vertice della saldatura deve essere sempre asportato per la profondità richiesta per raggiungere il metallo perfettamente sano, a mezzo di scalpellatura, smerigliatura, o altro adeguato sistema, prima di effettuare la seconda saldatura (nel caso di saldature effettuate dai due lati) o la ripresa.

Qualora ciò non sia assolutamente possibile, si deve fare ricorso alla preparazione a V con piatto di sostegno, che è peraltro sconsigliata nel caso di strutture sollecitate a fatica, o alla saldatura effettuata da saldatori specializzati secondo UNI 4634/60⁸⁸ o, nel caso di strutture tubolari, di classe TT secondo UNI 4633/60⁸⁹.

La parte da saldare deve essere protetta dalle intemperie; in particolare, quando viene fatto uso di saldatura con protezione di gas, dovranno essere adottati schemi efficaci di protezione contro il vento.

Preparazione dei lembi

La preparazione dei lembi da saldare deve essere effettuata mediante macchina utensile, smerigliatrice ad ossitaglio automatico, e dovrà risultare regolare e ben liscia.

L'ossitaglio a mano può essere accettato solo se una adeguata successiva ripassatura alla smerigliatrice avrà perfettamente regolarizzato l'asperità del taglio. I lembi, al momento della saldatura, devono essere esenti da incrostazioni, ruggine, scaglie, grassi, vernici, irregolarità locali ed umidità. La distanza dei lembi dei giunti di testa e dei giunti a T a completa penetrazione deve essere secondo UNI 11001/62⁹⁰. Nei giunti a T con cordoni d'angolo i pezzi devono essere a contatto; è tollerato un giuoco massimo di 3 mm. per spessori maggiori di 10 mm., da ridurre adeguatamente per spessori minori o per casi particolari.

Il disallineamento dei lembi deve essere non maggiore di 1/8 dello spessore con un massimo di 1,5 mm.; nel caso di saldatura manuale ripresa al vertice, si può tollerare un disallineamento di entità doppia.

Sequenze di saldatura delle travi composte saldate

Le saldature delle piattabande devono essere sempre effettuate prima della saldatura dell'anima o contemporaneamente ad essa con sequenza opportuna delle passate. Le saldature di collegamento fra anima e piattabanda devono essere completate solo dopo l'effettuazione sia dei giunti della piattabanda che di quello dell'anima.

Incroci di saldature

⁸⁸ Norma ritirata il 28/01/2009 senza sostituzione.

⁸⁹ Norma ritirata il 28/01/2009 senza sostituzione.

⁹⁰ Norma ritirata il 28/01/2009 senza sostituzione.

Negli elementi di travi composte che dovranno essere collegati fra loro con saldature, si deve avere cura di arrestare la saldatura anima-piattabanda ad almeno 200 mm di distanza dal lembo saldato testa a testa. Qualora non siano presenti aperture sull'anima in corrispondenza dei giunti delle piattabande, si provvederà ad effettuare per il collegamento anima-piattabanda, per una zona di almeno 100 mm. a cavallo del giunto, una preparazione a K con spalla zero, qualora una simile preparazione non sia già prevista per tutto il collegamento anima-piattabanda.

La preparazione a K deve essere successivamente aggiustata in corrispondenza della parte smussata per permettere l'esecuzione di un giunto anima-piattabanda a completa penetrazione.

Unione per contatto

Le superfici di contatto devono essere convenientemente piane ed ortogonali all'asse delle membrature collegate. Le membrature senza flange di estremità devono avere le superfici di contatto lavorate con la pialla, la limatrice, la fresa e la mola.

Per le membrature munite di flange di estremità si devono distinguere i seguenti casi:

- per flange di spessore inferiore o uguale a 50 mm. è sufficiente la spianatura alla pressa o con sistema equivalente;
- per flange di spessore compreso tra i 50 e i 100 mm, quando non sia possibile un'accurata spianatura alla pressa, è necessario procedere alla piallatura o alla fresatura delle superfici di appoggio.

Montaggio delle strutture in acciaio

Il montaggio deve essere eseguito secondo le migliori regole tecniche ed in osservanza al D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" e relativa circolare 617 del 2 febbraio 2009, delle leggi e norme antinfortunistiche vigenti nella località interessata. Pur rimanendo l'unico responsabile dei procedimenti e dei mezzi di montaggio, l'appaltatore dovrà sottoporre all'approvazione della Direzione Lavori il progetto esecutivo e le specifiche di montaggio, completi di dettagliate indicazioni sui mezzi d'opera, che si intendono utilizzare, e degli elementi provvisori e provvisionali previsti.

Tolleranze

In generale sia per gli elementi strutturali prefabbricati, che per le membrature e l'insieme delle stesse montate, valgono i criteri esposti nelle norme UNI ENV 1090-1:2008 "Esecuzione di strutture di acciaio - Regole generali e regole per gli edifici".

In particolare per gli elementi verticali l'eccentricità rispetto alla rettilineità degli elementi verticali non deve superare 1/1000 dell'altezza.

Protezione delle strutture in acciaio

In generale le strutture devono ricevere una prima mano di fondo prima della spedizione. L'operazione deve essere preceduta da un'accurata pulizia dei pezzi, da effettuarsi mediante sabbiatura del grado. La preparazione di fondo deve essere effettuata con trattamento con antiruggine zincante a freddo secondo il ciclo descritto qui di seguito con le seguenti caratteristiche:

- spessore minimo del film 50 micron;
- resistenza ad una temperatura massima di 250 gradi C;
- inalterabilità all'esposizione agli agenti atmosferici esterni in ambiente marino o industriale per almeno 5 mesi prima della sovraverniciatura, garantita da documentazione di prova;
- idoneità ad essere coperto con pitture a base di clorocaucciù, resine alchidiche, resine epossidiche, resine viniliche, resine fenoliche, resine poliuretaniche o vernici intumescenti.

Nell'offerta dovranno essere precisate le caratteristiche del prodotto zincante, dovrà essere indicato quali sono i tipi di pittura che possono essere applicati successivamente, il tipo di preparazione della superficie ed il sistema di applicazione. Saranno eseguiti dei controlli dal Committente sul tipo di prodotto applicato e sulle modalità di esecuzione.

I grigliati elettrosaldati dovranno essere protetti mediante procedimento di zincatura a caldo per immersione.

Dopo il montaggio in opera devono essere eseguiti i necessari ritocchi alla mano di vernice di fondo data in precedenza. La verniciatura in opera deve essere fatta in stagione favorevole, evitando il tempo umido e temperature eccessivamente elevate.

Dopo l'applicazione della mano di fondo devono essere previste le seguenti verniciature:

- mano intermedia a base di resina epossidica, con spessore del film pari a 100 micron;
- eventuale strato intumescente, ove previsto nel progetto, di spessore idoneo a garantire la necessaria resistenza al fuoco indicata negli elaborati progettuali;
- mano finale di spessore 50 micron a base poliuretanica o poliuretanica modificata.

La verniciatura intumescente potrà essere eseguita con materiale proposto dell'Appaltatore, previa comunicazione alla Direzione Lavori con esibizione dei certificati del prodotto proposto, delle relative specifiche tecniche e delle schede di impiego per la validità della certificazione.

Parti annegate nel getto

Le parti destinate ad essere incorporate in getti di conglomerato cementizio non devono essere verniciate, bensì accuratamente sgrassate e sabbiate.

CONTROLLI

Controllo delle saldature

Le saldature devono essere controllate a cura dell' Appaltatore con adeguati procedimenti e non devono presentare difetti quale mancanza di penetrazione, depositi di scorie, cricche di lavorazione, mancanza di continuità ecc.

In particolare per gli elementi strutturali composti:

- i giunti di testa devono essere di prima classe secondo D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" e relativa circolare 617 del 2 febbraio 2009. e vanno controllati almeno al 30% con radiografie;
- le saldature correnti d'angolo dovranno essere controllate per almeno il 10% dello sviluppo totale, secondo metodologie e criteri da concordare con la Direzione Lavori;
- i controlli eseguiti devono essere contromarcati con punzonature sui pezzi, in modo da consentire la loro identificazione successiva in base alla documentazione da inviare tempestivamente al Committente;
- il Direttore dei Lavori delle strutture potrà prescrivere laddove lo ritenga necessario ulteriori indagini e controlli. Gli oneri relativi a tali controlli sono a carico dell'impresa esecutrice.

Controllo dimensionale

L'Appaltatore deve eseguire gli opportuni controlli dimensionali sia sui singoli pezzi che sugli elementi premontati.

Controllo del Committente e della Direzione Lavori

Tutti i materiali e le lavorazioni che formano oggetto del contratto di appalto possono essere ispezionati e sottoposti a verifica da parte di un rappresentante del Committente o della Direzione Lavori presso l'Officina costruttrice; l'appaltatore dovrà altresì prestare responsabile assistenza al rappresentante del committente nello svolgimento della sua attività di ispezione e verifica senza che ciò dia diritto a compensi aggiuntivi.

Se alla verifica alcune parti di fornitura risultano difettose o comunque non efficienti, il Committente o la Direzione Lavori hanno il diritto di ottenere la eliminazione dei difetti nel minor tempo possibile, fatto salvo il diritto di respingere la fornitura o di chiedere la riduzione del prezzo.

L'Appaltatore deve notificare alla Direzione Lavori la data di approntamento del materiale da verificare; la verifica da parte della Direzione Lavori avverrà entro 10 giorni dalla notifica.

Art. XXXVI - Casseri per getti in opera

Ai sensi dell'art. 4 del d.lgs. 81/08 e s.m.i.⁹¹, i casseri costituiscono apprestamenti "atti a garantire, per tutta la durata dei lavori, il rispetto delle norme per la prevenzione degli infortuni e la tutela della salute dei lavoratori", il cui costo non può essere assoggettato a ribasso⁹².

Casserature normali

I casseri dovranno essere eseguiti con legname secondo quanto previsto dalla norma UNI EN 313-1/97 o con pannelli metallici o di legno o di plastica.

La casserature dovranno essere a buona tenuta per evitare perdite di acqua e cemento ed entro i limiti di tolleranza dimensionale indicati alla voce "tolleranze". Comunque, fatto salvo ogni eventuale e più restrittiva tolleranza, i casseri dovranno garantire una variazione massima del 4% dello spessore dei getti.

L'armatura di sostegno dei casseri dovrà essere costruita in modo da non agire in modo staticamente scorretto sulle strutture sottostanti, in modo da permettere il ritiro del calcestruzzo ed un facile disarmo.

La responsabilità statica della corretta costruzione dei casseri e' totalmente a carico dell'Appaltatore. Le casserature dovranno essere dimensionate altresì per sopportare correttamente le sollecitazioni dovute ad eventuale vibrazione dei cls. L'uso di prodotti per facilitare il disarmo dovrà essere autorizzato dal Direttore dei Lavori, su proposta dell'Appaltatore.

I casseri dovranno prevedere tutte le forature previste nei disegni delle strutture e degli impianti tecnologici senza alcun onere aggiuntivo per la Committente, a meno che esplicito diverso richiamo venga fatto nell'elenco voci del progetto. Particolare riguardo dovrà essere posto al corretto fissaggio degli inserti metallici ed al rispetto delle tolleranze di posizionamento degli stessi, sia in fase di preparazione che in fase di getto.

Anche se non indicato a disegno, il prezzo dei casseri deve comprendere l'onere per lo smusso degli angoli di tutte le strutture che fossero richiesti dalla Direzione Lavori, così come tutti quelli accorgimenti (sfiati e simili) necessari per una esecuzione a regola d'arte dei getti stessi.

I casseri delle travature dovranno presentare monta opportuna in funzione della luce di [1/500]xL.

I casseri verranno disarmati secondo le norme di legge ed in ogni caso sotto l'intera responsabilità dell'impresa. Particolare cura dovrà essere posta al distacco dei casseri dalle superfici dei getti, per minimizzare fenomeni di distacco di parti di calcestruzzo ancora in fase di indurimento.

Casseri per calcestruzzo a vista

I casseri per calcestruzzo a vista dovranno essere eseguiti secondo le prescrizioni tecniche seguenti: non sarà ammesso, sulla superficie a vista del calcestruzzo, l'affioramento ne' dei ferri di armatura, ne' dei ferri o fili di ferro usati per il sostegno o la sbadacchiatura dei casseri.

⁹¹ d. lgs. 81/08 e correttivo 106/2009 - Attuazione dell'articolo 1 della legge 3 agosto 2007, n. 123, in materia di tutela della salute e della sicurezza nei luoghi di lavoro.

⁹² d.P.R. 222/03 - Regolamento sui contenuti minimi dei piani di sicurezza nei cantieri edili in attuazione dell'articolo 31, comma 1, della legge 11 febbraio 1994, n.109 e successive modificazioni e dell'articolo 22, comma 1, del decreto legislativo 19 novembre 1999, n. 528 di modifica del decreto legislativo 14 agosto 1996, n. 494, art. 7- Stima dei costi della sicurezza:

Sarà ammesso in superficie l'affioramento di terminali in plastica usati per le casserature purché di piccole dimensioni, disposti con simmetria, comunque approvati preventivamente dalla Direzione Lavori. In ogni caso i casseri in legno dovranno essere piallati e maschiati.

L'uso dei disarmanti dovrà essere autorizzato per iscritto dal Direttore dei Lavori, su proposta dell'Appaltatore. A disarmo avvenuto dovranno essere eliminati risalti e sbavature, e riempite le cavità senza alterazione dei colori di facciata a vista.

I requisiti principali del getto saranno legati alla compattezza, all'omogeneità di superficie e al colore uniforme del getto stesso; saranno pertanto motivi di contestazione le macchie, gli scoloramenti, gli alveoli, i nidi d'ape, le fessure, ecc.

Art. XXXVII - Solai

Si intendono come solai le strutture bidimensionali piane caricate ortogonalmente al proprio piano, con prevalente comportamento monodirezionale.

Tutti i solai dovranno essere dimensionati in funzione della destinazione prevista per i locali relativi, i carichi comprensivi degli effetti dinamici ordinari, previsti nel D.M. 12 febbraio 1996: "Norme tecniche relative ai «criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi»".

SOLAI MISTI IN CALCESTRUZZO ARMATO CON BLOCCHI FORATI IN LATERIZIO

Nei solai misti in conglomerato cementizio armato normale e precompresso e blocchi forati in laterizio, i laterizi in blocchi hanno funzione di alleggerimento e di aumento della rigidezza flessionale del solaio. La resistenza dell'elemento strutturale è affidata al conglomerato cementizio ed alle armature ordinarie e/o precompresse.

Per tutti i solai valgono le prescrizioni relative alle opere in calcestruzzo armato e calcestruzzo armato precompresso, ed in particolare valgono le prescrizioni nel D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" e relativa circolare 617 del 2 febbraio 2009.

Lo spessore minimo dei solai non deve essere minore di 150 mm. Le deformazioni devono risultare compatibili con le condizioni di esercizio del solaio e degli elementi costruttivi ed impiantistici ad esso collegati. Nei solai lo spessore minimo della soletta di conglomerato cementizio non deve essere minore di 40 mm.

Prescrizioni dimensionali

La larghezza minima delle nervature in conglomerato cementizio per solai con nervature gettate o completate in opera non deve essere minore di 1/8 dell'interasse tra i travetti e comunque non inferiore a 80 mm.

L'interasse delle nervature non deve in ogni caso essere maggiore di 15 volte lo spessore della soletta. Il blocco interposto deve avere dimensione massima inferiore a 520 mm.

La soletta superiore dei solaio deve essere munita di adeguata armatura di ripartizione, pari ad almeno 3f6 al metro o al 20% di quella longitudinale.

Particolare attenzione deve essere dedicata alla sicurezza al distacco di parti laterizie, specialmente in dipendenza di sforzi trasversali di carattere secondario, ovvero a seguito di aumenti di temperatura.

Protezione delle armature

Nei solai, la cui armatura è collocata entro scanalature, qualunque superficie metallica deve risultare contornata in ogni direzione da uno spessore minimo di 5 mm di malta cementizia.

Per armatura collocata entro nervatura, le dimensioni di questa devono essere tali da consentire il rispetto dei seguenti limiti:

- distanza netta tra armatura e blocco 8 mm;
- distanza netta tra armatura ed armatura 10 mm.

Bagnatura degli elementi

Prima di procedere ai getti i laterizi devono essere convenientemente bagnati.

Blocchi

Gli elementi con rilevanti difetti di origine o danneggiati durante la movimentazione dovranno essere eliminati.

Calcestruzzi per i getti in opera

Si dovrà studiare la composizione del getto in modo da evitare rischi di segregazione o la formazione di nidi di ghiaia e per ridurre l'entità delle deformazioni differite.

Il diametro massimo degli inerti impiegati non dovrà superare 1/5 dello spessore minimo delle nervature né la distanza netta minima tra le armature.

Il getto deve essere costipato in modo da garantire l'avvolgimento delle armature e l'aderenza sia con i blocchi sia con eventuali altri elementi prefabbricati.

Per rendere efficace quanto indicato ai punti precedenti occorre con opportuni provvedimenti eliminare il rischio di arresto del getto al livello delle armature.

Qualora si impieghino materiali d'intonaco cementizi aventi resistenza caratteristica a trazione superiore ad 1 N/mm² dovranno adottarsi spessori inferiori a 10 mm o predisporre armature di sostegno e diffusione opportunamente ancorate nelle nervature.

SOLAI CON TRAVETTI PRECOMPRESSI PREFABBRICATI IN BLOCCHI IN LATERIZIO

Per elementi con armatura pre-tesa è ammessa la deroga all'obbligo di disporre la staffatura.

Nei solai misti in conglomerato cementizio precompresso e blocchi forati in laterizio, i laterizi in blocchi hanno funzione di alleggerimento e di aumento della rigidezza flessionale del solaio.

La resistenza dell'elemento strutturale è affidata al conglomerato cementizio ed alle armature ordinarie e/o precompresse.

Per tutti i solai valgono le prescrizioni relative alle opere in calcestruzzo armato e calcestruzzo armato precompresso, ed in particolare valgono le prescrizioni contenute nel D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" e relativa circolare 617 del 2 febbraio 2009.

Lo spessore minimo dei solai non deve essere minore di 150 mm. Le deformazioni devono risultare compatibili con le condizioni di esercizio del solaio e degli elementi costruttivi ed impiantistici ad esso collegati.

Nei solai lo spessore minimo della soletta di conglomerato cementizio non deve essere minore di 40 mm.

Prescrizioni dimensionali

La larghezza minima delle nervature in conglomerato cementizio per solai con nervature gettate o completate in opera non deve essere minore di 1/8 dell'interasse tra i travetti e comunque non inferiore a 80 mm.

L'interasse delle nervature non deve in ogni caso essere maggiore di 15 volte lo spessore della soletta. Il blocco interposto deve avere dimensione massima inferiore a 520 mm.

La soletta superiore dei solaio deve essere munita di adeguata armatura di ripartizione, pari ad almeno 3 Ø 6 al metro o al 20% di quella longitudinale.

Particolare attenzione deve essere dedicata alla sicurezza al distacco di parti laterizie, specialmente in dipendenza di sforzi trasversali di carattere secondario, ovvero a seguito di aumenti di temperatura.

Bagnatura degli elementi

Prima di procedere ai getti i laterizi devono essere convenientemente bagnati.

Blocchi

Gli elementi con rilevanti difetti di origine o danneggiati durante la movimentazione dovranno essere eliminati.

Getti in opera

I travetti privi di armature a taglio devono essere integrati sugli appoggi da getti in opera contenenti armatura inferiore convenientemente ancorata in grado di assorbire uno sforzo di trazione pari al taglio, salvo che per gli elementi di solai di copertura poggianti su travi e dotati di adeguata lunghezza di appoggio.

Tali collegamenti, se destinati ad assicurare continuità strutturale agli appoggi, dovranno essere verificati secondo le disposizioni relative al conglomerato cementizio armato normale, verificando altresì le condizioni di aderenza fra getti in opera e travetti, secondo i criteri indicati al punto precedente.

SOLAI MISTI E BLOCCHI DIVERSI DAL LATERIZIO

Possono utilizzarsi per realizzare i solai misti di conglomerato cementizio armato e conglomerato cementizio armato precompresso anche blocchi diversi dal laterizio con sola funzione di alleggerimento.

I blocchi in conglomerato cementizio leggero di argilla espansa, conglomerato cementizio normale sagomato, materie plastiche, elementi organici mineralizzati ecc, devono essere dimensionalmente stabili e non fragili e capaci di seguire le deformazioni del solaio. Queste caratteristiche devono essere dimostrate attraverso una certificazione, eseguita a cura di uno dei laboratori di cui all'art. 65 e 66 del DPR 380/2001, prima della messa in opera. Rimangono valide tutte le prescrizioni geometriche dei solaio di cui ai punti precedenti

SOLAI MISTI CON TRAVETTI DI LEGNO

Le travi principali di legno avranno le dimensioni e le distanze che saranno indicate in relazione alla luce ed al sovraccarico.

I travetti (secondari) saranno collocati alla distanza, fra asse e asse, corrispondente alla lunghezza delle tavelle che devono essere collocate su di essi e sull'estradosso delle tavelle deve essere disteso uno strato di calcestruzzo magro di calce idraulica formato con ghiaietto fino o altro materiale inerte. Le travi principali a quattro fili di legno avranno le dimensioni e le distanze che saranno indicate in relazione alla luce ed al sovraccarico.

I travicelli saranno collocati alla distanza, fra asse e asse, corrispondente alla lunghezza delle tavelle che devono essere collocate su di essi. I vani su travi, fra i travicelli, dovranno essere riempiti di

murature, e sull'estradosso delle tavelle deve essere disteso uno strato di calcestruzzo magro di calce idraulica formato con ghiaietto fino.

SOLAI SU TRAVI DI FERRO A DOPPIO T (PUTRELLE) CON VOLTINE DI MATTONI (PIENI O FORATI) O CON ELEMENTI LATERIZI INTERPOSTI

Questi solai saranno composti dalle travi, dai copriferri, dalle voltine di mattoni (pieni o forati) o dai tavelloni o dalle volterrane ed infine dal riempimento.

Le travi saranno delle dimensioni previste nel progetto o collocate alla distanza prescritta; in ogni caso tale distanza non sarà superiore ad 1 m. Prima del loro collocamento in opera dovranno essere protette con trattamento anticorrosivo e forate per l'applicazione delle chiavi, dei tiranti e dei tondini di armatura delle piattabande.

Le chiavi saranno applicate agli estremi delle travi alternativamente (e cioè uno con le chiavi e la successiva senza), ed i tiranti trasversali, per le travi lunghe più di 5 m, a distanza non maggiore di 2,50 m. Le voltine di mattoni pieni o forati saranno eseguite ad una testa in malta comune od in foglio con malta di cemento a rapida presa, con una freccia variabile fra cinque e dieci centimetri.

Quando la freccia è superiore ai 5 *cm* dovranno intercalarsi fra i mattoni delle voltine delle grappe di ferro per meglio assicurare l'aderenza della malta di riempimento dell'intradosso. I tavelloni e le volterrane saranno appoggiati alle travi con l'interposizione di copriferri.

Le voltine di mattoni, le volterrane ed i tavelloni, saranno poi ricoperti sino all'altezza dell'ala superiore della trave e dell'estradosso delle voltine e volterrane, se più alto, con scoria leggera di fornace o pietra pomice o altri inerti leggeri impastati con malta magra fino ad intasamento completo.

Quando la faccia inferiore dei tavelloni o volterrane debba essere intonacata sarà opportuno applicarvi preventivamente uno strato di malta cementizia ad evitare eventuali distacchi dell'intonaco stesso.

VOLTINE DI MATTONI PIENI O FORATI DI PIATTO O DI COSTA A LIEVISSIMA MONTA

I mattoni che formano la voltina vengono appoggiati alla trave di ferro non direttamente, ma contro uno speciale mattone (mattone copriferro) che si incastra nell'ala della stessa a mezzo di un dente e, mentre protegge la stessa, consente un piano d'imposta e copre la suola della putrella dando all'intonaco una superficie laterizia che evita l'antiestetico segno della trave. Queste voltine, generalmente eseguite di piatto, in taluni casi sono pure eseguite di costa con lo stesso procedimento, impiegando preferibilmente mattoni forati o pieni secondo il caso. Bisogna evitare di fissare il mattone copriferro con malta di gesso per evitare che questo si ossidi. Le travi di sezione conveniente ed in relazione alla portata ed al carico vengono disposte nel senso della minore ampiezza del locale, a interdistanza tra i 0,80 e 1.00 m; più raramente a distanza maggiore e comunque non oltre 1,10 m a meno di dare una maggiore monta lasciando la soffittatura curvata o naturale. Queste travi saranno prima delle pose verniciate.

Tra le due imposte offerte dal mattone copriferro si procederà all'esecuzione delle voltine, dando ad esse una minima monta, dovendo in seguito essere spianate con l'intonaco onde offrire una superficie piana del soffitto. Se lo spessore del soffitto è superiore al foglio, conviene procedere ad una armatura solida e completa mediante piccole centine e tavole appoggiate a formare un tamburo. Generalmente le voltine su ferri vengono eseguite (quando non si impieghi un laterizio forato speciale) dello spessore del foglio o di quarto: in questo caso si eseguiranno piccole centine scorrenti sopra due regoli fissati alle stesse travi con appositi ganci di ferro spostabili. Disposti contro le travi i mattoni copriferro, l'esecutore vi colloca la centinetta sopra i due regoli portati da un numero di ganci formati da tondinello, a due terzi della lunghezza del mattone e, quindi, a mano, dopo aver regolato il piano della centina mediante piccoli cunei di legno, con malta di gesso e sabbia o di gesso e calce, malta bastarda o, impiegando un cemento speciale di rapido indurimento, procede a posare i mattoni premendo contro il filare precedente per far aderire la malta colpendo il mattone leggermente con il martello sulla costa contro il copriferro o il mattone già in posto, e così l'uno dopo l'altro fino alla chiusura dell'anello in chiave; poi si sposta in avanti la centinetta e si procede nell'esecuzione dell'anello susseguente e così via fino alla chiusura della volta.

Per quanto sia lieve la monta della voltine, questa esercita una spinta sul fianco della trave, la quale subirebbe una flessione nel vuoto se non fosse contrastata, causando lo sfasciamento della voltina che ha perso con la monta la sua coesione, perciò è necessario procedere con la simultanea costruzione di tutte le voltine che coprono il locale; quando ciò non sia possibile o pratico, si provvede collocando tra i fianchi delle travi di ferro, dei pezzi di tavola di costa o dei travicelli di piccola sezione, disposti a distanza uno dall'altra non oltre a 2 m, sbadacchi che verranno rimossi col procedere delle voltine. Man mano che si procede nella formazione degli anelli, per contrastarne la spinta, si rinfianca la voltina spianandone la superficie di estradosso con malta prima di passare ad un secondo anello.

Art. XXXVIII -Strutture in muratura

Gli edifici in oggetto sono realizzati con struttura portante verticale realizzata con sistemi di muratura collegati tra di loro da strutture orizzontali ai piani e da opere di fondazione.

La muratura è un assemblaggio di elementi, artificiali o naturali, disposti con regolarità e collegati tra loro da malta I sistemi resistenti verticali (pareti) sono costituiti da muri che devono sopportare azioni verticali ed orizzontali .

I muri sono in genere completati da elementi orizzontali nello spessore della muratura di calcestruzzo armato (cordolo). Gli elementi orizzontali possono essere costituiti da solai piani in cemento armato o precompresso o da strutture miste.

APPROVVIGIONAMENTO ED ACCENTAZIONE DEI MATERIALI

Malte per murature

La malta da muratura deve garantire prestazioni adeguate al suo impiego in termini di durabilità e di prestazioni meccaniche e deve essere dotata di attestato di conformità all'annesso ZA della norma UNI EN 998-2:2004 (Marcatura CE).

Il fabbricante di malta dichiara, nelle forme previste, le caratteristiche tecniche di cui al prospetto Z.A.1 a) dell'appendice ZA della parte armonizzata della norma europea UNI EN 998-2/04.

Il sistema di attestazione della conformità delle malte, ai sensi del D.P.R. n. 246/93 regolamento di attuazione della direttiva 83/106/CEE relativa ai prodotti da costruzione è indicato nella seguente tabella:

Specifica Tecnica Europea di riferimento	Uso Previsto	Sistema di Attestazione della Conformità
	usi strutturali	2+
	uso non strutturale	4

Il Sistema 2+ (certificazione del controllo di produzione in fabbrica) è quello specificato all'art. 7, comma 1 lettera 3, Procedura 1 del D.P.R. n. 246/93, comprensiva della sorveglianza, giudizio ed approvazione permanenti del controllo di produzione in fabbrica.

Il Sistema 4 (autodichiarazione del produttore) è quello specificato all'art. 7, comma 1 lettera B, Procedura 3, del D.P.R. n. 246/93.

Per garantire durabilità è necessario che i componenti la miscela non contengano sostanze organiche o grassi o terrose o argillose. Le calci aeree e le pozzolane devono possedere le caratteristiche tecniche ed i requisiti previsti dalle vigenti norme (r.d. 16 novembre 1939, n. 2231, L. 595/65, D.M. 14 gennaio 1966, D.M. 3 giugno 1968, D.M. 31 agosto 1972, D.M. 13 settembre 1993 e s.m.i.).

Le prestazioni meccaniche di una malta sono definite mediante la sua resistenza media a compressione. La categoria di una malta è definita da una sigla costituita dalla lettera M seguita da un numero che indica la resistenza espressa in N/mm² secondo la seguente tabella. Non è ammesso l'impiego di malte con resistenza inferiore a 1 N/mm².

Classe	M 2,5	M 5	M 10	M 15	M 20	M d
Resistenza a compressione N/mm²	2.5	5.0	10.0	15.0	20.0	d*

^{*} d è una resistenza a compressione maggiore di 25 N/mm² dichiarata dal produttore.

L'impiego di malte premiscelate e premiscelate pronte è consentito, purché ogni fornitura sia accompagnata da una dichiarazione del fornitore attestante il gruppo della malta, il tipo e la quantità dei leganti e degli eventuali additivi. Ove il tipo di malta non rientri tra quelli appresso indicati il fornitore dovrà certificare con prove ufficiali anche le caratteristiche di resistenza della malta stessa.

Le modalità per la determinazione della resistenza a compressione delle malte sono riportate nella UNI EN 1015-11/2007 e nel D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" cap. 11.10.2.

I tipi di malta e le loro classi sono definiti in rapporto alla composizione in volume; malte di diverse proporzioni nella composizione confezionate anche con additivi, preventivamente sperimentate, possono essere ritenute equivalenti a quelle indicate qualora la loro resistenza media a compressione risulti non inferiore ai valori di cui al D.M. 20 novembre 1987, n. 103.

Elementi per muratura

Gli elementi da utilizzare per costruzioni in muratura portante dovranno essere tali da evitare rotture eccessivamente fragili. A tal fine gli elementi dovranno rispettare i seguenti requisiti:

- la percentuale volumetrica degli eventuali vuoti non sia superiore al 45% del volume totale del blocco;
- per elementi in laterizio di area lorda A superiore a 580 cm² è ammesso un foro per l'eventuale alloggiamento di armature, la cui area non superi 70 cm²; non sono soggetti a tale limitazione i fori che verranno comunque interamente riempiti di calcestruzzo;
- per elementi in calcestruzzo: di area lorda A superiore a 580 cm² è ammesso un foro per l'eventuale alloggiamento di armature, la cui area non superi 70 cm²; di area lorda superiori a 700 cm² il limite delle dimensioni dei fori è elevato a 0,1 A; di area lorda superiori a 900 cm² il limite delle dimensioni dei fori è elevato a 0.15 A; non sono soggetti a tali limitazioni i fori che verranno comunque interamente riempiti di calcestruzzo;
- gli eventuali setti disposti parallelamente al piano del muro siano continui e rettilinei; le uniche interruzioni ammesse sono in corrispondenza dei fori di presa o per l'alloggiamento delle armature:
- la resistenza caratteristica a rottura nella direzione portante (f_{bk}) non sia inferiore a 5 MPa, calcolata sull'area al lordo delle forature;
- la resistenza caratteristica a rottura nella direzione perpendicolare a quella portante, nel piano di sviluppo della parete, calcolata nello stesso modo, non sia inferiore a 1,5 MPa.

La malta di allettamento dovrà avere resistenza media non inferiore a 5 MPa e i giunti verticali dovranno essere riempiti con malta. L'utilizzo di materiali o tipologie murarie aventi caratteristiche diverse rispetto a quanto sopra specificato deve essere supportato da adeguate prove sperimentali che ne giustifichino l'impiego. Sono ammesse murature realizzate con elementi artificiali o elementi in pietra squadrata.

Gli elementi per muratura portante devono essere in possesso di attestato di conformità alla relativa norma europea armonizzata della serie UNI EN 771-3/05, ai sensi del D.P.R. n. 246/93, secondo il sistema di attestazione della conformità indicato nella seguente tabella:

Specifica Tecnica Europea di riferimento	Categoria	Sistema	Attestazione
		Conformit	tà

Specifica per elementi per muratura - Elementi per muratura di laterizio, silicato di calcio, in calcestruzzo vibrocompresso		2+
(aggregati pesanti e leggeri), calcestruzzo aerato autoclavato pietra agglomerata. UNI EN 771-3/05.	CATEGORIA 2	4

Il produttore degli elementi per muratura portante dichiara, nelle forme previste, le caratteristiche tecniche di cui alla Tabella 11.9.II., in conformità all'appendice ZA della parte armonizzata della norma europea della serie UNI EN 771/05.

Resistenza caratteristica a compressione nella direzione dei carichi verticali

La resistenza caratteristica a compressione nella direzione dei carichi verticali degli elementi è dichiarata dal produttore utilizzando la norma UNI EN 772-1:2005 su un numero di campioni superiore o uguale a 6, sottoposti a prove che, per elementi di Categoria II, saranno eseguiti presso un laboratorio di cui all'art. 59 del D.P.R. n. 380/2001, con periodicità di prova almeno annuale.

Resistenza caratteristica a compressione nel piano della muratura e nella direzione ortogonale ai carichi verticali

La determinazione della resistenza caratteristica a compressione nella direzione ortogonale a quella dei carichi verticali nel piano della muratura è dichiarata dal produttore utilizzando la norma UNI EN 772-1:2002 su un numero di campioni superiore o uguale a 6, sottoposti a prove che, per elementi di Categoria II, saranno eseguiti presso un laboratorio di cui all'art. 59 del D.P.R. n. 380/2001, con periodicità di prova almeno annuale.

MODALITÀ ESECUTIVE

Nelle costruzioni delle murature portanti verrà curata la perfetta esecuzione degli spigoli, delle volte, piattabande ed archi. La costruzione delle murature deve garantire il perfetto collegamento sia con le murature esistenti, sia fra le parti di esse avendo particolare cura nell'ammorsamento degli spigoli.

Laddove si utilizzino elementi in laterizio, prima del loro impiego dovranno essere bagnati fino a saturazione per immersione prolungata e mai per aspersione. Essi dovranno mettersi in opera con i giunti alternati ed in corsi ben regolari e normali alla superficie esterna; saranno posati sopra un abbondante strato di malta e premuti sopra di esso in modo che la malta rifluisca all'ingiro e riempia tutte le commessure.

La larghezza dei giunti non dovrà essere maggiore di otto né minore di 5 mm.

I giunti non verranno rabboccati durante la costruzione per dare maggiore presa all'intonaco od alla stuccatura col ferro.

Le malte da impiegarsi per l'esecuzione delle murature dovranno essere passate al setaccio per evitare che i giunti fra i mattoni riescano superiori al limite di tolleranza fissato.

Le murature di rivestimento saranno fatte a corsi bene allineati e dovranno essere opportunamente collegate con la parte interna.

Se la muratura dovesse eseguirsi con paramento a vista (cortina) si dovrà avere cura di scegliere per le facce esterne i mattoni di migliore cottura, meglio formati e di colore più uniforme, disponendoli con perfetta regolarità e ricorrenza nelle commessure orizzontali, alternando con precisione i giunti verticali.

In questo genere di paramento i giunti non dovranno avere larghezza maggiore di 5 mm e, previa loro raschiatura e pulitura, dovranno essere profilati con malta idraulica o di cemento, diligentemente compressa e lisciata con apposito ferro, senza sbavatura.

Le sordine, gli archi, le piattabande e le volte dovranno essere costruite in modo che i mattoni siano sempre disposti in direzione normale alla curva dell'intradosso e la larghezza dei giunti non dovrà mai eccedere i 5 mm all'intradosso e 10 mm all'estradosso.

All'innesto con muri da costruirsi in tempo successivo dovranno essere lasciate opportune ammorsature in relazione al materiale impiegato.

I lavori di muratura, qualunque sia il sistema costruttivo adottato, debbono essere sospesi nei periodi di gelo, durante i quali la temperatura si mantenga, per molte ore, al disotto di zero gradi centigradi.

Quando il gelo si verifichi solo per alcune ore della notte, le opere in muratura ordinaria possono essere eseguite nelle ore meno fredde del giorno, purché al distacco del lavoro vengano adottati opportuni provvedimenti per difendere le murature dal gelo notturno.

Le impostature per le volte, gli archi, ecc. devono essere lasciate nelle murature sia con gli addentellati d'uso, sia col costruire l'origine delle volte e degli archi a sbalzo mediante le debite sagome, secondo quanto verrà prescritto.

La Direzione dei lavori stessa potrà ordinare che sulle aperture di vani di porte e finestre siano collocati degli architravi (cemento armato, acciaio) delle dimensioni che saranno fissate in relazione alla luce dei vani, allo spessore del muro e al sovraccarico.

Nel punto di passaggio fra le fondazioni entro terra e la parte fuori terra sarà eseguito un opportuno strato (impermeabile, drenante, ecc.) che impedisca la risalita per capillarità.

Tutti i muri saranno collegati al livello dei solai mediante cordoli e, tra di loro, mediante ammorsamenti lungo le intersezioni verticali. Inoltre essi saranno collegati da opportuni incatenamenti al livello dei solai. Nella direzione di orditura dei solai la funzione di collegamento potrà essere espletata dai solai stessi purché adeguatamente ancorati alla muratura.

Il collegamento tra la fondazione e la struttura in elevazione sarà di norma realizzato mediante cordolo di calcestruzzo armato disposto alla base di tutte le murature verticali resistenti, di spessore pari a quello della muratura di fondazione e di altezza non inferiore alla metà di detto spessore.

In corrispondenza dei solai di piano e di copertura i cordoli si realizzeranno generalmente in cemento armato, di larghezza pari ad almeno 2/3 della muratura sottostante, e comunque non inferiore a 12 cm, e di altezza almeno pari a quella del solaio e comunque non inferiore alla metà dello spessore del muro.

Negli incroci a L le barre dovranno ancorarsi nel cordolo ortogonale per almeno 50 diametri; la squadra delle barre dovrà sempre abbracciare l'intero spessore del cordolo.

Gli incatenamenti orizzontali interni, aventi lo scopo di collegare i muri paralleli della scatola muraria ai livelli dei solai, devono essere realizzati per mezzo di armature metalliche. Tali incatenamenti dovranno avere le estremità efficacemente ancorate ai cordoli.

Nella direzione di orditura del solaio possono essere omessi gli incatenamenti quando il collegamento è assicurato dal solaio stesso.

In direzione ortogonale al senso di orditura del solaio gli incatenamenti orizzontali saranno obbligatori per solai con luce superiore ai 4,5 m e saranno costituiti da armature con una sezione totale pari a 4 cm² per ogni campo di solaio.

Lo spessore dei muri non può essere inferiore ai seguenti valori:

- muratura in elementi resistenti artificiali pieni 12 cm;
- muratura in elementi resistenti artificiali semipieni 20 cm;
- muratura in elementi resistenti artificiali forati 25 cm;
- muratura di pietra squadrata 24 cm;
- muratura listata 40 cm;
- muratura di pietra non squadrata 50 cm.

Art. XXXIX - Strutture in legno

Le strutture in legno, regolamentate nel D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" cap. 4.4, prese in considerazione sono quelle che assolvano una funzione strutturale e che coinvolgono la sicurezza delle persone, siano esse realizzate in legno massiccio (segato, squadrato o tondo) e/o legno lamellare (incollato) e/o pannelli derivati dal legno, assemblati mediante incollaggio o elementi di collegamento meccanici.

Si definisce "produttore" il soggetto legalmente responsabile della classificazione secondo la resistenza meccanica (così come definita nelle pertinenti norme tecniche citate nel seguito) del materiale o del prodotto a base di legno.

In assenza di esplicita indicazione contraria nei documenti di accompagnamento delle forniture di materiali e prodotti a base di legno, ai fini della responsabilità legale il produttore coincide con il fornitore del materiale o del prodotto.

La produzione, fornitura e utilizzazione del legno strutturale dovranno avvenire in applicazione di un sistema di rintracciabilità dei singoli elementi che copra la catena di custodia dal momento della prima classificazione e marcatura almeno fino al momento della prima messa in opera. All'atto della posa in opera il direttore dei lavori deve verificare, acquisendone copia, che il legno strutturale sia oggetto di attestato di qualificazione e che le procedure di posa in opera siano conformi alle specifiche tecniche del produttore.

Per il legno strutturale, nelle norme sono disponibili due tipi diversi di profili caratteristici:

- le Categorie sono riferite a specifici "tipi di legname" ovvero specifiche combinazioni di specie legnosa/provenienza geografica/qualità. Le categorie sono contenute nelle diverse norme di classificazione dei diversi paesi di produzione del legno strutturale;
- le Classi di Resistenza sono riunite nel D.M. 14 gennaio 2008 "Nuove norme tecniche per le costruzioni" cap. 11.7 e costituiscono una raccolta di "profili normalizzati" di validità generale, utili allorché il progettista non desideri o non sia in grado di indicare un preciso tipo di legname.

Entrambi i tipi di profili caratteristici sono ugualmente ammissibili in sede di progettazione. Tuttavia, al momento della fornitura del materiale, la classificazione di quest'ultimo dovrà essere conforme a quanto prescritto nel progetto. È ammessa l'equivalenza di una Categoria alla corrispondente Classe di Resistenza (e viceversa) se tale equivalenza è stabilita dalla UNI EN 1912:2009.

Profili prestazionali caratteristici diversi da quelli sopra indicati potranno essere assunti nella progettazione sulla base dei risultati documentati di prove sperimentali in conformità a quanto disposto nella EN 14081/06 (o normativa riconosciuta equivalente, per legname di provenienza non Europea). Profili caratteristici per tipi di legno strutturale di provenienza italiana sono contenuti nelle UNI 11035-1-2/03 (Parte 1 e Parte 2). Nelle stesse norme si forniscono le regole di classificazione per i tipi di legname strutturale italiani, nonché indicazioni sulla procedura necessaria per l'attribuzione di profili caratteristici a tipi di legname non inclusi nella norma. Per tipi di legno strutturale di provenienza non italiana è possibile utilizzare le Classi di Resistenza equivalenti indicate nella UNI EN 1912:2009.

I valori indicati nei profili caratteristici possono essere assunti nei calcoli di progetto come valori massimi per le grandezze cui si riferiscono.

Per la qualificazione della produzione, i produttori di legno strutturale massiccio devono produrre al Servizio Tecnico Centrale, per ciascun stabilimento, la documentazione seguente:

- l'individuazione dello stabilimento cui l'istanza si riferisce:
- il tipo di elementi strutturali che l'azienda è in grado di produrre;
- l'organizzazione del sistema di rintracciabilità relativo alla produzione di legno strutturale;
- l'organizzazione del controllo interno di produzione, con l'individuazione di un "Direttore Tecnico della produzione qualificato" alla classificazione del legno strutturale;
- il marchio afferente al produttore (in seguito denominato "marchio del fornitore") specifico per la classe di prodotti "elementi di legno massiccio per uso strutturale".

I produttori sono tenuti ad inviare al Servizio Tecnico Centrale, ogni anno, i seguenti documenti:

- una dichiarazione attestante la permanenza delle condizioni iniziali di idoneità della organizzazione del controllo interno di qualità o le eventuali modifiche;
- i risultati dei controlli interni eseguiti nell'ultimo anno, per ciascun tipo di prodotto, da cui risulti anche il quantitativo di produzione.

Il mancato rispetto delle condizioni sopra indicate, accertato anche attraverso sopralluoghi, può comportare la decadenza della qualificazione. Tutte le forniture di elementi in legno massiccio per uso strutturale debbono essere marcate e accompagnate da una documentazione relativa alle caratteristiche tecniche del prodotto.

Ciascun prodotto qualificato deve costantemente essere riconoscibile per quanto concerne le caratteristiche qualitative e riconducibile allo stabilimento di produzione tramite marcatura indelebile depositata presso il Servizio Tecnico Centrale, conforme alla UNI EN 14081/06. Ogni prodotto deve essere marcato con identificativi diversi da quelli di prodotti aventi differenti caratteristiche, ma fabbricati nello stesso stabilimento e con identificativi differenti da quelli di prodotti con uguali caratteristiche ma fabbricati in altri stabilimenti, siano essi o meno dello stesso produttore. La marcatura deve essere inalterabile nel tempo e senza possibilità di manomissione.

Per stabilimento si intende una unità produttiva a se stante, con impianti propri e magazzini per il prodotto finito. Nel caso di unità produttive multiple appartenenti allo stesso produttore, la qualificazione deve essere ripetuta per ognuna di esse e per ogni tipo di prodotto in esse fabbricato. Considerata la diversa natura, forma e dimensione dei prodotti, le caratteristiche degli impianti per la loro produzione, nonché la possibilità di fornitura sia in pezzi singoli sia in lotti, differenti possono essere i sistemi di marcatura adottati, anche in relazione all'uso.

Comunque, per quanto possibile, anche in relazione all'uso del prodotto, il produttore é tenuto a marcare ogni singolo pezzo. Ove ciò non sia possibile, per la specifica tipologia del prodotto, la marcatura deve essere tale che prima dell'apertura dell'eventuale ultima e più piccola confezione il prodotto sia riconducibile al produttore, al tipo di legname nonché al lotto di classificazione e alla data di classificazione. Tenendo presente che l'elemento determinante della marcatura è costituito dalla sua inalterabilità nel tempo, e dalla impossibilità di manomissione, il produttore deve rispettare le modalità di marcatura denunciate nella documentazione presentata al Servizio Tecnico Centrale e deve comunicare tempestivamente eventuali modifiche apportate.

Qualora, sia presso gli utilizzatori, sia presso i commercianti, l'unità marcata (pezzo singolo o lotto) viene scorporata, per cui una parte, o il tutto, perde l'originale marcatura del prodotto è responsabilità sia degli utilizzatori sia dei commercianti documentare la provenienza mediante i documenti di accompagnamento del materiale e gli estremi del deposito del marchio presso il Servizio Tecnico Centrale.

I produttori, i successivi intermediari e gli utilizzatori finali devono assicurare una corretta archiviazione della documentazione di accompagnamento dei materiali garantendone la disponibilità per almeno 10 anni e devono mantenere evidenti le marcature o etichette di riconoscimento per la rintracciabilità del prodotto. Eventuali disposizioni supplementari atte a facilitare l'identificazione e la rintracciabilità del prodotto attraverso il marchio possono essere emesse dal Servizio Tecnico Centrale.

Tutte le forniture di legno strutturale devono essere accompagnate dall'attestato di qualificazione del Servizio Tecnico Centrale. L'attestato può essere utilizzato senza limitazione di tempo. Su tale attestato deve essere riportato il riferimento al documento di trasporto.

Le forniture effettuate da un commerciante o da un trasformatore intermedio devono essere accompagnate da copia dei documenti rilasciati dal Produttore e completati con il riferimento al documento di trasporto del commerciante o trasformatore intermedio. Il Direttore dei Lavori prima della messa in opera, è tenuto a verificare quanto sopra indicato ed a rifiutare le eventuali forniture non conformi.

APPROVVIGIONAMENTO ED ACCETTAZIONE DEI MATERIALI

Legno massiccio

Il legno massiccio per uso strutturale è un prodotto naturale selezionato, in dimensioni d'uso nelle strutture, classificato, elemento per elemento, secondo la resistenza sulla base di specifiche normative. Il riferimento è la norma UNI EN 14081 e D.M. 14 gennaio 2008 – "Nuove Norme tecniche per le costruzioni" capitolo 11.7.2

I parametri di resistenza, di rigidezza e di massa volumica assegnati al legno strutturale vengono di regola determinati sulla base di prove sperimentali normalizzate che producono gli stessi tipi di effetti delle azioni alle quali il materiale sarà soggetto nella struttura. Tali prove devono essere condotte su campioni significativi di elementi classificati in dimensione d'uso.

I criteri di classificazione garantiscono all'elemento prestazioni meccaniche minime statisticamente determinate senza necessità di ulteriori prove sperimentali e verifiche.

Per tipi di legname non inclusi nelle norme vigenti, è ammissibile la determinazione dei parametri di cui sopra sulla base di confronti con specie legnose note aventi caratteristiche simili a quelle della specie incognita, oppure sulla base di correlazioni con i valori di resistenza, rigidezza e massa volumica ottenuti tramite prove eseguite su campioni di provini piccoli e netti. In questi due casi, tuttavia, si dovrà dimostrare di aver tenuto conto della minore affidabilità dei risultati rispetto a quelli ottenuti con il metodo ordinario.

Tutti i legnami da impiegare, nei vari tipi di essenze o prodotti di lavorazione, dovranno essere conformi alle prescrizioni della normativa vigente ed avere le caratteristiche fisico-meccaniche riportate dalla seguente tabella:

Essenza	massa volumica Kg/d.m.c	umidità max %	carico di rottura a compresione (Kg/cmq)	carico di rottura a fless. N/mmq. (Kg/cmq)	durezza Brinell Hd
castagno	0,62	18	500	1.100	3,9
faggio	0,74	18	400	950	4,5
frassino	0,74	18	450	1.100	5
larice	0,60	20	350	800	3,3
mogano	0,50	15	400	1.000	4
noce	0,69	18	400	700	3,6
pino	0,53	20	350	660	2,9
pioppo	0,42	22	250	600	2,4
pitch pine	0,84	16	450	900	4,9
rovere	0,74	10	500	1000	5

Legno strutturale con giunti a dita

In aggiunta a quanto prescritto per il legno massiccio, gli elementi di legno strutturale con giunti a dita devono essere conformi alla UNI EN 385/03.

Legno lamellare incollato93

⁹³ Riferimento normativo UNI EN 14080/05

I produttori di elementi di legno lamellare per uso strutturale devono essere qualificati. All'atto della posa in opera il direttore dei lavori deve verificare, acquisendone copia, che il legno lamellare incollato sia oggetto di attestato di qualificazione e che le procedure di posa in opera siano conformi alle specifiche tecniche del produttore.

L'attribuzione degli elementi strutturali di legno lamellare ad una classe di resistenza viene effettuata dal produttore secondo quanto previsto ai punti seguenti.

- classificazione sulla base delle proprietà delle lamelle: le lamelle sono da considerare a tutti gli effetti elementi di legno strutturale e sono quindi tutte individualmente classificate dal produttore. L'elemento strutturale di legno lamellare incollato può essere costituito dall'insieme di lamelle tra loro omogenee (elemento "omogeneo") oppure da lamelle di diversa qualità (elemento "combinato") secondo quanto previsto in UNI EN 1194:2000. Nella citata norma viene indicata la corrispondenza tra le classi delle lamelle che compongono l'elemento strutturale e la classe di resistenza risultante per l'elemento lamellare stesso, sia omogeneo che combinato.
- attribuzione diretta in base a prove sperimentali: nei casi in cui il legno lamellare incollato non ricada in una delle tipologie previste dalla UNI EN 1194:2000, è ammessa l'attribuzione diretta degli elementi strutturali lamellari alle classi di resistenza sulla base di risultati di prove sperimentali, da eseguirsi in conformità alla EN 14080:2005.

I valori indicati nei profili caratteristici possono essere assunti nei calcoli di progetto come valori massimi per le grandezze cui si riferiscono. Oltre alle condizioni di prova normalizzate (geometria di prova, rottura a 300 s, umidità del legno in equilibrio con aria a T = 20°C e = 65%), i valori caratteristici di resistenza sono riferiti alle seguenti dimensioni del provino:

- provini per flessione: altezza della sezione resistente 600 mm;
- provino per trazione parallela alla fibratura: larghezza della sezione resistente 600 mm;
- provino per trazione perpendicolare alla fibratura: volume 10000 mm³;
- provino per resistenza a taglio: volume uniformemente sollecitato 500 mm³.

Pertanto, per elementi di legno lamellare incollato sottoposti a flessione che presentino una altezza della sezione trasversale minore di 600 mm. Le dimensioni delle singole lamelle dovranno rispettare i limiti per lo spessore se l'area della sezione trasversale A indicati in UNI EN 386:2003.

I giunti a dita "a tutta sezione" devono essere conformi a quanto previsto da UNI EN 387:2003. I giunti a dita "a tutta sezione" non possono essere usati per elementi strutturali da porre in opera nella classe di servizio 3, quando la direzione della fibratura cambi in corrispondenza del giunto.

Pannelli a base di legno

I produttori di pannelli a base di legno per uso strutturale devono essere in possesso di attestato di conformità alla relativa parte approvata della norma europea armonizzata EN 13986/05.

Il metodo di controllo della conformità dei pannelli a base di legno è quello dettagliato nell'appendice ZA-Prospetto ZA.2 - "Sistemi di attestazione della conformità" (Sistema 2+) delle relative norme armonizzate. Il Sistema 2+ (certificazione del controllo di produzione in fabbrica) è quello specificato all'art. 7, comma 1 lettera B, Procedura 1 del D.P.R. n. 246/93, comprensiva della sorveglianza, giudizio ed approvazione permanenti del controllo di produzione in fabbrica.

All'atto della posa in opera il direttore dei lavori deve verificare, acquisendone copia, che il pannello a base di legno per uso strutturale sia oggetto di attestato di conformità e che le procedure di posa in opera siano conformi alle specifiche tecniche del produttore.

I valori caratteristici di resistenza e di rigidezza sono indicati nella UNI EN 12369-1/02 (per pannelli OSB, pannelli di particelle e pannelli di fibra) oppure indicati nella UNI EN 12369-2/05 (per i pannelli di legno compensato) 12369-3:2009 (pannelli legno massiccio) con riferimento alla UNI EN 1072/97 (determinati secondo il metodo descritto nella UNI EN 1058:2010).

Adesivi

Gli adesivi per usi strutturali devono produrre unioni aventi resistenza e durabilità tali che l'integrità dell'incollaggio sia conservata, nella classe di servizio assegnata, durante tutta la vita prevista della struttura.

Elementi meccanici di collegamento

Per tutti gli elementi metallici che fanno parte di particolari di collegamento (spinotti, chiodi, viti, piastre metalliche, ...) le caratteristiche specifiche verranno verificate con riferimento alle normative vigenti per la categoria di appartenenza.

DISPOSIZIONI COSTRUTTIVE

Collegamentl94

Le membrature compresse ed i loro collegamenti (come per esempio i giunti di carpenteria), per cui possa essere prevedibile il collasso a causa dell'inversione di segno della sollecitazione, devono essere progettati in modo tale che non si verifichino separazioni, dislocazioni, disassamenti.

Perni e bulloni devono essere serrati e correttamente inseriti nei loro alloggiamenti (nel rispetto delle tolleranze previste).

Perni e bulloni di diametro superiore a 16 mm è bene che siano utilizzati nei collegamenti legno-legno e legno-acciaio, eccezion fatta quando essi siano utilizzati come elementi di chiusura dei connettori e tali, quindi, da non influenzare la resistenza a taglio.

Il collegamento realizzato mediante spinotti o chiodi a gambo liscio non deve essere utilizzato senza accorgimenti aggiuntivi volti ad evitare l'apertura del giunto.

Nel caso di tensioni perpendicolari alla fibratura, si devono osservare disposizioni aggiuntive (come quelle riportate nelle normative di calcolo di cui al paragrafo 9.1.1) al fine di evitare l'innesco di fratture parallele alla fibratura (splitting).

Impalcati

Eventuali fattori di incremento della capacità portante dei mezzi di unione ai bordi dei rivestimenti strutturali e dell'incremento dell'interasse dei chiodi lungo i bordi discontinui dei pannelli non devono essere utilizzati. La distribuzione delle forze di taglio negli impalcati deve essere valutata tenendo conto della disposizione effettiva in pianta degli elementi di controvento verticali; i vincoli nel piano orizzontale tra impalcato e pareti portanti verticali devono essere di tipo bilatero.

Tutti i bordi dei rivestimenti strutturali devono essere collegati agli elementi del telaio: i rivestimenti strutturali che non terminano su elementi del telaio devono essere sostenuti e collegati da appositi elementi di bloccaggio taglio-resistenti. Dispositivi con funzione analoga devono essere inoltre disposti nei diaframmi orizzontali posti al di sopra di elementi verticali di controvento (ad esempio le pareti).

La continuità delle travi deve essere assicurata, specialmente in corrispondenza delle zone di impalcato che risultano perturbate dalla presenza di aperture.

Quando gli impalcati sono considerati, ai fini dell'analisi strutturale, come rigidi nel loro piano, in corrispondenza delle zone nelle quali si attua il trasferimento delle forze orizzontali agli elementi verticali (e.g. le pareti di controvento) si dovrà assicurare il mantenimento della direzione di tessitura delle travi di impalcato.

CONTROLLO DEL PROGETTO E DELLA COSTRUZIONE

⁹⁴ Le normative di riferimento sono le norme UNI 28970:1991, UNI 26891:1991, UNI EN 1075:2002, UNI 1380:2001, UNI 1381:2001

Le strutture di legno dovranno essere sottoposte a collaudo statico nel rispetto delle prescrizioni generali previste per il collaudo delle opere di ingegneria.

Le prove di carico, ove ritenute necessarie dal collaudatore, rispetteranno le modalità indicate nella UNI EN 380:1994 "Strutture di legno – Metodi di prova – Principi generali per le prove con carico statico". Il programma delle prove deve essere sottoposto al direttore dei lavori ed al progettista e reso noto al costruttore.

IL TECNICO

(Ing. Rocco Rosato)